Mercury Determination in Natural Zeolites by Thermal Decomposition Atomic Absorption Spectrometry: Method Validation in Compliance with Requirements for Use as Dietary Supplements
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Validation
2.1.1. Selectivity
2.1.2. Working and Linear Ranges
2.1.3. LoD and LoQ
2.1.4. Trueness and Precision
2.1.5. Estimation of Measurement Uncertainty
2.2. Application of the TD-AAS Method to Zeolitic Tuffs Samples
2.2.1. Zeolite Chemical and Mineralogical Characterization
2.2.2. Mercury Determination in Zeolite Samples by TD-AAS and Comparison with CV-AFS Technique
3. Materials and Methods
3.1. Standard Solutions, Reagents, and CRMs
3.2. Instrumentation and Methods
3.3. Zeolitic Tuff Sample Collection and Preparation
3.4. Strategy for Method Validation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hong, M.; Yu, L.; Wang, Y.; Zhang, J.; Chen, Z.; Dong, L.; Zan, Q.; Li, R. Heavy metal adsorption with zeolites: The role of hierarchical pore architecture. Chem. Eng. J. 2019, 359, 363–372. [Google Scholar] [CrossRef]
- Mudasir, M.; Karelius, K.; Aprilita, N.H.; Wahyuni, E.T. Adsorption of mercury(II) on dithizone-immobilized natural zeolite. J. Environ. Chem. Eng. 2016, 4, 1839–1849. [Google Scholar] [CrossRef]
- Canli, M.; Abali, Y.S.; Bayca, U. Removal of methelyne blue by natural and Ca and K-exchanged zeolite treated with hydrogen peroxide. Physicochem. Probl. Miner. Process. 2013, 49, 481–496. [Google Scholar]
- Eroglu, N.; Emekci, M.; Athanassiou, C.G. Applications of natural zeolites on agriculture and food production. J. Sci. Food Agric. 2017, 97, 3487–3499. [Google Scholar] [CrossRef]
- Li, Z.; Wu, L.; Sun, S.; Gao, J.; Zhang, H.; Zhang, Z.; Wang, Z. Disinfection and removal performance for Escherichia coli, toxic heavy metals and arsenic by wood vinegar-modified zeolite. Ecotox. Environ. Safe 2019, 174, 129–136. [Google Scholar] [CrossRef]
- Franus, W.; Wdowin, M.; Franus, M. Synthesis and characterization of zeolites prepared from industrial fly ash. Environ. Monit. Assess. 2014, 186, 5721–5729. [Google Scholar] [CrossRef] [Green Version]
- Badillo-Almaraz, V.; Trocellier, P.; Davila-Rangel, I. Adsorption of aqueous Zn(II) species on synthetic zeolites. Nucl. Instrum. Methods Phys. Res. B 2003, 210, 424–428. [Google Scholar] [CrossRef]
- Kraljevic Pavelic, S.; Simovic Medica, J.; Gumbarevic, D.; Filosevic, A.; Przulj, N.; Pavelic, K. Critical review on zeolite clinoptilolite safety and medical applications in vivo. Front. Pharmacol. 2018, 9, 1350. [Google Scholar] [CrossRef]
- Tomasevic-Canovic, M. Purification of natural zeolite-clinoptilolite for medical application-extraction of lead. J. Serb. Chem. Soc. 2005, 70, 1335–1345. [Google Scholar] [CrossRef]
- Gao, Y.; Shi, Z.; Peng, W.; Zheng, C.; Hou, X. Determination and speciation of mercury in environmental and biological samples by analytical atomic spectrometry. Microchem. J. 2012, 103, 1–14. [Google Scholar] [CrossRef]
- Ferreira, S.L.C.; Lemos, V.A.; Silva, L.O.B.; Queiroz, A.F.S.; Souza, A.S.; da Silva, E.G.P.; dos Santos, W.N.L.; das Virgens, C.F. Analytical strategies of sample preparation for the determination of mercury in food matrices—A review. Microchem. J. 2015, 121, 227–236. [Google Scholar] [CrossRef]
- Amelin, V.G.; Lavrukhina, O.I. Food safety assurance using methods of chemical analysis. J. Anal. Chem. 2017, 72, 1–46. [Google Scholar] [CrossRef]
- Taylor, A.; Barlow, N.; Day, M.P.; Hill, S.; Patriarca, M.; White, M. Atomic spectrometry update: Review of advances in the analysis of clinical and biological materials, foods and beverages. J. Anal. Atom. Spectrom. 2017, 32, 432–476. [Google Scholar] [CrossRef]
- Brodziak-Dopierala, B.; Agnieszka Fischer, A.; Wioletta Szczelina, W.; Stojko, J. The Content of Mercury in Herbal Dietary Supplements. Biol. Trace Elem. Res. 2018, 185, 236–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Paiva, L.E.; Alves, J.C.; Milani, R.F.; Boer, B.S.; Quintaes, K.D.; Morgano, M. A Sushi commercialized in Brazil: Organic Hg levels and exposure intake evaluation. Food Control 2016, 69, 115–123. [Google Scholar] [CrossRef]
- Senila, M.; Levei, E.A.; Senila, L.R.; Oprea, G.M.; Roman, C.M. Mercury in soil and perennial plants in a mining-affected urban area from Northwestern Romania. J. Environ. Sci. Health. Pt. A 2012, 47, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Frentiu, T.; Butaciu, S.; Ponta, M.; Senila, M.; Darvasi, E.; Frentiu, M.; Petreus, D. Determination of total mercury in fish tissue using a low-cost cold vapor capacitively coupled plasma microtorch optical emission microspectrometer: Comparison with direct mercury determination by thermal decomposition atomic absorption spectrometry. Food. Anal. Methods. 2015, 8, 643–648. [Google Scholar] [CrossRef]
- Hlodak, M.; Matus, P.; Urik, M.; Korenkova, L.; Mikusova, P.; Senila, M.; Divis, P. Evaluation of various inorganic and biological extraction techniques suitability for soil mercury phyto available fraction assessment. Water Air Soil. Pollut. 2015, 226, 198. [Google Scholar] [CrossRef]
- Covaci, E.; Senila, M.; Ponta, M.; Darvasi, E.; Frentiu, M.; Frentiu, T. Mercury speciation in seafood using non-chromatographic chemical vapor generation capacitively coupled plasma microtorch optical emission spectrometry method - Evaluation of methylmercury exposure. Food Control 2017, 82, 266–273. [Google Scholar] [CrossRef]
- Senila, M.; Covaci, E.; Cadar, O.; Ponta, M.; Frentiu, M.; Frentiu, T. Mercury speciation in fish tissue by eco-scale thermal decomposition atomic absorption spectrometry: Method validation and risk exposure to methylmercury. Chem. Pap. 2018, 72, 441–448. [Google Scholar] [CrossRef]
- Covaci, E.; Angyus, S.B.; Senila, M.; Ponta, M.; Darvasi, E.; Frentiu, M.; Frentiu, T. Eco-scale non-chromatographic method for mercury speciation in fish using formic acid extraction and UV–Vis photochemical vapor generation capacitively coupled plasma microtorch optical emission spectrometry. Microchem. J. 2018, 141, 155–162. [Google Scholar] [CrossRef]
- Covaci, E.; Senila, M.; Tanaselia, C.; Angyus, S.B.; Ponta, M.; Darvasi, E.; Frentiu, M.; Frentiu, T. A highly sensitive eco-scale method for mercury determination in water and food using photochemical vapor generation and miniaturized instrumentation for capacitively coupled plasma microtorch optical emission spectrometry. J. Anal. Atom. Spectrom. 2018, 33, 799–808. [Google Scholar] [CrossRef]
- Chouhan, R.S.; Zitko, G.; Fajon, V.; Zivkovic, I.; Pavlin, M.; Berisha, S.; Jerman, I.; Vesel, A.; Horvat, M. A Unique interactive nanostructure knitting based passive sampler adsorbent for monitoring of Hg2+ in water. Sensors 2019, 19, 3432. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 629/2008 of 2 July 2008 Amending Regulation (EC) No 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008R0629&from=EN (accessed on 1 October 2019).
- Commission Regulation (2006/1881/EC) Setting Maximum Levels for Certain Contaminants in Foodstuffs. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF (accessed on 1 October 2019).
- Commission Decision (2007/333/EC) Laying Down the Methods of Sampling and Analysis for the Official Control of the Levels of Lead, Cadmium, Mercury, Inorganic Tin, 3-MCPD and benzo(a)-pyrene in Foodstuffs. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:088:0029:0038:EN:PDF (accessed on 1 October 2019).
- Huber, J.; Leopold, K. Nanomaterial-based strategies for enhanced mercury trace analysis in environmental and drinking waters, TrAC. Trends Anal. Chem. 2016, 80, 280–296. [Google Scholar] [CrossRef]
- Butler, O.T.; Cook, J.M.; Harrington, C.F.; Hill, S.J.; Rieuwerts, J.; Miles, D.L. Atomic spectrometry update. Environmental analysis. J. Anal. At. Spectrom. 2007, 22, 187–221. [Google Scholar] [CrossRef] [Green Version]
- Barst, B.D.; Hammerschmidt, C.R.; Chumchal, M.M.; Muir, D.C.G.; Smith, J.D.; Roberts, A.P.; Rainwater, T.R.; Drevnick, P.E. Determination of mercury speciation in fish tissue with a direct mercury analyzer. Environ. Toxicol. Chem. 2013, 32, 1237–1241. [Google Scholar] [CrossRef] [PubMed]
- Senila, M.; Levei, E.; Senila, L.; Cadar, O.; Oprea, G.; Roman, C. Comparative study of mercury determination in soil and vegetable by methods based on thermal decomposition-AAS and wet digestion-AFS. Stud. Univ. Babes-Bol. 2011, 56, 27–34. [Google Scholar]
- U.S. EPA. “Method 7473 (SW-846): Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry,” Revision 0. Washington, DC. 1998. Available online: https://www.epa.gov/sites/production/files/2015-07/documents/epa-7473.pdf (accessed on 2 September 2019).
- Drolc, A.; Pintar, A. Measurement uncertainty evaluation and inhouse method validation of the herbicide iodosulfuron-methylsodium in water samples by using HPLC analysis. Accred. Qual. Assur. 2011, 16, 21–29. [Google Scholar] [CrossRef]
- Commission Decision of 12 August 2002 2002/657/EC Implementing Council Directive 96/23/EC Concerning the Performance of Analytical Methods and the Interpretation of Results. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32002D0657&from=EN (accessed on 1 October 2019).
- Konieczka, P.; Misztal-Szkudlimska, M.; Namiesnik, J.; Szefer, P. Determination of total mercury in fish and cormorant using cold vapour atomic absorption spectrometry. Polish J. Environ. Stud. 2010, 19, 931–936. [Google Scholar]
- Tudorache, A.; Ionita, D.E.; Marin, N.M.; Marin, C.; Badea, I.A. Inhouse validation of a UV spectrometric method for measurement of nitrate concentration in natural groundwater samples. Accred. Qual Assur. 2017, 22, 29–35. [Google Scholar] [CrossRef]
- Commission Regulation (EU) No 836/2011 of 19 August 2011 Amending Regulation (EC) No 333/2007 Laying Down the Methods of Sampling and Analysis for the Official Control of the Levels of Lead, Cadmium, Mercury, Inorganic Tin, 3-MCPD and benzo(a)pyrene in Foodstuffs. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:215:0009:0016:EN:PDF (accessed on 1 October 2019).
- Horwitz, W.; Kamps, L.R.; Boyer, R.W. Quality assurance in the analysis of foods and trace constituents. J. Assoc. Off. Anal. Chem. 1980, 63, 1344–1354. [Google Scholar] [PubMed]
- Bish, D.; Boak, J. Clinoptilolite-heulandite nomenclature. Rev. Mineral. Geochem. 2001, 45, 207–216. [Google Scholar] [CrossRef]
- Rodrigues, S.; Pereira, M.E.; Duarte, A.C.; Ajmone-Marsan, F.; Davidson, C.M.; Grcman, H.; Hossack, I.; Hursthouse, A.S.; Ljung, K.; Martini, C.; et al. Mercury in urban soils: A comparison of local spatial variability in six European cities. Sci. Total Environ. 2006, 368, 926–936. [Google Scholar] [CrossRef] [PubMed]
- Manta, D.S.; Angelone, M.; Bellanca, A.; Neri, R.; Sprovieri, M. Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. Sci. Total Environ. 2002, 300, 229–243. [Google Scholar] [CrossRef]
- Garcia-Sanchez, A.; Murciego, A.; Alvarez-Ayusoa, E.; Santa Regina, I.; Rodriguez-Gonzalez, M.A. Mercury in soils and plants in an abandoned cinnabar mining area (SWSpain). J. Hazard. Mater. 2009, 168, 1319–1324. [Google Scholar] [CrossRef]
- Moreno-Jimenez, E.; Gamarra, R.; Carpena-Ruiz, R.O.; Millan, R.; Penalosa, J.M.; Esteban, E. Mercury bioaccumulation and phytotoxicity in two wild plant species of Almaden area. Chemosphere 2006, 63, 1969–1973. [Google Scholar] [CrossRef]
- Mastinu, A.; Kumar, A.; Maccarinelli, G.; Bonini, S.A.; Premoli, M.; Aria, F.; Gianoncelli, A.; Memo, M. Zeolite Clinoptilolite: Therapeutic Virtues of an Ancient Mineral. Molecules 2019, 27, 1517. [Google Scholar] [CrossRef]
- Maicaneanu, A.; Bedelean, H.; Stanca, M. Natural Zeolites. Characterization and Applications in Environmental Protection; Editura Presa Universitara Clujeana: Cluj-Napoca, Romania, 2008; pp. 59–78. (In Romanian) [Google Scholar]
Sample Availability: Samples of the zeolites are available from the authors. |
Parameter | Setting |
---|---|
Dry | 300 °C for 30 s |
Decomposition | 850 °C for 200 s |
Catalyst | 600 °C |
Catalyst wait period | 60 s |
Gold trap | 700 °C for 30 s |
Measurement time | 90 s |
Oxygen flow rate | 300 min−1 |
CRM | Certified Values ± U a (mg kg−1) | Measured Values ± U b (mg kg−1) | Recovery ± U a,b (%) |
---|---|---|---|
Total Hg | Total Hg | Total Hg | |
CRM048-50G | 28 ± 1.13 | 28.2 ± 0.93 | 101 ± 3 |
RTC-CRM025050 | 99.8 ± 31.7 | 106 ± 7.2 | 106 ± 7 |
LGC6135 | 3.2 ± 0.4 | 3.3 ± 0.33 | 103 ± 10 |
BCR 240R | 1.46 ± 0.2 | 1.4 ± 0.15 | 96 ± 11 |
NCSDC78301 | 0.22 ± 0.04 | 0.20 ± 0.03 | 91 ± 15 |
Compounds | Range of Concentrations (%) |
---|---|
SiO2 | 67.3–68.9 |
Al2O3 | 9.55–11.1 |
CaO | 2.05–2.99 |
MgO | 0.42–0.84 |
K2O | 1.88–2.46 |
Na2O | 0.39–1.11 |
TiO2 | 0.19–0.22 |
Fe2O3 | 0.78–1.32 |
Zeolite Sample | TD-AAS | CV-AFS | ||
---|---|---|---|---|
Average ± st. dev. (µg kg−1) | RSD (%) | Average ± st. dev. (µg kg−1) | RSD (%) | |
C1 | 56.2 ± 2.88 | 5.1 | 54.6 ± 4.12 | 7.6 |
C2 | 122 ± 4.50 | 3.7 | 116 ± 5.22 | 4.5 |
C3 | 44.7 ± 3.26 | 7.3 | 48.2 ± 3.02 | 6.3 |
C4 | 112 ± 5.22 | 4.7 | 117 ± 7.43 | 6.4 |
C5 | 88.4 ± 6.25 | 7.1 | 86.3 ± 5.99 | 6.9 |
C6 | 36.5 ± 3.15 | 8.6 | 34.9 ± 2.77 | 7.9 |
C7 | 36.0 ± 2.22 | 6.2 | 36.2 ± 2.53 | 7.0 |
C8 | 77.6 ± 3.88 | 5.0 | 77.8 ± 4.36 | 5.6 |
C9 | 54.8 ± 3.15 | 5.7 | 57.9 ± 5.33 | 9.2 |
C10 | 63.6 ± 4.22 | 6.6 | 62.1 ± 4.69 | 7.6 |
C11 | 43.3 ± 2.89 | 6.7 | 40.6 ± 4.01 | 9.9 |
C12 | 40.0 ± 2.67 | 6.7 | 39.8 ± 3.54 | 8.9 |
C13 | 72.5 ± 2.68 | 3.7 | 72.7 ± 6.25 | 8.6 |
C14 | 152 ± 6.17 | 4.1 | 147 ± 9.62 | 6.5 |
C15 | 42.0 ± 2.22 | 5.3 | 40.1 ± 3.57 | 8.9 |
Average | 69.4 | 5.8 | 68.8 | 7.5 |
Parameter | Setting |
---|---|
Argon flow-rate | 700 mL min−1 |
Sample flow-rate | 5 mL min−1 |
Reductant flow-rate | 1 mL min−1 |
Uptake time | 25 s |
Rinse time | 60 s |
Integration time | 10 s |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senila, M.; Cadar, O.; Senila, L.; Hoaghia, A.; Miu, I. Mercury Determination in Natural Zeolites by Thermal Decomposition Atomic Absorption Spectrometry: Method Validation in Compliance with Requirements for Use as Dietary Supplements. Molecules 2019, 24, 4023. https://doi.org/10.3390/molecules24224023
Senila M, Cadar O, Senila L, Hoaghia A, Miu I. Mercury Determination in Natural Zeolites by Thermal Decomposition Atomic Absorption Spectrometry: Method Validation in Compliance with Requirements for Use as Dietary Supplements. Molecules. 2019; 24(22):4023. https://doi.org/10.3390/molecules24224023
Chicago/Turabian StyleSenila, Marin, Oana Cadar, Lacrimioara Senila, Alexandra Hoaghia, and Ion Miu. 2019. "Mercury Determination in Natural Zeolites by Thermal Decomposition Atomic Absorption Spectrometry: Method Validation in Compliance with Requirements for Use as Dietary Supplements" Molecules 24, no. 22: 4023. https://doi.org/10.3390/molecules24224023
APA StyleSenila, M., Cadar, O., Senila, L., Hoaghia, A., & Miu, I. (2019). Mercury Determination in Natural Zeolites by Thermal Decomposition Atomic Absorption Spectrometry: Method Validation in Compliance with Requirements for Use as Dietary Supplements. Molecules, 24(22), 4023. https://doi.org/10.3390/molecules24224023