Protective Effects of a New C-Jun N-terminal Kinase Inhibitor in the Model of Global Cerebral Ischemia in Rats
Abstract
:1. Introduction
2. Results
2.1. Effects of IQ-1S on Survival and Neurological Status
2.2. Effects of IQ-1S on the Morphological Structure of the CA1 Hippocampal Area
2.3. Effects of IQ-1S on Lipid Peroxidation in Cerebral Tissue
2.4. Antiradical Effect of IQ-1S
2.5. Effects of IQ-1S on LCBF in Cerebral Cortex, Mean Arterial Blood Pressure, and Heart Rate
2.6. Effects of IQ-1S on Hemorheological Parameters
2.7. Effects of IQ-1S on Vasodilator Activity of Endothelium
2.8. Effects of IQ-1S on Tonus of Isolated Carotid Artery Rings
2.9. Effects of IQ-1S on Indices of Plasma Hemostasis
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Equipment
4.3. Chemicals and Drugs
4.4. Study Molecule
4.5. Model of GCI
4.6. Experimental Protocol
4.7. Neurological Deficit Evaluation
4.8. Histology Study
4.9. Antioxidant Activity Measurement
4.10. Antiradical Activity Measurement
4.11. Registration of LCBF, Arterial Blood Pressure, and Heart Rate
4.12. Measurement of Hemorheological Parameters
4.13. Measurement of Vasodilator Activity of Endothelium
4.14. Measurement of Isolated Carotid Artery Tonus In Vitro
4.15. Measurement of the Pasma Hemostasis Parameters
4.16. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mehta, S.L.; Manhas, N.; Raghubir, R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res. Rev. 2007, 54, 34–66. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Barrett, T.; Whitmarsh, A.J.; Cavanagh, J.; Sluss, H.K.; Dérijard, B.; Davis, R.J. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 1996, 15, 2760–2770. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, T.; Kawasaki, H.; Nishina, H. Diverse roles of JNK and MKK pathways in the brain. J. Signal Transduct. 2012, 2012, 459265. [Google Scholar] [CrossRef]
- Brecht, S.; Kirchhof, R.; Chromik, A.; Willesen, M.; Nicolaus, T.; Raivich, G.; Wessig, J.; Waetzig, V.; Goetz, M.; Claussen, M.; et al. Specific pathophysiological functions of JNK isoforms in the brain. Eur. J. Neurosci. 2005, 21, 363–377. [Google Scholar] [CrossRef]
- Hu, B.R.; Liu, C.L.; Park, D.J. Alteration of MAP kinase pathways after transient forebrain ischemia. J. Cereb. Blood Flow Metab. 2000, 20, 1089–1095. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, D.; Wang, H.; Qu, Y.; Xiao, X.; Zhu, Y. The protective effect of HET0016 on brain edema and blood-brain barrier dysfunction after cerebral ischemia/reperfusion. Brain Res. 2014, 1544, 45–53. [Google Scholar] [CrossRef]
- Shvedova, M.; Anfinogenova, Y.; Atochina-Vasserman, E.N.; Schepetkin, I.A.; Atochin, D.N. c-Jun N-terminal kinases (JNKs) in myocardial and cerebral ischemia/reperfusion injury. Front. Pharmacol. 2018, 9, 715. [Google Scholar] [CrossRef]
- Kuan, C.Y.; Burke, R.E. Targeting the JNK signaling pathway for stroke and Parkinson’s diseases therapy. Curr. Drug Targets CNS Neurol. Disord. 2005, 4, 63–67. [Google Scholar] [CrossRef]
- Schepetkin, I.A.; Kirpotina, L.N.; Khlebnikov, A.I.; Hanks, T.S.; Kochetkova, I.; Pascual, D.W.; Jutila, M.A.; Quinn, M.T. Identification and characterization of a novel class of c-Jun N-terminal kinase inhibitors. Mol. Pharmacol. 2012, 81, 832–845. [Google Scholar] [CrossRef]
- Gehringer, M.; Muth, F.; Koch, P.; Laufer, S.A. c-Jun N-terminal kinase inhibitors: A patent review (2010–2014). Expert Opin. Ther. Pat. 2015, 25, 849–872. [Google Scholar] [CrossRef]
- Carboni, S.; Boschert, U.; Gaillard, P.; Gotteland, J.P.; Gillon, J.Y.; Vitte, P.A. AS601245, a c-Jun NH2-terminal kinase (JNK) inhibitor, reduces axon/dendrite damage and cognitive deficits after global cerebral ischaemia in gerbils. Br. J. Pharmacol. 2008, 153, 157–163. [Google Scholar] [CrossRef]
- Krenitsky, V.P.; Delgado, M.; Nadolny, L.; Sahasrabudhe, K.; Ayala, L.; Clareen, S.S.; Hilgraf, R.; Albers, R.; Kois, A.; Hughes, K.; et al. Aminopurine based JNK inhibitors for the prevention of ischemia reperfusion injury. Bioorg. Med. Chem. Lett. 2012, 22, 1427–1432. [Google Scholar] [CrossRef]
- Irving, E.A.; Bamford, M. Role of mitogen- and stress-activated kinases in ishemic injury. J. Cereb. Blood Flow Metab. 2002, 22, 631–647. [Google Scholar] [CrossRef] [PubMed]
- Carboni, S.; Hiver, A.; Szyndralewiez, C.; Gaillard, P.; Gotteland, J.P.; Vitte, P.A. AS601245 (1,3-benzothiazol-2-yl (2-[[2-(3-pyridinyl) ethyl] amino]-4 pyrimidinyl) acetonitrile): A c-Jun NH2-terminal protein kinase inhibitor with neuroprotective properties. J. Pharmacol. Exp. Ther. 2004, 310, 25–32. [Google Scholar] [CrossRef]
- Gao, Y.; Signore, A.P.; Yin, W.; Cao, G.; Yin, X.M.; Sun, F.; Luo, Y.; Graham, S.H.; Chen, J. Neuroprotection against focal ischemic brain injury by inhibition of c-Jun N-terminal kinase and attenuation of the mitochondrial apoptosis-signaling pathway. J. Cereb. Blood Flow Metab. 2005, 25, 694–712. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q.H.; Pei, D.S.; Liu, X.M.; Wang, X.T.; Xu, T.L.; Zhang, G.Y. Neuroprotection against ischemic brain injury by SP600125 via suppressing the extrinsic and intrinsic pathways of apoptosis. Brain Res. 2006, 1092, 36–46. [Google Scholar] [CrossRef]
- Koch, P.; Gehringer, M.; Laufer, S.A. Inhibitors of c-Jun N-terminal kinases: An update. J. Med. Chem. 2015, 58, 72–95. [Google Scholar] [CrossRef]
- Yuan, J. Neuroprotective strategies targeting apoptotic and necrotic cell death for stroke. Apoptosis 2009, 14, 469–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schepetkin, I.A.; Kirpotina, L.N.; Hammaker, D.; Kochetkova, I.; Khlebnikov, A.I.; Lyakhov, S.A.; Firestein, G.S.; Quinn, M.T. Anti-inflammatory effects and joint protection in collagen-induced arthritis after treatment with IQ-1S, a selective c-Jun N-terminal kinase inhibitor. J. Pharmacol. Exp. Ther. 2015, 353, 505–516. [Google Scholar] [CrossRef]
- Atochin, D.N.; Schepetkin, I.A.; Khlebnikov, A.I.; Seledtsov, V.I.; Swanson, H.; Quinn, M.T.; Huang, P.L. A novel dual NO-donating oxime and c-Jun N-terminal kinase inhibitor protects against cerebral ischemia-reperfusion injury in mice. Neurosci. Lett. 2016, 618, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.M.; Xu, J.; Li, C.; Zhou, C.; Zhang, F.; Han, D.; Zhang, G.Y. Coupling between neuronal nitric oxide synthase and glutamate receptor 6-mediated c-Jun N-terminal kinase signaling pathway via S-nitrosylation contributes to ischemia neuronal death. Neuroscience 2008, 155, 1120–1132. [Google Scholar] [CrossRef]
- Hu, S.Q.; Ye, J.S.; Zong, Y.Y.; Sun, C.C.; Liu, D.H.; Wu, Y.P.; Song, T.; Zhang, G.Y. S-nitrosylation of mixed lineage kinase 3 contributes to its activation after cerebral ischemia. J. Biol. Chem. 2012, 287, 2364–2377. [Google Scholar] [CrossRef]
- Pei, D.S.; Guan, Q.H.; Sun, Y.F.; Zhang, Q.X.; Xu, T.L.; Zhang, G.Y. Neuroprotective effects of GluR6 antisense oligodeoxynucleotides on transient brain ischemia/reperfusion-induced neuronal death in rat hippocampal CA1 region. J. Neurosci. Res. 2005, 82, 642–649. [Google Scholar] [CrossRef]
- Fisher, M.; Feuerstein, G.; Howells, D.W.; Hurn, P.D.; Kent, T.A.; Savitz, S.I.; Lo, E.H.; STAIR Group. Update of the stroke therapy academic industry roundtable preclinical recommendations. Stroke 2009, 40, 2244–2250. [Google Scholar] [CrossRef]
- Liu, X.; Huang, X.; Chen, L.; Zhang, Y.; Li, M.; Wang, L.; Ge, C.; Wang, H.; Zhang, M. Mechanical stretch promotes matrix metalloproteinase-2 and prolyl-4-hydroxylase α1 production in human aortic smooth muscle cells via Akt-p38 MAPK-JNK signaling. Int. J. Biochem. Cell. Biol. 2015, 62, 15–23. [Google Scholar] [CrossRef]
- Kashyap, M.P.; Singh, A.K.; Yadav, D.K.; Siddiqui, M.A.; Srivastava, R.K.; Chaturvedi, V.; Rai, N. 4-Hydroxy-trans-2-nonenal (4-HNE) induces neuronal SH-SY5Y cell death via hampering ATP binding at kinase domain of Akt1. Arch. Toxicol. 2015, 89, 243–258. [Google Scholar] [CrossRef] [PubMed]
- Khaja, A.M.; Grotta, J.C. Established treatments for acute ischaemic stroke. Lancet 2007, 369, 319–330. [Google Scholar] [CrossRef]
- Ginsberg, M.D.; Busto, R. Small-animal models of global and focal cerebral ischemia. In Cerebrovascular Disease: Pathophysiology, Diagnosis and Management; Ginsberg, M.D., Bogousslavsky, J., Eds.; Blackwell Science Publisher: Malden, MA, USA, 1998; pp. 14–35. [Google Scholar]
- Corbett, D.; Carmichael, S.T.; Murphy, T.H.; Jones, T.A.; Schwab, M.E.; Jolkkonen, J.; Clarkson, A.N.; Dancause, N.; Weiloch, T.; Johansen-Berg, H. Enhancing the alignment of the preclinical and clinical stroke recovery research pipeline: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable translational working group. Int. J. Stroke 2017, 12, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Macrae, I.M. Preclinical stroke research—Advantages and disadvantages of the most common rodent models of focal ischaemia. Br. J. Pharmacol. 2011, 164, 1062–1078. [Google Scholar] [CrossRef] [PubMed]
- Neuhaus, A.A.; Couch, Y.; Hadley, G.; Buchan, A.M. Neuroprotection in stroke: The importance of collaboration and reproducibility. Brain 2017, 140, 2079–2092. [Google Scholar] [CrossRef]
- Papadakis, M.; Hadley, G.; Xilouri, M.; Hoyte, L.C.; Nagel, S.; McMenamin, M.M.; Tsaknakis, G.; Watt, S.M.; Drakesmith, C.W.; Chen, R.; et al. Tsc1 (hamartin) confers neuroprotection against ischemia by inducing autophagy. Nat. Med. 2013, 19, 351–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, A.R.; Shuaib, A. Therapeutic strategies for the treatment of stroke. Drug Discov. Today 2006, 11, 681–693. [Google Scholar] [CrossRef]
- Brouns, R.; De Deyn, P.P. The complexity of neurobiological processes in acute ischemic stroke. Clin. Neurol. Neurosurg. 2009, 111, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Atochin, D.N.; Chernysheva, G.A.; Aliev, O.I.; Smolyakova, V.I.; Osipenko, A.N.; Logvinov, S.V.; Zhdankina, A.A.; Plotnikova, T.M.; Plotnikov, M.B. An improved three-vessel occlusion model of global cerebral ischemia in rats. Brain Res. Bull. 2017, 132, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Shcherbak, N.S.; Galagudza, M.M.; Kuzmenkov, A.N.; Ovchinnikov, D.A.; Mitrofanova, L.B.; Barantsevich, E.R.; Shlyakhto, E.V. A new rat model of reversible global cerebral ischemia. Bull. Exp. Biol. Med. 2012, 152, 656–658. [Google Scholar] [CrossRef] [PubMed]
- Atochin, D.N.; Chernysheva, G.A.; Smolyakova, V.I.; Osipenko, A.N.; Logvinov, S.V.; Zhdankina, A.A.; Sysolyatin, S.V.; Kryukov, Y.A.; Anfinogenova, Y.; Plotnikova, T.M.; et al. Neuroprotective effects of p-tyrosol after the global cerebral ischemia in rats. Phytomedicine 2016, 23, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Martynov, M.Y.; Gusev, E.I. Current knowledge on the neuroprotective and neuroregenerative properties of citicoline in acute ischemic stroke. J. Exp. Pharmacol. 2015, 7, 17–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, N.Q.; Wang, L.Y.; Zhao, H.P.; Liu, P.; Wang, R.L.; Song, J.X.; Gao, L.; Ji, X.M.; Luo, Y.M. Luoyutong treatment promotes functional recovery and neuronal plasticity after cerebral ischemia-reperfusion injury in rats. Evid. Based Complement. Alternat. Med. 2015, 2015, 369021. [Google Scholar] [CrossRef]
- Yuliani, S.; Mustofa; Partadiredja, G. The neuroprotective effects of an ethanolic turmeric (Curcuma longa L.) extract against trimethyltin-induced oxidative stress in rats. Nutr. Neurosci. 2018, 7, 1–8. [Google Scholar] [CrossRef]
- Araki, T.; Kato, H.; Kogure, K.; Kanai, Y. Long-term changes in gerbil brain neurotransmitter receptors following transient cerebral ischaemia. Br. J. Pharmacol. 1992, 107, 437–442. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, M.J.; Clemens, J.A. Rodent models of global cerebral ischemia. Curr. Protoc. Neurosci. 2001, 12, 1–25. [Google Scholar] [CrossRef]
- Secades, J.J.; Alvarez-Sabín, J.; Castillo, J.; Díez-Tejedor, E.; Martínez-Vila, E.; Ríos, J.; Oudovenko, N. Citicoline for acute ischemic stroke: A systematic review and formal meta-analysis of randomized, double-blind, and placebo-controlled trials. J. Stroke Cerebrovasc. Dis. 2016, 25, 1984–1996. [Google Scholar] [CrossRef] [PubMed]
- Dávalos, A.; Alvarez-Sabín, J.; Castillo, J.; Díez-Tejedor, E.; Ferro, J.; Martínez-Vila, E.; Serena, J.; Segura, T.; Cruz, V.T.; Masjuan, J.; et al. Citicoline in the treatment of acute ischaemic stroke: An international, randomised, multicentre, placebo-controlled study (ICTUS trial). Lancet 2012, 380, 349–357. [Google Scholar]
- Roleira, F.M.; Siquet, C.; Orrù, E.; Garrido, E.M.; Garrido, J.; Milhazes, N.; Podda, G.; Paiva-Martins, F.; Reis, S.; Carvalho, R.A.; et al. Lipophilic phenolic antioxidants: Correlation between antioxidant profile, partition coefficients and redox properties. Bioorg. Med. Chem. 2010, 18, 5816–5825. [Google Scholar] [CrossRef] [PubMed]
- Kuan, C.Y.; Whitmarsh, A.J.; Yang, D.D.; Liao, G.H.; Schloemer, A.J.; Dong, C.; Bao, J.; Banasiak, K.J.; Haddad, G.G.; Flavell, R.A.; et al. A critical role of neural-specific JNK3 for ischemic apoptosis. Proc. Natl. Acad. Sci. USA 2003, 100, 15184–15189. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, T.; Sakai, K.; Sasaki, C.; Zhang, W.R.; Warita, H.; Abe, K. c-Jun N-terminal kinase (JNK) and JNK interacting protein response in rat brain after transient middle cerebral artery occlusion. Neurosci. Lett. 2000, 284, 195–199. [Google Scholar] [CrossRef]
- Ferrer, I.; Friguls, B.; Dalfó, E.; Planas, A.M. Early modifications in the expression of mitogen-activated protein kinase (MAPK/ERK), stress-activated kinases SAPK/JNK and p38, and their phosphorylated substrates following focal cerebral ischemia. Acta Neuropathol. 2003, 105, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Borsello, T.; Clarke, P.G.; Hirt, L.; Vercelli, A.; Repici, M.; Schorderet, D.F.; Bogousslavsky, J.; Bonny, C. A peptide inhibitor of c-Jun N-terminal kinase protects against excitotoxicity and cerebral ischemia. Nat. Med. 2003, 9, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Zhang, Q.G.; Zhu, G.X.; Pei, D.S.; Guan, Q.H.; Zhang, G.Y. Activation of c-Jun NH2-terminal kinase 3 is mediated by the GluR6.PSD-95.MLK3 signaling module following cerebral ischemia in rat hippocampus. Brain Res. 2005, 1061, 57–66. [Google Scholar] [CrossRef]
- Jaros, F.; Straka, T.; Dobesova, Z.; Pinterova, M.; Chalupsky, K.; Kunes, J.; Entlicher, G.; Zicha, J. Vasorelaxant activity of some oxime derivatives. Eur. J. Pharmacol. 2007, 575, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.J. Signal transduction by the JNK group of MAP kinases. Cell 2000, 103, 239–252. [Google Scholar] [CrossRef]
- Pei, D.S.; Song, Y.J.; Yu, H.M.; Hu, W.W.; Du, Y.; Zhang, G.Y. Exogenous nitric oxide negatively regulates c-Jun N-terminal kinase activation via inhibiting endogenous NO-induced S-nitrosylation during cerebral ischemia and reperfusion in rat hippocampus. J. Neurochem. 2008, 106, 1952–1963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.H.; Yuan, F.G.; Hu, S.Q.; Diao, F.; Wu, Y.P.; Zong, Y.Y.; Song, T.; Li, C.; Zhang, G.Y. Endogenous nitric oxide induces activation of apoptosis signal-regulating kinase 1 via S-nitrosylation in rat hippocampus during cerebral ischemia-reperfusion. Neuroscience 2013, 229, 36–48. [Google Scholar] [CrossRef]
- Wu, X.; Li, L.; Zhang, L.; Wu, J.; Zhou, Y.; Zhou, Y.; Zhao, Y.; Zhao, J. Inhibition of thioredoxin-1 with siRNA exacerbates apoptosis by activating the ASK1-JNK/p38 pathway in brain of a stroke model rats. Brain Res. 2015, 1599, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Margaill, I.; Plotkine, M.; Lerouet, D. Antioxidant strategies in the treatment of stroke. Free Radic. Biol. Med. 2005, 39, 429–443. [Google Scholar] [CrossRef]
- Gilgun-Sherki, Y.; Melamed, E.; Offen, D. Oxidative stress induced-neurodegenerative diseases: The need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 2001, 40, 959–975. [Google Scholar] [CrossRef]
- Green, A.R.; Ashwood, T. Free radical trapping as a therapeutic approach to neuroprotection in stroke: Experimental and clinical studies with NXY-059 and free radical scavengers. Curr. Drug Targets CNS Neurol. Disord. 2005, 4, 109–118. [Google Scholar] [CrossRef]
- Rogalewski, A.; Schneider, A.; Ringelstein, E.B.; Schäbitz, W.R. Toward a multimodal neuroprotective treatment of stroke. Stroke 2006, 37, 1129–1136. [Google Scholar] [CrossRef]
- Barber, P.A.; Demchuk, A.M.; Hirt, L.; Buchan, A.M. Biochemistry of ischemic stroke. Adv. Neurol. 2003, 92, 151–164. [Google Scholar]
- Voeikov, V. Biological significance of active oxygen-dependent processes in aqueous systems. In Water and the Cell; Pollack, G.H., Cameron, I.V., Wheatly, D.N., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 285–298. [Google Scholar]
- Eichenberger, K.; Böhni, P.; Wintehalter, K.; Kawato, S.; Richter, C. Microsomal lipid peroxidation causes an increase in the order of the membrane lipid domain. FEBS Lett. 1982, 142, 59–62. [Google Scholar] [CrossRef] [Green Version]
- Petersen, R.C. Reactive secondary sequence oxidative pathology polymer model and antioxidant tests. Int. Res. J. Pure Appl. Chem. 2012, 2, 247–285. [Google Scholar] [CrossRef]
- Otto, M. Analytische Chemie, Zweite, vollständig überarbeitete Auflage; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2000. [Google Scholar]
- Folkow, B.; Neil, E. Circulation; Oxford University Press: New York, NY, USA, 1971. [Google Scholar]
- Chenysheva, G.A.; Smol’yakova, V.I.; Yanovskaya, E.A.; Gurto, R.V.; Udut, V.V.; Plotnikov, M.B. Pharmacokinetics of IQ-1S (manuscript in preparation).
- Lee, Y.R.; Lee, C.K.; Park, H.J.; Kim, H.; Kim, J.; Kim, J.; Lee, K.S.; Lee, Y.L.; Min, K.O.; Kim, B. C-Jun N-terminal kinase contributes to norepinephrine-induced contraction through phosphorylation of caldesmon in rat aortic smooth muscle. J. Pharmacol. Sci. 2006, 100, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Ok, S.H.; Jeong, Y.S.; Kim, J.G.; Lee, S.M.; Sung, H.J.; Kim, H.J.; Chang, K.C.; Kwon, S.C.; Sohn, J.T. C-Jun NH2-terminal kinase contributes to dexmedetomidine-induced contraction in isolated rat aortic smooth muscle. Yonsei Med. J. 2011, 52, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Coull, B.M.; Beamer, N.; de Garmo, P.; Sexton, G.; Nordt, F.; Knox, R.; Seaman, G.V. Chronic blood hyperviscosity in subjects with acute stroke, transient ischemic attack, and risk factors for stroke. Stroke 1991, 22, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Tikhomirova, I.A.; Oslyakova, A.O.; Mikhailova, S.G. Microcirculation and blood rheology in patients with cerebrovascular disorders. Clin. Hemorheol. Microcirc. 2011, 49, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Forconi, S.; Turchetti, V.; Cappelli, R.; Guerrini, M.; Bicchi, M. Haemorheological disturbances and possibility of their correction in cerebrovascular diseases. J. Mal. Vasc. 1999, 24, 110–116. [Google Scholar] [PubMed]
- Forconi, S.; Wild, P.; Munzel, T.; Gori, T. Endothelium and hyperviscosity. Clin. Hemorheol. Microcirc. 2011, 49, 487–491. [Google Scholar] [CrossRef]
- Xiong, X.Y.; Liu, L.; Yang, Q.W. Refocusing neuroprotection in cerebral reperfusion era: New challenges and strategies. Front. Neurol. 2018, 9, 249. [Google Scholar] [CrossRef]
- Hardebo, J.E.; Kahrstrom, J.; Owman, C.; Salford, L.G. Endothelin is a potent constrictor of human intracranial arteries and veins. Blood Vessels 1989, 26, 249–253. [Google Scholar] [CrossRef]
- Andresen, J.; Shafi, N.I.; Bryan, R.M., Jr. Endothelial influences on cerebrovascular tone. J. Appl. Physiol. 2006, 100, 318–327. [Google Scholar] [CrossRef] [Green Version]
- Ziv, I.; Fleminger, G.; Djaldetti, R.; Achiron, A.; Melamed, E.; Sokolovsky, M. Increased plasma endothelin-1 in acute ischemic stroke. Stroke 1992, 23, 1014–1016. [Google Scholar] [CrossRef] [PubMed]
- Moldes, O.; Sobrino, T.; Millan, M.; Castellanos, M.; Perez de la Ossa, N.; Leira, R.; Serena, J.; Vivancos, J.; Dávalos, A.; Castillo, J. High serum levels of endothelin-1 predict severe cerebral edema in patients with acute ischemic stroke treated with t-PA. Stroke 2008, 39, 2006–2010. [Google Scholar] [CrossRef] [PubMed]
- McGraw, C.P. Experimental cerebral infarction effects of pentobarbital in Mongolian gerbils. Arch. Neurol. 1977, 34, 334–336. [Google Scholar] [CrossRef] [PubMed]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates; Academic Press: New York, NY, USA, 1998. [Google Scholar]
- El Falougy, H.; Kubikova, E.; Benuska, J. The microscopical structure of the hippocampus in the rat. Bratisl. Lek. Listy 2008, 109, 106–110. [Google Scholar] [PubMed]
- Plazor, Z.; Kussela, L. In vivo lipoperoxidation in der lober nach partieller hepatotektonic. Actabiol. Med. Germ. 1968, 21, 121–124. [Google Scholar]
- Blois, M.S. Antioxidant determination by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Volkov, V.A.; Dorofeeva, N.A.; Pakhomov, P.M. Kinetic method for studying the antiradical activity of medicinal plant extracts. Pharm. Chem. J. 2009, 43, 333–337. [Google Scholar] [CrossRef]
- Shin, S.; Ku, Y.; Park, M.-S.; Suh, J.-S. Measurement of red cell deformability and whole blood viscosity using laser-diffraction slit rheometer. Korea-Aust. Rheol. J. 2004, 16, 85–90. [Google Scholar]
- Hou, J.-X.; Shin, S. Transient microfluidic approach to the investigation of erythrocyte aggregation: Comparison and validation of the method. Korea-Aust. Rheol. J. 2008, 20, 253–260. [Google Scholar]
- Laursen, J.B.; Boesgaard, S.; Poulsen, H.E.; Aldershvile, J. Nitrate tolerance impairs nitric oxide-mediated vasodilation in vivo. Cardiovasc. Res. 1996, 31, 814–819. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Sample of the compound IQ-1S is available from the authors. |
Group of Animals | Number of Dead Animals (% of Total Number) | ||
---|---|---|---|
Day 1 | Day 3 | Day 5 | |
Sham-operated (n = 23) | 0 (0) | 0 (0) | 0 (0) |
Control (n = 46) | 4 (9) | 9 (20) | 10 (22) |
IQ-1S, 50 mg/kg (n = 46) | 5 (11) | 7 (15) | 7 (15) |
Citicoline, 500 mg/kg (n = 20) | 0 (0) | 2 (10) | 2 (10) |
Solvent | IQ-1S | Ionol |
---|---|---|
Ethyl acetate | 0.0802 ± 0.0148 | 0.0448 ± 0.0126 |
Acetonitrile | 0.0395 ± 0.0028 + | 0.0031 ± 0.0005 |
Acetone | 0.0123 ± 0.0013 + | 0.0017 ± 0.0008 |
Ethanol | 0.0021 ± 0.0011 + | 0.0456 ± 0.0013 |
Group | LCBF | ABP | HR |
---|---|---|---|
Sham-operated (n = 5) | 1900 ± 191 | 93 ± 9 | 358 ± 10 |
Control (n = 9) | 888 ± 80 * | 97 ± 2 | 376 ± 13 |
IQ-1S (n = 10) | 1424 ± 213 + | 94 ± 4 | 352 ± 12 |
Group | Plasma Viscosity, mPa∙s | Ht, % | Ct, s | Cs, mPa |
---|---|---|---|---|
Sham-operated (n = 5) | 1.16 ± 0.01 | 42 ± 1 | 9.3 ± 0.3 | 144.1 ± 4.2 |
Control (n = 6) | 1.19 ± 0.01 * | 45 ± 1 * | 10.6 ± 0.7 | 145.6 ± 11.3 |
IQ-1S (n = 6) | 1.17 ± 0.01 | 42 ± 1 + | 9.6 ± 0.2 | 151.8 ± 4.6 |
Group | Shear Stress, Pa | ||||
---|---|---|---|---|---|
1 | 3 | 7 | 10 | 20 | |
Sham-operated (n = 5) | 0.201 ± 0.007 | 0.354 ± 0.005 | 0.453 ± 0.004 | 0.486 ± 0.003 | 0.533 ± 0.002 |
Control (n = 6) | 0.192 ± 0.006 | 0.348 ± 0.005 | 0.449 ± 0.004 | 0.483 ± 0.003 | 0.532 ± 0.003 |
IQ-1S (n = 6) | 0.198 ± 0.006 | 0.356 ± 0.005 | 0.455 ± 0.003 | 0.487 ± 0.002 | 0.532 ± 0.003 |
Group | Fbg, g/L | aPTT, s | PT, s | TT, s |
---|---|---|---|---|
Sham-operated (n = 5) | 2.68 ± 0.28 | 17.8 ± 0.7 | 25.3 ± 0.5 | 32.8 ± 0.4 |
Control (n = 9) | 3.30 ± 0.21 | 17.9 ± 0.5 | 26.3 ± 0.6 | 24.5 ± 3.9 |
IQ-1S (n = 10) | 3.04 ± 0.14 | 17.3 ± 0.5 | 26.3 ± 0.3 | 27.9 ± 3.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plotnikov, M.B.; Chernysheva, G.A.; Aliev, O.I.; Smol’iakova, V.I.; Fomina, T.I.; Osipenko, A.N.; Rydchenko, V.S.; Anfinogenova, Y.J.; Khlebnikov, A.I.; Schepetkin, I.A.; et al. Protective Effects of a New C-Jun N-terminal Kinase Inhibitor in the Model of Global Cerebral Ischemia in Rats. Molecules 2019, 24, 1722. https://doi.org/10.3390/molecules24091722
Plotnikov MB, Chernysheva GA, Aliev OI, Smol’iakova VI, Fomina TI, Osipenko AN, Rydchenko VS, Anfinogenova YJ, Khlebnikov AI, Schepetkin IA, et al. Protective Effects of a New C-Jun N-terminal Kinase Inhibitor in the Model of Global Cerebral Ischemia in Rats. Molecules. 2019; 24(9):1722. https://doi.org/10.3390/molecules24091722
Chicago/Turabian StylePlotnikov, Mark B., Galina A. Chernysheva, Oleg I. Aliev, Vera I. Smol’iakova, Tatiana I. Fomina, Anton N. Osipenko, Victoria S. Rydchenko, Yana J. Anfinogenova, Andrei I. Khlebnikov, Igor A. Schepetkin, and et al. 2019. "Protective Effects of a New C-Jun N-terminal Kinase Inhibitor in the Model of Global Cerebral Ischemia in Rats" Molecules 24, no. 9: 1722. https://doi.org/10.3390/molecules24091722
APA StylePlotnikov, M. B., Chernysheva, G. A., Aliev, O. I., Smol’iakova, V. I., Fomina, T. I., Osipenko, A. N., Rydchenko, V. S., Anfinogenova, Y. J., Khlebnikov, A. I., Schepetkin, I. A., & Atochin, D. N. (2019). Protective Effects of a New C-Jun N-terminal Kinase Inhibitor in the Model of Global Cerebral Ischemia in Rats. Molecules, 24(9), 1722. https://doi.org/10.3390/molecules24091722