Magnetic Behavior of Carbon Materials Made from Biomass by Fe-Assisted Hydrothermal Carbonization
Abstract
:1. Introduction
2. Discussion of Results
2.1. Hydrocarbonization Processes. Reactivity and Thermal Behaviour
2.2. Surface Characterization of Hydrochars
2.2.1. N2 Adsorption Analyses
2.2.2. Surface Morphology Analysis by SEM Imaging
2.2.3. Surface Chemistry Analysis
2.3. Magnetization Properties
3. Experimental: Materials and Methods
3.1. Precursor: Almond Shell
3.2. Methods
3.2.1. Standard HTC Processes
3.2.2. Modified Hydrothermal Carbonization Processes
Processes Catalyzed with Pure Iron Metal Particles
Processes Catalyzed with FeCl3
Processes Made in the Presence of Magnetic Ferrofluid
3.3. Characterization Techniques
3.3.1. HC Reactivity and Thermal Behavior
3.3.2. HC Porosity and Surface Chemistry
3.3.3. Experimental Set-Up for the Study of Magnetic Behavior
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Román, S.; Libra, J.; Berge, N.; Sabio, E.; Ro, K.; Li, L.; Ledesma, B.; Álvarez, A.; Bae, S. Hydrothermal Carbonization: Modeling, Final Properties Design and Applications: A Review. Energies 2018, 11, 216. [Google Scholar] [CrossRef]
- Fang, J.; Zhan, L.; Ok, Y.S.; Gao, B. Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. J. Ind. Eng. Chem. 2018, 57, 15–21. [Google Scholar] [CrossRef]
- Reza, M.T.; Uddin, M.H.; Lynam, J.G.; Hoekman, S.K.; Coronella, C.J. Hydrothermal carbonization of loblolly pine: reaction chemistry and water balance. Biomass Conv. Bioref 2014, 4, 311–322. [Google Scholar] [CrossRef]
- Kabakcı, S.B.; Baran, S.S. Hydrothermal carbonization of various lignocellulosics: Fuel characteristics of hydrochars and surface characteristics of activated hydrochars. Waste Manag. 2019, 100, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Sevilla, M.; Fuertes, A.B. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 2009, 47, 2281–2289. [Google Scholar] [CrossRef] [Green Version]
- Román, S.; Hydrothermal Carbonization. Does it worth to be called pretreatment? In Analytical Pyrolyisis; Peter, K., Ed.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Román, S.; Nabais, J.M.V.; Ledesma, B.; González, J.F.; Titirici, M.M. Production of low-cost adsorbents with tunable surface chemistry by conjunction of hydrothermal carbonization and activation processes. Micropor. Mesopor. Mater. 2013, 165, 127–133. [Google Scholar] [CrossRef]
- Fernandez, M.E.; Ledesma, B.; Román, S.; Bonelli, P.R.; Cukierman, A.L. Development and characterization of activated hydrochars from orange peels as potential adsorbents for emerging organic contaminants. Biores. Technol. 2015, 183, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huo, Z.; Song, Z.; Zhang, C.; Jin, F. Preparing a magnetic activated carbon with expired beverage as carbon source and KOH as activator. J. Taiwan Inst. Chem. Eng. 2019, 96, 575–587. [Google Scholar] [CrossRef]
- Sierra, C.; Martínez-Blanco, D.; Blanco, J.A.; Gallego, J.R. Optimization of magnetic separation: a case study for soil washing at a heavy metals polluted site. Chemosphere 2014, 107, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Liu, Y.; Qian, F.; Zhou, C.; Zhang, S.; Chen, J. Preparation of magnetic carbon from waste hydrochar by simultaneous activation and magnetization for tetracycline removal. Biores. Technol. 2014, 154, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Liu, Y.; Luo, G.; Quian, F.; Zhang, S.; Chen, J. Facile fabrication of magnetic carbon composites from hydrochar via simultaneous activation and magnetization for triclosan adsorption. Environ. Sci. Technol. 2014, 48, 5840–5848. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Qian, F.; Liu, Y.; Matera, D.; Wu, G.; Zhang, S.; Chen, J. Controllable synthesis of magnetic carbon composites with high porosity and strong acid resistance from hydrochar for efficient removal of organic pollutants: An overlooked influence. Carbon 2016, 99, 338–347. [Google Scholar] [CrossRef]
- Lu, X.; Berge, N. Influence of feedstock chemical composition on product formation and characteristics derived from the hydrothermal carbonization of mixed feedstocks. Bioresour. Technol. 2014, 166, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Román, S.; Nabais, J.M.V.; Laginhas, C.; Ledesma, B.; González, J.F. Hydrothermal carbonization as an effective way of densifying the energy content of biomass. Fuel Process Technol. 2012, 103, 78–83. [Google Scholar] [CrossRef]
- Álvarez, P.; Blanco, C.; Santamaría, R.; Granda, M. Improvement of the thermal stability of lignocellulosic materials by treatment with sulphuric acid and potassium hydroxide. J. Anal. Appl. Pyrolysis 2004, 72, 131–139. [Google Scholar] [CrossRef]
- González, J.F.; Román, S.; Encinar, J.M.; Martínez, G. Pyrolysis of various biomass residues and char utilization for the production of activated carbons. J. Anal. Appl. Pyrol. 2009, 85, 134–141. [Google Scholar] [CrossRef]
- Phyllis II. Database for Biomass and Waste. Available online: https://phyllis.nl (accessed on 3 August 2019).
- González, J.F.; Encinar, J.M.; Canito, J.L.; Sabio, E.; Chacón, M. Pyrolysis of cherry stones: energy uses of the different fractions and kinetic study. J. Anal. Appl. Pyrol. 2003, 67, 165–190. [Google Scholar] [CrossRef]
- Gai, C.; Zhang, F.; Lang, Q.; Liu, T.; Peng, N.; Liu, Z. Facile one-pot synthesis of iron nanoparticles immobilized into the porous hydrochar for catalytic decomposition of phenol. Appl. Catal. B Environ. 2017, 204, 566–576. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Siemieinewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 613–619. [Google Scholar] [CrossRef]
- Carrott, P.J.M.; Roberts, R.A.; Sing, K.S.W. Standard nitrogen adsorption data for nonporous carbons. Carbon 1987, 25, 769–774. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Hydrochar | Solid Yield (%) | HHV (MJ/Kg) |
---|---|---|
CA | -- | 16.4 |
CA-HC | 41 | 28.3 |
CA-HC-Fe | 36 | 26.6 |
CA–HC–Fe3 | 30 | 23.3 |
CA–HC–FF | 31.1 | 17.6 |
CA–HC–Fe3-600 | 15.2 | 27.6 |
CA–HC–Fe3-800 | 11.3 | 28.4 |
Tp (°C) | m350 (%) | mTp (%) | mTf (%) | Ea (kJ/mol) | T° Range (for Kinetic Study) | |
---|---|---|---|---|---|---|
CA–HC | 418 | 94.6 | 81.5 | 59.9 | 28.9 | 400–450 |
CA–HC–Fe | 413 | 90.6 | 79.4 | 51.4 | 28.4 | 400–450 |
CA–HC–Fe3 | 456 | 93.1 | 84.6 | 65.7 | 35.1 | 450–500 |
CA–HC–FF | 416 | 88.4 | 78.9 | 50.9 | 30.5 | 400–450 |
Hydrochar | SBET, m2 g−1 | Vmi, cm3 g−1 | Vme, cm3 g−1 | VT, cm3 g−1 | Sext, m2 g−1 | Sint, m2 g−1 |
---|---|---|---|---|---|---|
CA–HC | 20 | 0.009 | 0.033 | 0.042 | 29 | - |
CA–HC–Fe | 12 | 0.004 | 0.018 | 0.022 | 22 | - |
CA–HC–FF | 5 | 0.002 | 0.010 | 0.012 | 12 | - |
CA–HC–Fe3 | 36 | 0.012 | 0.070 | 0.082 | 87 | - |
CA–HC–Fe3-600 | 262 | 0.152 | 0.081 | 0.244 | 90 | 149 |
CA–HC–Fe3-800 | 437 | 0.199 | 0.123 | 0.321 | 195 | 229 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olivares, M.; Román, S.; Ledesma, B.; Álvarez, A. Magnetic Behavior of Carbon Materials Made from Biomass by Fe-Assisted Hydrothermal Carbonization. Molecules 2019, 24, 3996. https://doi.org/10.3390/molecules24213996
Olivares M, Román S, Ledesma B, Álvarez A. Magnetic Behavior of Carbon Materials Made from Biomass by Fe-Assisted Hydrothermal Carbonization. Molecules. 2019; 24(21):3996. https://doi.org/10.3390/molecules24213996
Chicago/Turabian StyleOlivares, Mara, Silvia Román, Beatriz Ledesma, and Alfredo Álvarez. 2019. "Magnetic Behavior of Carbon Materials Made from Biomass by Fe-Assisted Hydrothermal Carbonization" Molecules 24, no. 21: 3996. https://doi.org/10.3390/molecules24213996
APA StyleOlivares, M., Román, S., Ledesma, B., & Álvarez, A. (2019). Magnetic Behavior of Carbon Materials Made from Biomass by Fe-Assisted Hydrothermal Carbonization. Molecules, 24(21), 3996. https://doi.org/10.3390/molecules24213996