Detection of Salivary miRNAs Reflecting Chronic Periodontitis: A Pilot Study
Abstract
:1. Introduction
2. Results
2.1. Characteristics of Patients
2.2. Selection of Candidate miRNAs Reflecting Periodontitis
2.3. Evaluating Validation of Selected miRNAs
2.4. Bioinformatics
3. Discussion
4. Materials and Methods
4.1. Experimental Design and Participants’ Recruitment
4.2. Oral Examination
4.3. Questionnaire
4.4. Saliva Collection and RNA Extraction
4.5. Selection of Candidate miRNAs Reflecting Periodontitis
4.6. Evaluating Validation of Selected miRNAs
4.7. Bioinformatics
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eke, P.I.; Page, R.C.; Wei, L.; Thornton-Evans, G.; Genco, R.J. Update of the case definitions for population-based surveillance of periodontitis. J. Periodontol. 2012, 83, 1449–1454. [Google Scholar] [CrossRef] [PubMed]
- Caton, J.G.; Armitage, G.; Berglundh, T.; Chapple, I.L.C.; Jepsen, S.; Kornman, K.S.; Mealey, B.L.; Papapanou, P.N.; Sanz, M.; Tonetti, M.S. A new classification scheme for periodontolal and peri-implant diseases and conditions–Introduction and key changes from the 1999 classification. J. Clin. Periodontol. 2018, 45, S1–S8. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Canut, P. Predictors of tooth loss due to periodontal disease in patients following long-term periodontal maintenance. J. Clin. Periodontol. 2015, 42, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- AlMoharib, H.S.; AlMubarak, A.; AlRowis, R.; Geevarghese, A.; Preethanath, R.S.; Anil, S. Oral fluid based biomarkers in periodontal disease: Part 1. Saliva. J. Int. Oral Health 2014, 6, 95–103. [Google Scholar] [PubMed]
- Taylor, J.J. Protein biomarkers of periodontitis in saliva. Isrn Inflamm. 2014, 2014, 593151. [Google Scholar] [CrossRef] [PubMed]
- Jaedicke, K.M.; Preshaw, P.M.; Taylor, J.J. Salivary cytokines as biomarkers of periodontal diseases. Periodontol. 2000 2016, 70, 164–183. [Google Scholar] [CrossRef] [PubMed]
- de la Peña, V.A.; Dios, P.D.; Rodríguez-Nuñez, I.; Rodríguez-Segade, S. Effect of ultrasonic scaling on salivary lactate dehydrogenase. Am. J. Dent. 2005, 18, 113–115. [Google Scholar] [PubMed]
- Nomura, Y.; Tamaki, Y.; Tanaka, T.; Arakawa, H.; Tsurumoto, A.; Kirimura, K.; Sato, T.; Hanada, N.; Kamoi, K. Screening of periodontitis with salivary enzyme tests. J. Oral Sci. 2006, 48, 177–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nomura, Y.; Shimada, Y.; Hanada, N.; Numabe, Y.; Kamoi, K.; Sato, T.; Gomi, K.; Arai, T.; Inagaki, K.; Fukuda, M.; et al. Salivary biomarkers for predicting the progression of chronic periodontitis. Arch. Oral Biol. 2012, 57, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Nomura, Y.; Okada, A.; Kakuta, E.; Gunji, T.; Kajiura, S.; Hanada, N. A new screening method for periodontitis: An alternative to the community periodontal index. BMC Oral Health 2016, 16, 64. [Google Scholar] [CrossRef] [PubMed]
- Ekuni, D.; Yamane-Takeuchi, M.; Kataoka, K.; Yokoi, A.; Taniguchi-Tabata, A.; Mizuno, H.; Miyai, H.; Uchida, Y.; Fukuhara, D.; Sugiura, Y.; et al. Validity of a New Kit Measuring Salivary Lactate Dehydrogenase Level for Screening Gingivitis. Dis. Markers 2017, 2017, 9547956. [Google Scholar] [CrossRef] [PubMed]
- Groenink, J.; Walgreen-Weterings, E.; Nazmi, K.; Bolscher, J.G.; Veerman, E.C.; van Winkelhoff, A.J.; Nieuw Amerongen, A.V. Salivary lactoferrin and low-Mr mucin MG2 in Actinobacillus actinomycetemcomitans-associated periodontitis. J. Clin. Periodontol. 1999, 26, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Glimvall, P.; Wickström, C.; Jansson, H. Elevated levels of salivary lactoferrin, a marker for chronic periodontitis? J. Periodontal Res. 2012, 47, 655–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lourenço, A.G.; Nakao, C.; Machado, A.A.; Motta, A.C.; Tonani, L.; Candido, R.C.; Komesu, M.C. Lactoferrin, a marker for periodontal disease. Curr. HIV Res. 2013, 11, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Canakçi, C.F.; Canakçi, V.; Tatar, A.; Eltas, A.; Sezer, U.; Ciçek, Y.; Oztas, S. Increased salivary level of 8-hydroxydeoxyguanosine is a marker of premature oxidative mitochondrial DNA damage in gingival tissue of patients with periodontitis. Arch. Immunol. Ther. Exp. 2009, 57, 205–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takane, M.; Sugano, N.; Iwasaki, H.; Iwano, Y.; Shimizu, N.; Ito, K. New biomarker evidence of oxidative DNA damage in whole saliva from clinically healthy and periodontally diseased individuals. J. Periodontol. 2002, 73, 551–554. [Google Scholar] [CrossRef] [PubMed]
- Takane, M.; Sugano, N.; Ezawa, T.; Uchiyama, T.; Ito, K. A marker of oxidative stress in saliva: Association with periodontally-involved teeth of a hopeless prognosis. J. Oral Sci. 2005, 47, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Stark, A.; Bushati, N.; Jan, C.H.; Kheradpour, P.; Hodges, E.; Brennecke, J.; Bartel, D.P.; Cohen, S.M.; Kellis, M. A single Hox locus in Drosophila produces functional microRNAs from opposite DNA strands. Genes Dev. 2008, 22, 8–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.F.; Shu, R.; Jiang, S.Y.; Liu, D.L.; Zhang, X.L. Comparison of microRNA profiles of human periodontal diseased and healthy gingival tissues. Int. J. Oral Sci. 2011, 3, 125–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoecklin-Wasmer, C.; Guarnieri, P.; Celenti, R.; Demmer, R.T.; Kebschull, M.; Papapanou, P.N. MicroRNAs and their target genes in gingival tissues. J. Dent. Res. 2012, 91, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Schmalz, G.; Li, S.; Burkhardt, R.; Rinke, S.; Krause, F.; Haak, R.; Ziebolz, D. MicroRNAs as salivary markers for periodontal diseases: A new diagnostic approach? BioMed Res. Int. 2016, 2016, 1027525. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Lin, T.; He, H. Comparative analysis of blood and saliva expression profiles in chronic and refractory periodontitis patients. BMC Oral Health 2015, 15, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Dong, D.; Chen, X.; Huang, H.; Wen, S. MicroRNA-381 negatively regulates TLR4 signaling in A549 cells in response to LPS stimulation. BioMed. Res. Int. 2015, 2015, 849475. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.L.; Ohura, K. Porphyromonas gingivalis lipopolysaccharide signaling in gingival fibroblasts-CD14 and Toll-like receptors. Crit. Rev. Oral Biol. Med. 2002, 13, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Fiorillo, L.; Cervino, G.; Herford, A.S.; Lauritano, F.; D’Amico, C.; Lo Giudice, R.; Laino, L.; Troiano, G.; Crimi, S.; Cicciù, M. Interferon Crevicular Fluid Profile and Correlation with Periodontal Disease and Wound Healing: A Systemic Review of Recent Data. Int. J. Mol. Sci. 2018, 19, 1908. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Na, H.S.; Jeong, S.Y.; Jeong, S.H.; Park, H.R.; Chung, J. Comparison of inflammatory microRNA expression in healthy and periodontitis tissues. Biocell 2011, 35, 43–49. [Google Scholar] [PubMed]
- Ogata, Y.; Matsui, S.; Kato, A.; Zhou, L.; Nakayama, Y.; Takai, H. MicroRNA expression in inflamed and noninflamed gingival tissues from Japanese patients. J. Oral Sci. 2014, 56, 253–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motedayyen, H.; Ghotloo, S.; Saffari, M.; Sattari, M.; Amid, R. Evaluation of microRNA-146a and its targets in gingival tissues of patients with chronic periodontitis. J. Periodontol. 2015, 86, 1380–1385. [Google Scholar] [CrossRef] [PubMed]
- Travan, S.; Li, F.; D’Silva, N.J.; Slate, E.H.; Kirkwood, K.L. Differential expression of mitogen activating protein kinases in periodontitis. J. Clin. Periodontol. 2013, 40, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Duz, M.B.; Karatas, O.F.; Guzel, E.; Turgut, N.F.; Yilmaz, M.; Creighton, C.J.; Ozen, M. Identification of miR-139-5p as a saliva biomarker for tongue squamous cell carcinoma: A pilot study. Cell. Oncol. 2016, 39, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Byun, J.S.; Hong, S.H.; Choi, J.K.; Jung, J.K.; Lee, H.J. Diagnostic profiling of salivary exosomal microRNAs in oral lichen planus patients. Oral Dis. 2015, 21, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Armitage, G.C. Development of a classification system for periodontal diseases and conditions. Ann. Periodontol. 1999, 4, 1–6. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, T.J.; Drake, R.B.; Naylor, J.E. The plaque control record. J. Periodontol. 1972, 43, 38. [Google Scholar] [CrossRef] [PubMed]
- Machida, T.; Tomofuji, T.; Ekuni, D.; Maruyama, T.; Yoneda, T.; Kawabata, Y.; Mizuno, H.; Miyai, H.; Kunitomo, M.; Morita, M. MicroRNAs in salivary exosome as potential biomarkers of aging. Int. J. Mol. Sci. 2015, 16, 21294–21309. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Schmittgen, T.D.; Lee, E.J.; Jiang, J.; Sarkar, A.; Yang, L.; Elton, T.S.; Chen, C. Real-time PCR quantification of precursor and mature microRNA. Methods 2008, 44, 31–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Tan, R.; Wong, L.; Fekete, R.; Halsey, J. Quantitation of microRNAs by real-time RT-qPCR. Methods Mol. Biol. 2011, 687, 113–134. [Google Scholar] [PubMed]
- Dweep, H.; Sticht, C.; Pandey, P.; Gretz, N. miRWalk—Database: Prediction of possible miRNA binding sites by “walking” the genes of three genomes. J. Biomed. Inform. 2011, 44, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Tabas-Madrid, D.; Nogales-Cadenas, R.; Pascual-Montano, A. GeneCodis3: A non-redundant and modular enrichment analysis tool for functional genomics. Nucleic Acids Res. 2012, 40, W478–W483. [Google Scholar] [CrossRef] [PubMed]
- Nogales-Cadenas, R.; Carmona-Saez, P.; Vazquez, M.; Vicente, C.; Yang, X.; Tirado, F.; Carazo, J.M.; Pascual-Montano, A. GeneCodis: Interpreting gene lists through enrichment analysis and integration of diverse biological information. Nucleic Acids Res. 2009, 37, W317–W322. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Saez, P.; Chagoyen, M.; Tirado, F.; Carazo, J.M.; Pascual-Montano, A. GENECODIS: A web-based tool for finding significant concurrent annotations in gene lists. Genome Biol. 2007, 8, R3. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: No samples are available from the authors. |
Variables | Categories | Total (N = 120) | Severity of Periodontitis | |||
---|---|---|---|---|---|---|
No/Mild | Moderate | Severe | ||||
(N = 26) | (N = 58) | (N = 36) | p Value | |||
Age (years) | 68.4 (10.2) | 63.3 (13.9) | 68.6 (8.7) | 71.7 (7.9) | 0.005 * | |
Gender | Male | 38 (31.7) | 6 (23.1) | 18 (31.0) | 14 (38.9) | 0.414 † |
Number of teeth present | 23.6 (5.0) | 25.5 (3.7) | 24.3 (4.3) | 21.0 (6.0) | <0.001 * | |
Mean PPD (mm) | 2.0 (0.4) | 1.9 (0.2) | 2.0 (0.3) | 2.3 (0.5) | <0.001 * | |
Mean CAL (mm) | 2.8 (1.2) | 1.9 (0.2) | 2.6 (0.7) | 3.9 (1.4) | <0.001 * | |
BOP (%) | 7.7 (9.0) | 6.9 (9.2) | 5.8 (4.9) | 11.3 (12.7) | 0.015 * | |
Plaque control record (%) | 22.2 (20.3) | 18.1 (14.7) | 24.0 (20.3) | 22.3 (24.0) | 0.486 * | |
Smoking status | Current | 6 (5.0) | 0 (0) | 2 (3.4) | 4 (11.1) | 0.109 † |
BMI | 22.5 (3.0) | 22.0 (2.7) | 22.2 (2.7) | 23.3 (3.3) | 0.162 * | |
Diabetes mellitus | Present | 12 (10.0) | 2 (7.7) | 8 (13.8) | 3 (5.6) | 0.392 † |
Frequency of toothbrushing/day | 2.5 (0.7) | 2.6 (0.6) | 2.3 (0.7) | 2.7 (0.8) | 0.052 * |
miRNAs | Average Ct | Average ⊿Ct | Average 2^-⊿Ct | Fold Change | p Value | |||
---|---|---|---|---|---|---|---|---|
No/Mild | Severe | No/Mild | Severe | no/Mild | Severe | |||
hsa-miR-381-3p | 34.88 | 33.05 | 2.35 | 0.49 | 0.20 | 0.71 | 3.63 | 0.01 |
hsa-miR-543 | 34.89 | 33.48 | 2.36 | 0.92 | 0.20 | 0.53 | 2.70 | 0.12 |
hsa-miR-144-3p | 33.92 | 32.84 | 1.39 | 0.28 | 0.38 | 0.82 | 2.16 | 0.51 |
hsa-miR-30b-5p | 30.05 | 31.32 | −2.48 | −1.24 | 5.57 | 2.36 | 0.42 | 0.14 |
housekeeping small RNA | 32.53 | 32.56 |
Variables | B (95%CI) | β | p Value | VIF | |
---|---|---|---|---|---|
Intercept | 1.917 | (1.760, 2.073) | - | <0.001 | - |
BOP | 0.014 | (0.008, 0.021) | 0.353 | <0.001 | 1.036 |
Gender | −0.148 | (−0.279, −0.017) | −0.187 | 0.027 | 1.036 |
hsa-miR-381-3p | 0.054 | (0.010, 0.123) | 0.166 | 0.049 | 1.022 |
Pathway | Target Genes | p-Value |
---|---|---|
Pathways in cancer | DVL2, PTCH1, SOS1, EGLN3, MET, LEF1, MAPK1, STAT1, KITLG, PIAS2, DCC, FGF1, FZD6, KIT, FOXO1, PRKCB, GLI3, NRAS, NFKBIA, SMAD2, BIRC3, AKT3, BRAF, MAPK10, PRKCA, CRK, LAMC1, MAPK8, COL4A1, TRAF6, FZD4, VHL, MITF, ITGAV, WNT5A, RAC1, FZD3, PTK2, FGF7, PIK3CG, TP53, VEGFA, HSP90AB1, FGF12, HDAC2, CBLB, PTGS2, FGFR2 | 1.02 × 10−12 |
Focal adhesion | SOS1, MET, MAPK1, PDGFC, TLN2, ITGA4, PRKCB, ACTG1, ROCK2, PDGFD, CCND2, MYL12B, BIRC3, AKT3, ITGA8, BRAF, PARVA, MAPK10, PRKCA, CRK, LAMC1, MAPK8, COL4A1, MYLK3, ITGAV, RAC1, PTK2, FYN, PIK3CG, ITGB8, VEGFA, COL11A1 | 1.48 × 10−9 |
Wnt signaling pathway | DVL2, SIAH1, LEF1, MAP3K7, FZD6, PRKCB, ROCK2, CCND2, PPP2R5A, SMAD2, CXXC4, MAPK10, PRKCA, PPP2R5E, MAPK8, SFRP2, LRP6, FZD4, PRKACG, WNT5A, NFATC2, RAC1, FZD3, NFAT5, CAMK2G, TP53, PRKACB | 2.90 × 10−9 |
MAPK signaling pathway | NTRK2, CACNA2D1, SOS1, MAPK1, MAP3K7, FGF1, CACNA1C, CACNA1E, PRKCB, IL1R1, NRAS, DDIT3, AKT3, BRAF, ELK4, MAPK10, TAOK1, PRKCA, CRK, MAPK8, TRAF6, PRKACG, MAPK14, RRAS2, NFATC2, RAC1, FGF7, RPS6KA3, ARRB1, TP53, FGF12, CACNB2, PRKACB, FGFR2 | 6.83 × 10−8 |
Regulation of actin cytoskeleton | ARHGEF7, SOS1, MAPK1, FGF1, PDGFC, ITGA4, ACTG1, ROCK2, PDGFD, NRAS, SSH2, MYH10, CFL2, MYL12B, NCKAP1, ITGA8, MYH9, BRAF, GNA13, CRK, MYLK3, ITGAV, RRAS2, RAC1, PTK2, FGF7, PIK3CG, ITGB8, FGF12, FGFR2 | 6.94 × 10−8 |
Insulin signaling pathway | SOS1, MAPK1, EIF4E, FOXO1, NRAS, PRKAR2B, RPS6KB1, AKT3, BRAF, PRKAR2A, SOCS4, MAPK10, CRK, MAPK8, PRKACG, PRKAG3, RHOQ, PRKAA2, PIK3CG, SORBS1, PHKG2, PRKACB, CBLB | 1.01 × 10−7 |
Ubiquitin mediated proteolysis | ANAPC10, UBE2C, SIAH1, HERC3, PIAS2, UBR5, CUL4B, CDC23, HERC4, ITCH, ANAPC13, UBE3A, BIRC3, UBE2W, UBE2G1, TRIM32, NEDD4, MID1, TRAF6, SYVN1, VHL, UBE2E2, CBLB | 1.17 × 10−7 |
ErbB signaling pathway | SOS1, MAPK1, PRKCB, NRAS, ABL2, RPS6KB1, NCK1, AKT3, BRAF, HBEGF, MAPK10, PRKCA, CRK, MAPK8, PTK2, CAMK2G, PIK3CG, CBLB | 1.86 × 10−7 |
Long-term potentiation | MAPK1, CAMK4, CACNA1C, PRKCB, NRAS, GRM5, BRAF, PRKCA, GRM1, ITPR2, GNAQ, PRKACG, GRIN2A, RPS6KA3, CAMK2G, PRKACB | 1.97 × 10−7 |
Axon guidance | SEMA3C, CXCR4, MET, MAPK1, DCC, ROCK2, NRAS, CFL2, ABLIM3, NCK1, NTN4, ABLIM1, NFATC2, RAC1, PTK2, NFAT5, UNC5D, FYN, EFNB2, EPHA3, SRGAP2 | 6.88 × 10−7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujimori, K.; Yoneda, T.; Tomofuji, T.; Ekuni, D.; Azuma, T.; Maruyama, T.; Mizuno, H.; Sugiura, Y.; Morita, M. Detection of Salivary miRNAs Reflecting Chronic Periodontitis: A Pilot Study. Molecules 2019, 24, 1034. https://doi.org/10.3390/molecules24061034
Fujimori K, Yoneda T, Tomofuji T, Ekuni D, Azuma T, Maruyama T, Mizuno H, Sugiura Y, Morita M. Detection of Salivary miRNAs Reflecting Chronic Periodontitis: A Pilot Study. Molecules. 2019; 24(6):1034. https://doi.org/10.3390/molecules24061034
Chicago/Turabian StyleFujimori, Kohei, Toshiki Yoneda, Takaaki Tomofuji, Daisuke Ekuni, Tetsuji Azuma, Takayuki Maruyama, Hirofumi Mizuno, Yoshio Sugiura, and Manabu Morita. 2019. "Detection of Salivary miRNAs Reflecting Chronic Periodontitis: A Pilot Study" Molecules 24, no. 6: 1034. https://doi.org/10.3390/molecules24061034