Unexpected Rearrangement of N-Allyl-2-phenyl-4,5-Dihydrooxazole-4-Carboxamides to Construct Aza-Quaternary Carbon Centers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Substrate Screening and Optimization of Reaction Conditions
2.2. Preparation of Substrates
2.3. Reaction Scope
2.4. Proposed Mechanism
3. Materials and Methods
3.1. General Information
3.2. Experimental
3.2.1. Representative Procedure: Synthesis of Compound 1g
3.2.2. (2-Phenyl-4,5-dihydrooxazol-4-yl)(2-vinylpiperidin-1-yl)methanone (1f)
3.2.3. (2-Phenyl-4,5-dihydrooxazol-4-yl)(2-vinylazepan-1-yl)methanone (1g)
3.2.4. (2-Phenyl-4,5-dihydrooxazol-4-yl)(2-vinylazocan-1-yl)methanone (1h)
3.2.5. (2-Phenyl-4,5-dihydrooxazol-4-yl)(2-vinylazonan-1-yl)methanone (1i)
3.2.6. N-allyl-N-benzyl-2-phenyl-4,5-dihydrooxazole-4-carboxamide (1j)
3.2.7. (E)-N-benzyl-N-cinnamyl-2-phenyl-4,5-dihydrooxazole-4-carboxamide (1k)
3.2.8. (E)-N-benzyl-N-(but-2-en-1-yl)-2-phenyl-4,5-dihydrooxazole-4-carboxamide (1l)
3.2.9. (E)-N-benzyl-N-(pent-2-en-1-yl)-2-phenyl-4,5-dihydrooxazole-4-carboxamide (1m)
3.2.10. (Z)-N-benzyl-N-(pent-2-en-1-yl)-2-phenyl-4,5-dihydrooxazole-4-carboxamide (1n)
3.2.11. Representative Procedure: Synthesis of Compound 3f
3.2.12. 2-Phenyl-12-vinyl-3-oxa-1,7-diazaspiro[4.7]dodec-1-en-6-one (3f)
3.2.13. 2-Phenyl-13-vinyl-3-oxa-1,7-diazaspiro[4.8]tridec-1-en-6-one (3g)
3.2.14. 2-Phenyl-14-vinyl-3-oxa-1,7-diazaspiro[4.9]tetradec-1-en-6-one (3h)
3.2.15. 2-Phenyl-15-vinyl-3-oxa-1,7-diazaspiro[4.10]pentadec-1-en-6-one (3i)
3.2.16. 4-Allyl-N-benzyl-2-phenyl-4,5-dihydrooxazole-4-carboxamide (3j)
3.2.17. N-benzyl-4-cinnamyl-2-phenyl-4,5-dihydrooxazole-4-carboxamide (3k)
3.2.18. (E)-N-benzyl-4-(but-2-en-1-yl)-2-phenyl-4,5-dihydrooxazole-4-carboxamide (3l)
3.2.19. (E)-N-benzyl-4-(pent-2-en-1-yl)-2-phenyl-4,5-dihydrooxazole-4-carboxamide (3m)
3.2.20. (Z)-N-benzyl-4-(pent-2-en-1-yl)-2-phenyl-4,5-dihydrooxazole-4-carboxamide (3n)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Martín Castro, A.M. Claisen rearrangement over the past nine decades. Chem. Rev. 2004, 104, 2939–3002. [Google Scholar]
- Jung, J.W.; Kim, S.H.; Suh, Y.G. Advances in Aza-Claisen-Rearrangement-Induced Ring-Expansion Strategies. Asian J. Org. Chem. 2017, 6, 1117–1129. [Google Scholar] [CrossRef]
- Nowicki, J. Claisen, Cope and related rearrangements in the synthesis of flavour and fragrance compounds. Molecules 2000, 5, 1033–1050. [Google Scholar] [CrossRef] [Green Version]
- Kazmaier, U. Application of the ester enolate Claisen rearrangement in the synthesis of amino acids containing quaternary carbon centers. J. Org. Chem. 1996, 61, 3694–3699. [Google Scholar] [CrossRef]
- Curran, D.P.; Suh, Y.G. Substituent effects on the Claisen rearrangement. The accelerating effect of a 6-donor substituent. J. Am. Chem. Soc. 1984, 106, 5002–5004. [Google Scholar] [CrossRef]
- Aviyente, V.; Yoo, H.Y.; Houk, K. Analysis of substituent effects on the Claisen rearrangement with Ab Initio and density functional theory. J. Org. Chem. 1997, 62, 6121–6128. [Google Scholar] [CrossRef]
- Aviyente, V.; Houk, K. Cyano, amino, and trifluoromethyl substituent effects on the Claisen rearrangement. J. Phys. Chem. A 2001, 105, 383–391. [Google Scholar] [CrossRef]
- Suh, Y.-G.; Lee, Y.-S.; Kim, S.-H.; Jung, J.-K.; Yun, H.; Jang, J.; Kim, N.-J.; Jung, J.-W. A stereo-controlled access to functionalized macrolactams via an aza-Claisen rearrangement. Org. Biomol. Chem 2012, 10, 561–568. [Google Scholar] [CrossRef]
- Majumdar, K.; Bhattacharyya, T.; Chattopadhyay, B.; Sinha, B. Recent advances in the aza-Claisen rearrangement. Synthesis 2009, 2009, 2117–2142. [Google Scholar] [CrossRef]
- Zahedi, E.; Ali-Asgari, S.; Keley, V. NBO and NICS analysis of the allylic rearrangements (the Cope and 3-aza-Cope rearrangements) of hexa-1, 5-diene and N-vinylprop-2-en-1-amine: A DFT study. Cent. Eur. J. Chem. 2010, 8, 1097–1104. [Google Scholar] [CrossRef]
- Tsunoda, T.; Tatsuki, S.; Shiraishi, Y.; Akasaka, M.; Itô, S. Asymmetric aza-Claisen rearrangement of glycolamide and glycinamide enolates. Synthesis of optically active α-hydroxy and α-amino acids. Tetrahedron Lett. 1993, 34, 3297–3300. [Google Scholar] [CrossRef]
- Yoshizuka, M.; Nishii, T.; Sasaki, H.; Kitakado, J.; Ishigaki, N.; Okugawa, S.; Kaku, H.; Horikawa, M.; Inai, M.; Tsunoda, T. Promotion of asymmetric aza-Claisen rearrangement of N-allylic carboxamides using excess base. Synlett 2011, 2011, 2967–2970. [Google Scholar]
- Jung, J.-K.; Choi, N.-S.; Suh, Y.-G. Functional divergency oriented synthesis of azoninones as the key intermediates for bioactive indolizidine alkaloids analogs. Arch. Pharm. Res. 2004, 27, 985–989. [Google Scholar] [CrossRef]
- Jang, J.; Jung, J.-W.; Ahn, J.; Sim, J.; Chang, D.-J.; Kim, D.-D.; Suh, Y.-G. Asymmetric formal synthesis of schulzeines A and C. Org. Biomol. Chem 2012, 10, 5202–5204. [Google Scholar] [CrossRef]
- Kim, S.-H.; Lee, W.-I.; Kim, S.-M.; Jung, J.-K.; Jang, J.; Sim, J.; Jung, J.-W.; Suh, Y.-G. Studies on the aza-Claisen rearrangement of 7 to 9-membered vinylazacycles. Heterocycles 2016, 92, 886–899. [Google Scholar]
- Clayden, J.; Donnard, M.; Lefranc, J.; Tetlow, D.J. Quaternary centres bearing nitrogen (α-tertiary amines) as products of molecular rearrangements. Chem. Commun. 2011, 47, 4624–4639. [Google Scholar] [CrossRef]
- Kim, M.; Jang, J.; Choi, G.; Chung, S.; Lim, C.; Hur, J.; Kim, H.; Na, Y.; Son, W.; Suh, Y.-G. Conversion of Medium-Sized Lactams to α-Vinyl or α-Acetylenyl Azacycles via N, O-Acetal TMS Ethers. Molecules 2018, 23, 3023. [Google Scholar] [CrossRef] [Green Version]
- Denoël, T.; Zervosen, A.; Lemaire, C.; Plenevaux, A.; Luxen, A. Synthesis of protected α-alkyl lanthionine derivatives. Tetrahedron 2014, 70, 4526–4533. [Google Scholar]
- Ghigo, G.; Cagnina, S.; Maranzana, A.; Tonachini, G. The mechanism of the Stevens and Sommelet− Hauser rearrangements. A theoretical study. J. Org. Chem. 2010, 75, 3608–3617. [Google Scholar] [CrossRef]
- Bott, T.M.; Vanecko, J.A.; West, F. One-carbon ring expansion of azetidines via ammonium ylide [1,2]-shifts: A simple route to substituted pyrrolidines. J. Org. Chem. 2009, 74, 2832–2836. [Google Scholar] [CrossRef]
- Soheili, A.; Tambar, U.K. Tandem Catalytic Allylic Amination and [2,3]-Stevens Rearrangement of Tertiary Amines. J. Am. Chem. Soc. 2011, 133, 12956–12959. [Google Scholar] [CrossRef]
- Titov, A.; Samavati, R.; Alexandrova, E.; Borisova, T.; Dang Thi, T.; Nguyen, V.; Le, T.; Varlamov, A.; Van der Eycken, E.; Voskressensky, L. Synthesis of 1-(para-methoxyphenyl) tetrazolyl-Substituted 1, 2, 3, 4-Tetrahydroisoquinolines and Their Transformations Involving Activated Alkynes. Molecules 2018, 23, 3010. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds 3f-n are available from the authors. |
| |||||
---|---|---|---|---|---|
Entry | Substrate | Conditions | Time (h) | Yield 2 (%) | Yield 3 (%) b |
1 | | LiHMDS toluene reflux | 4 | - | ND c |
2 | | iPrMgCl benzene reflux | 4 | - | ND c |
3 | | LiHMDS toluene reflux | 4 | - | ND c |
4 | | LiHMDS toluene reflux | 4 | - | ND c |
5 | | LiHMDS toluene reflux | 4 | - | ND c |
6 | | LiHMDS toluene reflux | 4 | - | ND c |
7 | | LiHMDS toluene reflux | 1 | - | 72 d |
8 | | LiHMDS toluene rt | 1 | - | 92 d |
9 | | LiHMDS benzene rt | 1 | - | 96 d |
10 | | iPrMgCl benzene rt | 1 | - | 84 d |
| ||||
---|---|---|---|---|
Entry | Substrate | Product | Time | Yield (%) b |
1 | | | 1 h | 96 c |
2 | | | 1 h | 71 c |
3 | | | 1 h | 76 c |
4 | | | 1 h | 77 c |
5 | | | 5 min | 95 |
6 | | | 12 h d | 70 |
7 | | | 12 h d | 84 |
8 | | | 12 h d | 75 |
9 | | | 12 h d | 74 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, G.; Jo, S.; Mun, J.; Jeong, Y.; Kim, S.-H.; Jung, J.-W. Unexpected Rearrangement of N-Allyl-2-phenyl-4,5-Dihydrooxazole-4-Carboxamides to Construct Aza-Quaternary Carbon Centers. Molecules 2019, 24, 4495. https://doi.org/10.3390/molecules24244495
Choi G, Jo S, Mun J, Jeong Y, Kim S-H, Jung J-W. Unexpected Rearrangement of N-Allyl-2-phenyl-4,5-Dihydrooxazole-4-Carboxamides to Construct Aza-Quaternary Carbon Centers. Molecules. 2019; 24(24):4495. https://doi.org/10.3390/molecules24244495
Chicago/Turabian StyleChoi, Goyeong, Seoyoung Jo, Juyeon Mun, Yonguk Jeong, Seok-Ho Kim, and Jong-Wha Jung. 2019. "Unexpected Rearrangement of N-Allyl-2-phenyl-4,5-Dihydrooxazole-4-Carboxamides to Construct Aza-Quaternary Carbon Centers" Molecules 24, no. 24: 4495. https://doi.org/10.3390/molecules24244495
APA StyleChoi, G., Jo, S., Mun, J., Jeong, Y., Kim, S.-H., & Jung, J.-W. (2019). Unexpected Rearrangement of N-Allyl-2-phenyl-4,5-Dihydrooxazole-4-Carboxamides to Construct Aza-Quaternary Carbon Centers. Molecules, 24(24), 4495. https://doi.org/10.3390/molecules24244495