Structure–Activity Relationship Study of Acyclic Terpenes in Blood Glucose Levels: Potential α-Glucosidase and Sodium Glucose Cotransporter (SGLT-1) Inhibitors
Abstract
:1. Introduction
2. Results
2.1. Acute Evaluation of the Compounds in Normoglycemic Mice (NM) and SID2 Mice
2.2. Oral Sucrose and Lactose Tolerance Tests on Fasted Normoglycemic Mice (FNM)
2.3. Oral Glucose Tolerance Test on Fasted Normoglycemic Mice (FNM)
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Induction of Experimental Type 2 Diabetes in Mice
4.3. Acute Antihyperglycemic Evaluation of the Terpenes
4.4. Oral Sucrose and Lactose Tolerance Tests of Terpenes and Aacarbose in Fasted Normoglycemic Mice (FNM)
4.5. Oral Glucose Tolerance Test of Terpenes and Canagliflozin in Fasted Normoglycemic Mice (FNM)
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Asociación Americana de Diabetes, Diagnóstico y Clasificación de la Diabetes Mellitus. Available online: http://www.diabetes.org/es/informacion-basica-de-la-diabetes/?referrer=http://www.diabetes.org/es/informacion-basica-de-la-diabetes/diabetes-tipo-1/?referrer=http://www.diabetes.org/es/informacion-basica-de-la-diabetes/ (accessed on 5 August 2019).
- Alam, U.; Asghar, O.; Azmir, S.; Malik, R. General aspects of diabetes mellitus. Diabetes Nervous Syst. 2014, 126, 211–222. [Google Scholar]
- Federación Internacional de Diabetes, Atlas de la Diabetes de la FID. Available online: http://oment.uanl.mx/wp-content/uploads/2016/11/FMidete_Asumiendo-Control-Diabetes-2016.pdf (accessed on 5 August 2019).
- Hernández-Ávila, M.; Gutiérrez, J.; Reynoso-Novercon, N. El estado de la epidemia. Salúd Pública México 2013, 55, 129–136. [Google Scholar] [CrossRef]
- Organización Mundial de la Salud, Nota Descriptiva. Diabetes. Available online: http://www.who.int/mediacentre/factsheets/fs312/es/ (accessed on 5 August 2019).
- Clifford, J.; Robert, C.; Turner, M. Metformin. N. Engl. J. Med. 1996, 33, 574–579. [Google Scholar]
- Llave, F. Actualización en el manejo de los antidiabeticos orales en atención primaria. Med. Fam. 2008, 8, 98–111. [Google Scholar]
- Moreno, O.; Picó, A.; Martínez, S. Glinidas. Revisión de su uso terapéutico en la diabetes mellitus tipo 2. Endocrinol. Nutr. 2008, 55, 159–166. [Google Scholar] [CrossRef]
- González-Duhart, D.; Tamay-Cach, F.; Álvarez-Almazán, S.; Mendieta-Wejebe, J. Current Advances in the Biochemical and Physiological Aspects of Treatment of Type 2 Diabetes Mellitus with Thiazolidinediones. PPAR Res. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Andrade, R.; García-Jiménez, S.; Castillo-España, P.; Ramírez-Ávila, G.; Villalobos-Molina, R.; Estrada-Soto, S. ∝-Glucosidase inhibitori activity of the methanolic extract from Tournefortina hartwegiana: An anti-hyperglycemic agent. J. Ethnopharmacol. 2007, 109, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Mata, R.; Escandón-Rivera, S.; Juárez-Reyes, K.; Rivero-Cruz, I. Mexican Antidiabetic Herbs: Valuable Sources of Inhibitors of ∝-Glucosidases. J. Nat. Prod. 2013, 76, 468–483. [Google Scholar] [CrossRef] [PubMed]
- Calzada, F.; Solares-Pascasio, J.; Ordoñez-Razo, R.; Velázquez, C.; Barbosa, E.; García-Hernández, N.; Mendez-Luna, D.; Correa-Basurto, J. Antihiperglycemic Activity of the Leaves from Annona cherimolla Miller and rutin on alloxan-induced Diabetic Rats. Pharmacogn. Res. 2017, 9, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Castrejón, V.; Carbó, R.; Martínez, M. Mecanismos Moleculares que Intervienen en el Transporte de La Glucosa. Revista Educación Bioquímica 2007, 26, 49–57. [Google Scholar]
- Orguma, T.; Nakayama, K.; Kuriyama, C.; Matsushita, Y.; Yoshida, K.; Hikida, K.; Obokata, N.; Tsuda-Tsukimoto, M.; Saito, A.; Arakawa, K.; et al. Intestinal Sodium Glucose Cotransporter 1 Inhibition Enhances Glucagon-Like Peptide-1 Secretion in Normal and diabetic Rodents. J. Pharmacol. Exp. Ther. 2015, 354, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Powel, D.; Smith, M.; Doree, D.; Harris, A.; Greer, J.; DaCosta, C.; Thompson, A.; Jeter-Jones, S.; Xiong, W.; Carson, K.; et al. Discovery of LX2761, a sodium-dependent Glucose Cotransporter 1 (SLGT1) Inhibitor Restricted to Intestinal Lumen, for the Treatment on Diabetes. J. Med. Chem. 2017, 362, 85–97. [Google Scholar]
- Delmondes, G.; Souza, D.; De Queiroz, D.; De souza, A.; Moura, I.; Lins, G.; Riberiro, P.; Barbosa-Filho, J.; Alencar, I.; Kerntop, M. Toxicological and pharmacologic efects of farnesol (C15H22O): A Descriptive Systemayic Review. Food Chem. Toxicol. 2019, 129, 169–200. [Google Scholar] [CrossRef]
- Goto, T.; Kim, Y.; Funakoshi, K.; Teraminami, A.; Uemura, T.; Hirai, S.; Lee, Y.; Makishima, M.; Nakata, R.; Inoue, H.; et al. Farnesol, an isoprenoid, improves metabolic abnormalities in mice via both PPARα-dependent and -independent pathways. Am. J. Physiol. Endocrinol. Metab. 2011, 301, E1022–E1032. [Google Scholar] [CrossRef]
- Calzada, F.; Valdes, M.; García-Hernandez, N.; Velázquez, C.; Barbosa, E.; Bustos-Brito, C.; Quijano, L.; Pina-Jiménez, E.; Mendieta-Wejebe, J. Antihyperglycemic activity of the leaves from Annona diversifolia Safford. And Farnesol on Normal and Alloxan-Induced Diabetic Mice. Pharmacogn. Mag. 2019, 15, S5–S11. [Google Scholar]
- Montoya, G.; Rendón, A.; Aranjo, M. Identificación y diferenciación de monosacáridos y disacáridos diasteroméricos no derivatizados por ESI-IT-MS/MS. Rev. la Fac Quimica 2010, 17, 37–44. [Google Scholar]
- Vrhovac, I.; Balen, E.; Klessen, D.; Burger, C.; Breljak, D.; Kraus, O.; Radovik, N.; Jadrijevic, S.; Aleksic, I.; Walles, T.; et al. Localizattions of Na+-D-glucose cotransporters SGLT1 and SGLT2 in human kidney and SGLT1 in human small intestine, liver, lung, and heart. Eur. J. Physiol. 2014, 467, 1881–1898. [Google Scholar] [CrossRef] [PubMed]
- NCBI. Available online: https://www.ncbi.nlm.nih.gov/pubmed/26125647 (accessed on 8 August 2019).
- Norma Oficial Mexicana. Especificaciones Técnicas Para la Producción, Cuidado y Uso de los Animales de Laboratorio. Available online: http://www.ibt.unam.mx/computo/pdfs/bioterio.NOM-062.pdf (accessed on 13 August 2019).
- Hsu, J.D.; Wu, C.C.; Hung, C.N.; Wang, C.J.; Huang, H.P. Myrciaria cauliflora extract improves diabetic nephropathy via suppression of oxidative stress and inflammation in streptozotocin-nicotinamide mice. J. Food Drug Anal. 2016, 24, 730–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatment | Glycemia (mg/dL) | ||
---|---|---|---|
0 h | 2 h | 4 h | |
NM Control | 142.6 ± 7.3 | 132 ± 5.5 | 135 ± 5.8 |
NM + Geranyl Acetate (1) | 150 ± 3.5 | 171 ± 13.6 | 145.3 ± 14.6 |
NM + Geranic Acid (2) | 143.3 ± 6.1 | 157.3 ± 8.4 | 134 ± 0.5 |
NM + Citral (3) | 145.6 ± 7.3 | 138 ± 4.1 | 136 ± 6.5 |
NM + Geraniol (4) | 143 ± 5.1 | 117 ± 10.4* | 110.3 ± 12.8* |
NM + Methyl Geranate (5) | 149.3 ± 2 | 167 ± 2.2 | 131 ± 1.7* |
NM + Nerol (6) | 143.3 ± 5.8 | 140 ± 6.2 | 124 ± 8.7* |
NM + Citronellic Acid (7) | 142 ± 6.6 | 139 ± 7 | 138 ± 11 |
NM + Farnesal (8) | 148.3 ± 3.4 | 157.3 ± 13.7 | 147.3 ± 1.2 |
NM + Farnesol (9) | 136 ± 6.6 | 130.6 ± 5.2 | 130 ± 5.5 |
NM + Farnesyl Acetate (10) | 150 ± 3.6 | 150.6 ± 14.8 | 153.6 ± 12.1 |
NM + Geranylgeraniol (11) | 147.3 ± 5 | 153.3 ± 12.7 | 116.5 ± 10.1* |
NM + Squalene (12) | 154.3 ± 2 | 150.6 ± 19.7 | 148 ± 19 |
NM + Acarbose | 144 ± 4 | 145 ± 2 | 170 ± 19 |
NM + Canagliflozin | 131.8 ± 6.9 | 101.6 ± 5.1*,• | 101 ± 9.3*,•• |
NM + Glibenclamide | 148.6 ± 0.3 | 98.6 ± 5.7*,• | 119 ± 13.6*,•• |
NM + Pioglitazone | 150.3 ± 3.8 | 116.5 ± 1.5*,• | 125.6 ± 1.9*,•• |
SID2 Control | 330.3 ± 20.7 | 368.7 ± 20.2 | 352.2 ± 15.1 |
SID2 + Geranyl Acetate (1) | 356.3 ± 20.5 | 337.3 ± 23.1 | 358 ± 23 |
SID2 + Geranic Acid (2) | 362.3 ± 15.3 | 220.5 ± 3.4*, ¥ | 346.3 ± 41 |
SID2 + Citral (3) | 369 ± 13 | 263.6 ± 32*, ¥ | 248 ± 22*, ¥¥ |
SID2 + Geraniol (4) | 364 ± 10 | 419.3 ± 33 | 302 ± 45.1 |
SID2 + Methyl Geranate (5) | 334.6 ± 5.1 | 238.4 ± 17*, ¥ | 244.6 ± 18*, ¥¥ |
SID2 + Nerol (6) | 368.3 ± 4.5 | 333.1 ± 25 | 215.7 ± 17*, ¥¥ |
SID2 + Citronellic Acid (7) | 378.6 ± 10 | 329.3 ± 10.3* | 365.6 ± 12.8 |
SID2 + Farnesal (8) | 336.5 ± 9.3 | 260.3 ± 10*, ¥ | 243.3 ± 20.6*, ¥¥ |
SID2 + Farnesol (9) | 339.6 ± 10.3 | 305.3 ± 7.7*, ¥ | 337 ± 7.2 |
SID2 + Farnesyl Acetate (10) | 357.6 ± 27 | 306 ± 20.2 | 288 ± 16.5*, ¥¥ |
SID2 + Geranylgeraniol (11) | 361.3 ± 16 | 303 ± 16.2 | 292.5 ± 22.3* |
SID2 + Squalene (12) | 352 ± 24 | 321.6 ± 17.6 | 323.3 ± 33.8 |
SID2 + Acarbose | 337.7 ± 22.9 | 196.8 ± 12.6*,¥ | 335.5 ± 25 |
SID2 + Canagliflozin | 367.3 ± 5.94 | 157.6 ± 22.2*, ¥ | 102 ± 8.1*, ¥¥ |
SID2 + Glibenclamide | 357 ± 7.5 | 271 ± 6*, ¥ | 201 ± 10.9*, ¥¥ |
SID2 + Pioglitazone | 350.3 ± 5.4 | 245 ± 28.2*, ¥ | 240 ± 13.8*, ¥¥ |
Treatment | Glycemia (mg/dL) | ||
---|---|---|---|
0 h | 2 h | 4 h | |
FNM Control | 106.3 ± 4 | 103 ± 4 | 107.3 ± 3.7 |
FNM + S (3g/kg) | 104.3 ± 2 | 158.6 ± 7.4*, ∆ | 135.3 ± 7*, ∆∆ |
FNM + S + Geranic Acid (2) | 112 ± 2.6 | 108 ± 2.5† | 115.6 ± 10†† |
FNM + S + Citral (3) | 109.6 ± 3.5 | 127 ± 4.3*, † | 100 ± 5.8†† |
FNM + S + Citronellic Acid (7) | 108.3 ± 3.4 | 93 ± 8.3† | 92 ± 10.4†† |
FNM + S + Farnesal (8) | 112.3 ± 2.9 | 121.3 ± 9† | 108.6 ± 10.9†† |
FNM + S + Farnesol (9) | 114.6 ± 3.4 | 104.2 ± 5.6† | 108 ± 1.7†† |
FNM + S + Farnesyl Acetate (10) | 109 ± 5.5 | 110.6 ± 11.9† | 99.3 ± 4.6†† |
FNM + S + Acarbose (50 mg/kg) | 110 ± 2.3 | 113 ± 7.5† | 113.3 ± 8.5†† |
FNM + L (3g/kg) | 104.3 ± 0.3 | 156 ± 14*, ∆ | 99.3 ± 8.9 |
FNM + L + Geranic Acid (2) | 114.6 ± 1.4 | 139 ± 5.4*, ∆ | 149.6 ± 8*, ∆∆, ¥¥ |
FNM + L + Citral (3) | 114.3 ± 2.4 | 118.6 ± 7.6¥ | 120 ± 4 |
FNM + L + Citronellic Acid (7) | 101-6 ± 5.2 | 101 ± 4¥ | 88.3 ± 13.7 |
FNM + L + Farnesal (8) | 110.6 ± 5.2 | 125 ± 1*, ∆, ¥ | 110.3 ± 1.1 |
FNM + L + Farnesol (9) | 111.6 ± 3.7 | 122.3 ± 9.6 ¥ | 105.6 ± 7.4 |
FNM + L + Farnesyl Acetate (10) | 104.3 ± 7.3 | 118.3 ± 12.3¥ | 88.6 ± 5.6 |
FNM + L + Acarbose (50 mg/kg) | 109.3 ± 3.7 | 108.3 ± 11.3¥ | 111.6 ± 2.9 |
FNM + G (1.5g/kg) | 109.3 ± 8.1 | 155.6 ± 5.8*, ∆ | 109.6 ± 7.4 |
FNM + G + Geranic Acid (2) 2y4 | 118.3 ± 6.3 | 116.6 ± 14.2• | 88.6 ± 9.9 |
FNM + G + Citral (3) | 113.3 ± 5.3 | 158 ± 13.8*, ∆ | 106.6 ± 6.3 |
FNM + G + Citronellic Acid (7) | 113 ± 3.4 | 111.3 ± 0.8• | 104.3 ± 2.02 |
FNM + G + Farnesal (8) | 112 ± 0.5 | 120.3 ± 1.45• | 109.3 ± 6 |
FNM + G + Farnesol (9) | 102.6 ± 6 | 113.3 ± 8.9• | 96 ± 6.8 |
FNM + G + Farnesyl Acetate (10) | 116.3 ± 1.2 | 129 ± 5.1• | 96.3 ± 2.9 |
FNM + G + Canagliflozin (50 mg/kg) | 107.3 ± 2.9 | 83.3 ± 7*, ∆, • | 76.6 ± 3.2*, ∆∆, •• |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valdes, M.; Calzada, F.; Mendieta-Wejebe, J. Structure–Activity Relationship Study of Acyclic Terpenes in Blood Glucose Levels: Potential α-Glucosidase and Sodium Glucose Cotransporter (SGLT-1) Inhibitors. Molecules 2019, 24, 4020. https://doi.org/10.3390/molecules24224020
Valdes M, Calzada F, Mendieta-Wejebe J. Structure–Activity Relationship Study of Acyclic Terpenes in Blood Glucose Levels: Potential α-Glucosidase and Sodium Glucose Cotransporter (SGLT-1) Inhibitors. Molecules. 2019; 24(22):4020. https://doi.org/10.3390/molecules24224020
Chicago/Turabian StyleValdes, Miguel, Fernando Calzada, and Jessica Mendieta-Wejebe. 2019. "Structure–Activity Relationship Study of Acyclic Terpenes in Blood Glucose Levels: Potential α-Glucosidase and Sodium Glucose Cotransporter (SGLT-1) Inhibitors" Molecules 24, no. 22: 4020. https://doi.org/10.3390/molecules24224020
APA StyleValdes, M., Calzada, F., & Mendieta-Wejebe, J. (2019). Structure–Activity Relationship Study of Acyclic Terpenes in Blood Glucose Levels: Potential α-Glucosidase and Sodium Glucose Cotransporter (SGLT-1) Inhibitors. Molecules, 24(22), 4020. https://doi.org/10.3390/molecules24224020