Synthesis, Surface and Antimicrobial Activity of New Lactose-Based Surfactants
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Methods
2.2.1. Synthesis Confirmation
2.2.2. Surface Properties
2.2.3. Foaming Properties
2.2.4. Antimicrobial Activity
2.3. Results and Discussion
2.3.1. Synthesis Results
Surface Activity
3. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kjellin, M.; Johansson, I. Surfactants from Renewable Resources; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Hill, K.; Rhode, O. Sugar-based surfactants for consumer products and technical applications. Lipid Fett. 1999, 101, 25–33. [Google Scholar] [CrossRef]
- Matsumura, S.; Imai, K.; Yoshikawa, S.; Kawada, K.; Uchibor, T. Surface activities, biodegradability and antimicrobial properties of n-alkyl glucosides, mannosides and galactosides. J. Am. Oil. Chem. Soc. 1990, 67, 996–1001. [Google Scholar] [CrossRef]
- Ruiz, C.C. Sugar-Based Surfactants: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Development and Demand for Sugar-Based Surfactants Are on the Rise. Available online: https://www.icis.com/ (accessed on 1 February 2018).
- Queneau, Y.; Chambert, S.; Besset, C.; Cheaib, R. Recent progress in the synthesis of carbohydrate-based amphiphilic materials: the examples of sucrose and isomaltulose. Carbohydr. Res. 2008, 343, 1999–2009. [Google Scholar] [CrossRef]
- Imamura, K.; Murai, K.; Korehisa, T.; Shimizu, N.; Yamahira, R.; Matsuura, T.; Tada, H.; Imanaka, H.; Ishida, N.; Nakanishi, K. Characteristics of sugar surfactants in stabilizing proteins during freeze–thawing and freeze-drying. J. Pharm. Sci. 2014, 103, 1628–1637. [Google Scholar] [CrossRef]
- Adam, M.K.; Poisson, J.S.; Hu, Y.; Prasannakumar, G.; Pottage, M.J.; Ben, R.N.; Wilkinson, B.L. Carbohydrate-based surfactants as photocontrollable inhibitors of ice recrystallization. RSC Adv. 2016, 6, 39240–39244. [Google Scholar] [CrossRef]
- Foley, P.M.; Phimphachanh, A.; Beach, E.S.; Zimmerman, J.B.; Anastas, P.T. Linear and cyclic C-glycosides as surfactants. Green Chem. 2011, 13, 321–325. [Google Scholar] [CrossRef]
- Navideh, A.; Ping, T.C. Effects of selected polysorbate and sucrose ester emulsifiers on the physicochemical properties of astaxanthin nanodispersions. Molecules 2013, 18, 768–777. [Google Scholar]
- Sakai, K.; Umezawa, S.; Tamura, M.; Takamatsu, Y.; Tsuchiya, K.; Torigoe, K.; Ohkubo, T.; Yoshimura, T.; Esumi, K.; Sakai, H.; et al. Adsorption and micellization behavior of novel gluconamide-type gemini surfactants. J. Colloid Interface Sci. 2008, 318, 440–448. [Google Scholar] [CrossRef]
- Sakai, K.; Tamura, M.; Umezawa, S.; Takamatsu, Y.; Torigoe, K.; Yoshimura, T.; Tomokazu, Y.; Esumi, K.; Sakai, H.; Abe, M. Adsorption characteristics of sugar-based monomeric and gemini surfactants at the silica/aqueous solution interface. Colloids Surf. A 2008, 328, 100–106. [Google Scholar] [CrossRef]
- Nyuta, K.; Yoshimura, T.; Tsuchiya, K.; Ohkubo, T.; Sakai, H.; Abe, M.; Esumi, K. Adsorption and aggregation properties of heterogemini surfactants containing a quaternary ammonium salt and a sugar moiety. Langmuir 2006, 22, 9187–9191. [Google Scholar] [CrossRef]
- Miljkovic, M. Carbohydrates: Synthesis, Mechanisms, and Stereoelectronic N-alkyl, N-Acetylglycosylamines; Springer-Verlag: New York, NY, USA, 2009. [Google Scholar]
- Michocka, K.; Wieczorek, D.; Zielinski, R. New Halides N-(3-propanesulfonates)N-alkyl-N-lactoseammonium, Their Preparation and Use as Disinfectants. 2013, p. 402717. Available online: http://regserv.uprp.pl/register/application?lng=en&number=P.402717 (accessed on 29 July 2016).
- Li, N.; Zhang, G.; Ge, J.; Luchao, J.; Jianqiang, Z.; Baodong, D.; Pei, H. Adsorption behavior of betaine-type surfactant on quartz sand. Energy Fuels 2011, 25, 4430–4437. [Google Scholar] [CrossRef]
- Staszak, K.; Wieczorek, D.; Zielinski, R. Synthesis and interfacial activity of novel sulfobetaines in aqueous solutions. Tenside Surfactants Deterg. 2013, 50, 45–51. [Google Scholar] [CrossRef]
- ASTM D1173-07. Standard Test Method for Foaming Properties of Surface-Active Agents [Internet]; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar] [CrossRef]
- Kaur, P.K.; Joshi, N.; Singh, I.P.; Saini, H.S. Identification of cyclic lipopeptides produced by Bacillus vallismortis R2 and their antifungal activity against Alternaria alternata. J. Appl. Microbiol. 2017, 122, 139–152. [Google Scholar] [CrossRef]
- Yoshimura, T.; Umezawa, S.; Fujino, A.; Torigoe, K.; Sakai, K.; Sakai, H.; Abe, M.; Esumi, K. Equilibrium surface tension, dynamic surface tension, and micellization properties of lactobionamide-type sugar-based gemini surfactants. J. Oleo Sci. 2013, 62, 353–362. [Google Scholar] [CrossRef]
- Baquerizo, I.; Ruiz, M.A.; Holgado, J.A.; Cabrerizo, M.A.; Gallardo, V. Measurement of dynamic surface tension to determine critical micellar concentration in lipophilic silicone surfactants. Il Farm. 2000, 9–10, 583–589. [Google Scholar] [CrossRef]
- Lin, S.-Y.; Tsay, R.-Y.; Lin, L.-W.; Chen, S.-I. Adsorption kinetics of C12E8 at the air−water interface: Adsorption onto a clean interface. Langmuir 1996, 12, 6530–6536. [Google Scholar] [CrossRef]
- Eastoe, J.; Dalton, J.S. Dynamic surface tension and adsorption mechanisms of surfactants at the air-water interface. Adv. Colloid Interface Sci. 2000, 85, 103–144. [Google Scholar] [CrossRef]
- Tezel, U.; Pavlostathis, S.G. Role of quaternary ammonium compounds on antimicrobial resistance in the environment. In Antimicrob Resist Environ; Keen, P.L., Montforts, H.M.M., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 349–387. [Google Scholar]
- Kopecky, F. Micellization and other associations of amphiphilic antimicrobial quaternary ammonium salts in aqueous solutions. Studies 1996, 13, 20. [Google Scholar]
- Razafindralambo, H.; Blecker, C.; Paquot, M. Carbohydrate-Based Surfactants: Structure-Activity Relationships. In Advances in Chemical Engineering; Nawaz, Z., Ed.; IntechOpen: London, UK, 2012. [Google Scholar] [Green Version]
- Staszak, M. A Linear diffusion model of adsorption kinetics at fluid/fluid interfaces. J. Surfactants Deterg. 2016, 19, 297–314. [Google Scholar] [CrossRef]
- Wieczorek, D.; Dobrowolski, A.; Staszak, K.; Kwaśniewska, D.; Dubyk, P. Synthesis, surface and antimicrobial activity of piperidine-based sulfobetaines. J. Surfactants Deterg. 2017, 20, 151–158. [Google Scholar] [CrossRef]
- Kwaśniewska, D.; Staszak, K.; Wieczorek, D.; Zieliński, R. Synthesis and interfacial activity of novel heterogemini sulfobetaines in aqueous solution. J. Surfactants Deterg. 2015, 18, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Hazazi, O.A.; Abdallah, M.; Gad, E.A.M. Inhibition effect of some cationic surfactants on the corrosion of carbon steel in sulphuric acid solutions: Surface and structural properties. Int. J. Electrochem. Sci. 2014, 9, 2237–2253. [Google Scholar]
- Zhang, Q.; Gao, Z.; Xu, F.; Tai, S.; Liu, X.; Mo, S.; Niu, F. Surface tension and aggregation properties of novel cationic gemini surfactants with diethylammonium headgroups and a diamido spacer. Langmuir 2012, 28, 11979–11987. [Google Scholar] [CrossRef] [PubMed]
- Iskierska, M.; Zieliński, R. Experimental study on foamability of selected liquids soaps. In Proceedings of the 8th International Commodity Science Conference (IGWT), Poznan, Poland, 28 August–4 September 2005; pp. 593–687. [Google Scholar]
- Staszak, K.; Wieczorek, D.; Michocka, K. Effect of sodium chloride on the surface and wetting properties of aqueous solutions of cocamidopropyl betaine. J. Surfactants Deterg. 2015, 18, 321–328. [Google Scholar] [CrossRef]
- Khyat, A.E.; Mavon, A.; Leduc, M.; Agache, P.; Humbert, P. Skin critical surface tension. Skin Res. Technol. 1996, 2, 91–96. [Google Scholar] [CrossRef]
- Harkot, J.; Jańczuk, B. The role of adsorption of dodecylethyldimethylammonium bromide and benzyldimethyldodecylammonium bromide surfactants in wetting of polytetrafluoroethylene and poly (methyl methacrylate) surfaces. Appl. Surf. Sci. 2009, 255, 3623–3628. [Google Scholar] [CrossRef]
- Lv, W.F.; Zhou, Z.H.; Zhang, Q.; Luo, W.L.; Wang, H.Z.; Ma, D.S.; Zhang, L.; Wang, R.; Zhang, L. Wetting of polymer surfaces by aqueous solutions of branched cationic Gemini surfactants. Soft Matter 2019, 15, 6725–6731. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.-L.; Li, Z.-Q.; Zhang, L.; Xu, Z.-C.; Zhao, S.; Yu, J.-Y. Wettability of a quartz surface in the presence of four cationic surfactants. Langmuir 2010, 26, 18834–18840. [Google Scholar] [CrossRef]
- Liu, D.-D.; Xu, Z.-C.; Zhang, L.; Luo, L.; Zhang, L.; Wei, T.-X.; Zhao, S. Adsorption behaviors of cationic surfactants and wettability in polytetrafluoroethylene–solution–air systems. Langmuir 2012, 28, 16845–16854. [Google Scholar] [CrossRef]
- Sritapunya, T.; Kitiyanan, B.; Scamehorn, J.F.; Grady, B.P.; Chavadej, S. Wetting of polymer surfaces by aqueous surfactant solutions. Colloids Surf. A 2012, 409, 30–41. [Google Scholar] [CrossRef]
- Zhao, T.; Sun, G. Hydrophobicity and antimicrobial activities of quaternary pyridinium salts. J. Appl. Microbiol. 2018, 104, 824–830. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Söderling, E.; Österblad, M.; Vallittu, P.K.; Lassila, L.V.J. Synthesis of methacrylate monomers with antibacterial effects against S. mutans. Molecules 2011, 16, 9755–9763. [Google Scholar] [CrossRef] [PubMed]
- Gwiazdowska, D.; Zieliński, R.; Michocka, K. Antibacterial and antifungal properties of selected cationic surfactants. In Sel Asp Cosmet Househ Chem Prod Qual; Wydawnictwo Naukowe Instytutu Technologii Eksploatacji—PIB Radom: Radom, Poland, 2012; pp. 46–53. [Google Scholar]
- Wieczorek, D.; Gwiazdowska, D.; Michocka, K.; Kwaśniewska, D. Antibacterial activity of selected surfactants. Pol. J. Commod. Sci. 2014, 39, 142–149. [Google Scholar]
- Lucarini, S.; Fagioli, L.; Campana, R.; Cole, H.; Duranti, A.; Baffone, W.; Vllasaliu, D.; Casettaria, L. Unsaturated fatty acids lactose esters: cytotoxicity, permeability enhancement and antimicrobial activity. Eur. J. Pharm. Biopharm. 2016, 107, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Belmessieri, D.; Gozlan, C.; Duclos, M.-C.; Molinier, V.; Aubry, J.-M.; Dumitrescu, O.; Lina, G.; Redl, A.; Duguet, N.; Lemaire, M. Synthesis, surfactant properties and antimicrobial activities of methyl glycopyranoside ethers. Eur. J. Med. Chem. 2017, 128, 98–106. [Google Scholar] [CrossRef]
- Zhi, L.; Li, Q.; Li, Y.; Sun, Y. Self-aggregation and antimicrobial activity of saccharide-cationic surfactants. Colloids Surf. A 2014, 456, 231–237. [Google Scholar] [CrossRef]
- Tawfik, S.M.; Hefni, H.H. Synthesis and antimicrobial activity of polysaccharide alginate derived cationic surfactant–metal (II) complexes. Int. J. Biol. Macromol. 2016, 82, 562–572. [Google Scholar] [CrossRef]
- Nagamune, H.; Maeda, T.; Ohkura, K.; Yamamoto, K.; Nakajima, M.; Kourai, H. Evaluation of the cytotoxic effects of bis-quaternary ammonium antimicrobial reagents on human cells. Toxicol. In Vitro 2000, 14, 139–147. [Google Scholar] [CrossRef]
- Viscardi, G.; Quagliotto, P.; Barolo, C.; Savarino, P.; Barni, E.; Fisicaro, E. Synthesis and surface and antimicrobial properties of novel cationic surfactants. J. Org. Chem. 2000, 65, 8197–8203. [Google Scholar] [CrossRef]
- Thomas, B.; Baccile, N.; Masse, S.; Rondel, C.; Alric, I.; Valentin, R.; Mouloungui, Z.; Babonneau, F.; Coradin, T. Mesostructured silica from amino acid-based surfactant formulations and sodium silicate at neutral pH. J. Sol-Gel Sci. Technol. 2011, 58, 170–174. [Google Scholar] [CrossRef]
Surfactant | CMC [mM] | γCMC [mN/m] | Γ∞·106 [mol/m2] | ΔGads [kJ/mol] | Amin·1018 [m2] |
---|---|---|---|---|---|
C12S3L | 3.01 | 29.5 | 1.34 | −41.2 | 1.24 |
C14S3L | 0.4 | 27.6 | 0.988 | −64.2 | 1.68 |
Microorganism Fungi | O-β-D-Galactopyranosyl-(1→4)-N-dodecyl-(3-sulfopropyl)-D-glucosamine hydrochloride | O-β-D-Galactopyranosyl-(1→4)-N-tetradecyl-(3-sulfopropyl)-D-glucosamine hydrochloride | Cetyl-pyridinium chloride | Cetyl-trimethyl-ammonium bromide |
---|---|---|---|---|
Gram-positive bacteria | ||||
Staphylococcus aureus | 20.8 ± 0.00 | 17.3 ± 1.15 | 12.0 ± 0 | 13.0 ± 0 |
Bacillus subtilis | 26.6 ± 1.15 | 14.0 ± 1.15 | 12.0 ± 0 | 12.0 ± 0 |
Gram-negative bacteria | ||||
Escherichia coli | 18.6 ± 1.15 | 18.6 ± 0.00 | 11.7 ± 0 | 11.7 ± 0 |
Pseudomonas aeruginosa | 16.0 ± 0.00 | 16.0 ± 0.00 | 14.0 ± 0 | 14.5 ± 0 |
Yeasts | ||||
Candida albicans | 20.0 ± 0.00 | 15.3 ± 1.15 | 14.67 ± 0 | 14.00 ± 0 |
Filamentous fungi | ||||
Fusarium graminearum | 28.0 ± 2.82 | 24.0 ± 2.82 | 13.5 ± 0 | 14.5 ± 0 |
Fusarium avenaceum | 12.0 ± 0.00 | 19.0 ± 1.41 | 13.5 ± 0 | 16.5 ± 0 |
Fusarium oxysporum | 12.0 ± 0.00 | 16.0 ± 0.00 | 12.0 ± 0 | 13.0 ± 0 |
Fusarium culmorum | 12.0 ± 0.00 | 15.0 ± 1.41 | 13.5 ± 0 | 14.5 ± 0 |
Fusarium equiseti | 12.0 ± 0.00 | 12.0 ± 0.00 | 13.5 ± 0 | 13.0 ± 0 |
Alternaria alternata | 0.0 ± 0.00 | 16.0 ± 0.00 | 19.0 ± 0 | 19.0 ± 0 |
Botrytis cinerea | 0.0 ± 0.00 | 20.0 ± 0.00 | 15.0 ± 0 | 16.0 ± 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michocka, K.; Staszak, K.; Gwiazdowska, D.; Wieczorek, D. Synthesis, Surface and Antimicrobial Activity of New Lactose-Based Surfactants. Molecules 2019, 24, 4010. https://doi.org/10.3390/molecules24214010
Michocka K, Staszak K, Gwiazdowska D, Wieczorek D. Synthesis, Surface and Antimicrobial Activity of New Lactose-Based Surfactants. Molecules. 2019; 24(21):4010. https://doi.org/10.3390/molecules24214010
Chicago/Turabian StyleMichocka, Katarzyna, Katarzyna Staszak, Daniela Gwiazdowska, and Daria Wieczorek. 2019. "Synthesis, Surface and Antimicrobial Activity of New Lactose-Based Surfactants" Molecules 24, no. 21: 4010. https://doi.org/10.3390/molecules24214010
APA StyleMichocka, K., Staszak, K., Gwiazdowska, D., & Wieczorek, D. (2019). Synthesis, Surface and Antimicrobial Activity of New Lactose-Based Surfactants. Molecules, 24(21), 4010. https://doi.org/10.3390/molecules24214010