Packing Rearrangements in 4-Hydroxycyanobenzene Under Pressure
Abstract
1. Introduction
2. Results
2.1. Compression in Helium
2.2. Compression in Neon
3. Discussion
4. Conclusions
5. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Sun, L.; Wang, C.; Yang, F.; Ren, X.; Zhang, X.; Dong, H.; Hu, W. Organic crystalline materials in flexible electronics. Chem. Soc. Rev. 2019, 48, 1492–1530. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Dong, H.; Jiang, L.; Hu, W. Organic semiconductor crystals. Chem. Soc. Rev. 2018, 47, 422–500. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics. Chem. Rev. 2011, 112, 2208–2267. [Google Scholar] [CrossRef] [PubMed]
- Higashi, T.; Osaki, K. p-Cyanophenol. Acta Cryst. B 1977, 33, 607–609. [Google Scholar] [CrossRef]
- Fraboni, B.; DiPietro, R.; Castaldini, A.; Cavallini, A.; Fraleoni-Morgera, A.; Setti, L.; Mencarelli, I.; Femoni, C. Anisotropic charge transport in organic single crystals based on dipolar molecules. Org. Electron. 2008, 9, 974–978. [Google Scholar] [CrossRef]
- Fraboni, B.; Femoni, C.; Mencarelli, I.; Setti, L.; Di Pietro, R.; Cavallini, A.; Fraleoni-Morgera, A. Solution-Grown, Macroscopic Organic Single Crystals Exhibiting Three-Dimensional Anisotropic Charge-Transport Properties. Adv. Mater. 2009, 21, 1835–1839. [Google Scholar] [CrossRef]
- Fraboni, B.; Fraleoni-Morgera, A.; Cavallini, A. Three-dimensional anisotropic density of states distribution and intrinsic-like mobility in organic single crystals. Org. Electron. 2010, 11, 10–15. [Google Scholar] [CrossRef]
- Fraleoni-Morgera, A.; Tessarolo, M.; Perucchi, A.; Baldassarre, L.; Lupi, S.; Fraboni, B. Polarized Infrared Studies on Charge Transport in 4-Hydroxycyanobenzene Single Crystals. J. Phys. Chem. C 2012, 116, 2563–2569. [Google Scholar] [CrossRef]
- Fraboni, B.; Ciavatti, A.; Merlo, F.; Pasquini, L.; Cavallini, A.; Quaranta, A.; Bonfiglio, A.; Fraleoni-Morgera, A. Organic Semiconducting Single Crystals as Next Generation of Low-Cost, Room-Temperature Electrical X-ray Detectors. Adv. Mater. 2012, 24, 2289–2293. [Google Scholar] [CrossRef]
- Ciavatti, A.; Capria, E.; Fraleoni-Morgera, A.; Tromba, G.; Dreossi, D.; Sellin, P.J.; Cosseddu, P.; Bonfiglio, A.; Fraboni, B. Toward Low-Voltage and Bendable X-Ray Direct Detectors Based on Organic Semiconducting Single Crystals. Adv. Mater. 2015, 27, 7213–7220. [Google Scholar] [CrossRef]
- Mohanraj, J.; Capria, E.; Benevoli, L.; Perucchi, A.; Demitri, N.; Fraleoni-Morgera, A. XRD- and infrared-probed anisotropic thermal expansion properties of an organic semiconducting single crystal. Phys. Chem. Chem. Phys. 2018, 20, 1984–1992. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, G.; Cossaro, A.; Capria, E.; Benevoli, L.; Coreno, M.; De Simone, M.; Prince, K.C.; Kladnik, G.; Cvetko, D.; Fraboni, B.; et al. Intermolecular Hydrogen Bonding and Molecular Orbital Distortion in 4-Hydroxycyanobenzene Investigated by X-ray Spectroscopy. J. Phys. Chem. C 2015, 119, 121–129. [Google Scholar] [CrossRef]
- Janiak, C. A critical account on π − π stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc. Dalton Trans. 2000, 3885–3896. [Google Scholar] [CrossRef]
- Dai, Y.; Qi, Y. High-Pressure-Induced Phase Transition in 2,5-Diketopiperazine: The Anisotropic Compression of N–H⋯O Hydrogen-Bonded Tapes. J. Phys. Chem. C 2018, 122, 11747–11753. [Google Scholar] [CrossRef]
- Cai, W.; Katrusiak, A. Pressure effects on H-ordering in hydrogen bonds and interactions in benzoic acid. CrystEngComm 2012, 14, 4420–4424. [Google Scholar] [CrossRef]
- Fanetti, S.; Citroni, M.; Dziubek, K.; Nobrega, M.M.; Bini, R. The role of H-bond in the high-pressure chemistry of model molecules. J. Phys. Condens. Matter 2018, 30, 094001. [Google Scholar] [CrossRef]
- Kang, L.; Wang, K.; Li, X.; Zou, B. High Pressure Structural Investigation of Benzoic Acid: Raman Spectroscopy and X-ray Diffraction. J. Phys. Chem. C 2016, 120, 14758–14766. [Google Scholar] [CrossRef]
- Orgzall, I.; Emmerling, F.; Schulz, B.; Franco, O. High-pressure studies on molecular crystals—Relations between structure and high-pressure behavior. J. Phys. Condens. Matter 2008, 20, 295206. [Google Scholar] [CrossRef]
- Stavrou, E.; Riad Manaa, M.; Zaug, J.M.; Kuo, I.F.W.; Pagoria, P.F.; Kalkan, B.; Crowhurst, J.C.; Armstrong, M.R. The high pressure structure and equation of state of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) up to 20 GPa: X-ray diffraction measurements and first principles molecular dynamics simulations. J. Chem. Phys. 2015, 143, 144506. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Zheng, H.; Li, K.; Andrzejewski, M.; Hattori, T.; Sano-Furukawa, A.; Katrusiak, A.; Meng, Y.; Liao, F.; et al. Phase Transitions and Polymerization of C6H6–C6F6 Cocrystal under Extreme Conditions. J. Phys. Chem. C 2016, 120, 29510–29519. [Google Scholar] [CrossRef]
- Casati, N.; Kleppe, A.; Jephcoat, A.P.; Macchi, P. Putting pressure on aromaticity along with in situ experimental electron density of a molecular crystal. Nat. Commun. 2016, 7, 10901. [Google Scholar] [CrossRef]
- Cliffe, M.J.; Goodwin, A.L. PASCal: A principal-axis strain calculator for thermal expansion and compressibility determination. J. Appl. Cryst. 2012, 45, 1321–1329. [Google Scholar] [CrossRef]
- Laniel, D.; Sebastiao, E.; Cook, C.; Murugesu, M.; Hu, A.; Zhang, F.; Desgreniers, S. Dense nitrogen-rich energetic materials: A study of 5,5′-bis(1H-tetrazolyl)amine. J. Chem. Phys. 2014, 140, 184701. [Google Scholar] [CrossRef] [PubMed]
- Franco, O.; Orgzall, I.; Reck, G.; Stockhause, S.; Schulz, B. Structure and high-pressure behavior of 2,5-di-(4-aminophenyl)-1,3,4-oxadiazole. J. Phys. Chem. Solids 2005, 66, 994–1003. [Google Scholar] [CrossRef]
- Gonzalez-Platas, J.; Alvaro, M.; Nestola, F.; Angel, R. EosFit7-GUI: A new graphical user interface for equation of state calculations, analyses and teaching. J. Appl. Crystallogr. 2016, 49, 1377–1382. [Google Scholar] [CrossRef]
- Ciabini, L.; Gorelli, F.A.; Santoro, M.; Bini, R.; Schettino, V.; Mezouar, M. High-pressure and high-temperature equation of state and phase diagram of solid benzene. Phys. Rev. B 2005, 72, 094108. [Google Scholar] [CrossRef]
- Nobrega, M.M.; Temperini, M.L.A.; Bini, R. Probing the Chemical Stability of Aniline under High Pressure. J. Phys. Chem. C 2017, 121, 7495–7501. [Google Scholar] [CrossRef]
- Citroni, M.; Fanetti, S.; Bazzicalupi, C.; Dziubek, K.; Pagliai, M.; Nobrega, M.M.; Mezouar, M.; Bini, R. Structural and electronic competing mechanisms in the formation of amorphous carbon nitride by compressing s-triazine. J. Phys. Chem. C 2015, 119, 28560–28569. [Google Scholar] [CrossRef]
- Badenhoop, J.K.; Weinhold, F. Natural steric analysis: Ab initio van der Waals radii of atoms and ions. J. Chem. Phys. 1997, 107, 5422–5432. [Google Scholar] [CrossRef]
- Klotz, S.; Chervin, J.C.; Munsch, P.; Marchand, G.L. Hydrostatic limits of 11 pressure transmitting media. J. Phys. D Appl. Phys. 2009, 42, 075413. [Google Scholar] [CrossRef]
- Guńka, P.A.; Dziubek, K.F.; Gładysiak, A.; Dranka, M.; Piechota, J.; Hanfland, M.; Katrusiak, A.; Zachara, J. Compressed arsenolite As4O6 and its helium clathrate As4O6·2He. Cryst. Growth Des. 2015, 15, 3740–3745. [Google Scholar] [CrossRef]
- Guńka, P.A.; Hapka, M.; Hanfland, M.; Dranka, M.; Chałasiński, G.; Zachara, J. How and Why Does Helium Permeate Nonporous Arsenolite Under High Pressure? ChemPhysChem 2018, 19, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Sans, J.A.; Manjón, F.J.; Popescu, C.; Cuenca-Gotor, V.P.; Gomis, O.; Muñoz, A.; Rodríguez-Hernández, P.; Contreras-García, J.; Pellicer-Porres, J.; Pereira, A.L.; et al. Ordered helium trapping and bonding in compressed arsenolite: Synthesis of As4O6·2He. Phys. Rev. B 2016, 93, 054102. [Google Scholar] [CrossRef]
- Hester, B.R.; dos Santos, A.M.; Molaison, J.J.; Hancock, J.C.; Wilkinson, A.P. Synthesis of Defect Perovskites (He2−x□x)(CaZr)F6 by Inserting Helium into the Negative Thermal Expansion Material CaZrF6. J. Am. Chem. Soc. 2017, 139, 13284–13287. [Google Scholar] [CrossRef] [PubMed]
- Collings, I.E.; Bykov, M.; Bykova, E.; Hanfland, M.; van Smaalen, S.; Dubrovinsky, L.; Dubrovinskaia, N. Disorder–order transitions in the perovskite metal–organic frameworks [(CH3)2NH2][M(HCOO)3] at high pressure. CrystEngComm 2018, 20, 3512–3521. [Google Scholar] [CrossRef]
- Rigaku Oxford Diffraction. CrysAlisPro Software System, Version 1.171.38.46; Rigaku Corporation: Oxford, UK, 2018. [Google Scholar]
- Sheldrick, G. A short history of SHELX. Acta Cryst. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Hübschle, C.B.; Sheldrick, G.M.; Dittrich, B. ShelXle: A Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
PTM | P Range (GPa) | |||
---|---|---|---|---|
He | 0–2.1 | 6.0(6) | 2525.3(3) | 10.0(14) |
He | 10.4–25.1 | 11.1(3) | 2520(15) | 6.65(10) |
Ne | 0–4.0 | 5.5(2) | 2516.7(10) | 11.0(4) |
Ne | 6-14 | 9.7(2) | 2377(10) | 6.78(10) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collings, I.E.; Hanfland, M. Packing Rearrangements in 4-Hydroxycyanobenzene Under Pressure. Molecules 2019, 24, 1759. https://doi.org/10.3390/molecules24091759
Collings IE, Hanfland M. Packing Rearrangements in 4-Hydroxycyanobenzene Under Pressure. Molecules. 2019; 24(9):1759. https://doi.org/10.3390/molecules24091759
Chicago/Turabian StyleCollings, Ines E., and Michael Hanfland. 2019. "Packing Rearrangements in 4-Hydroxycyanobenzene Under Pressure" Molecules 24, no. 9: 1759. https://doi.org/10.3390/molecules24091759
APA StyleCollings, I. E., & Hanfland, M. (2019). Packing Rearrangements in 4-Hydroxycyanobenzene Under Pressure. Molecules, 24(9), 1759. https://doi.org/10.3390/molecules24091759