Use of Deep Eutectic Solvents in Polymer Chemistry–A Review
Abstract
:1. Deep Eutectic Solvents in Polymer Chemistry
2. Meaning of the Terms Used
3. Preparation, Composition and Properties of Deep Eutectic Solvents
3.1. Preparation of Deep Eutectic Solvents
- The heating method is the most commonly used; it consists of mixing and heating the compounds at approximately 100 °C under constant stirring until forming a clear homogeneous liquid, which can usually take about 60 to 90 min [30].
- The grinding method is based on mixing the compounds at room temperature and grinding them until a clear liquid is formed [31].
- Evaporation method: using a rotary device, the components are dissolved in water and evaporated at 50 °C. The liquid obtained is kept in a silica gel desiccator until a constant weight is obtained [32].
- Freeze-drying method: this method consists in the lyophilisation of an aqueous solution consisting of individual DES components. However, this method is rarely used in comparison with the first three mentioned ones [33]. Water has been detected in the freeze-dried mixture, since it tends to interact with DES components and eventually becomes a part of the DES network. Being bound to DES components, water cannot fully be removed in this case.
3.2. Classification of DESs
3.3. Physical and Chemical Properties
3.4. Polarity of Deep Eutectic Solvents and Polymers
4. The Role of Deep Eutectic Solvents in the Synthesis of Polymers
- (1)
- The DES can function just as a solvent, without being involved directly in the conversion of monomer to polymer occurring in the system, however, influencing the course (e.g., kinetics) of the conversion;
- (2)
- One of the DES components can itself undergo polymerization;
- (3)
- The presence of the DES facilitates or causes changes in polymer properties (mainly surface modification of cellulose or nanocellulose, nanofibers) or in the production of nanocellulose (isolation of cellulose nanocrystals and cellulose fibres from lignocellulosic biomass or cellulose fibres) or in the pretreatment of other renewable polymers, such as chitin, chitosan, starch).
5. Research on Polymerization in Deep Eutectic Solvents
5.1. Role of Deep Eutectic Solvents in Polymerization Processes
5.2. Polymerizable Deep Eutectic Solvents
5.3. Polymerization of Monomers by DESs
6. Deep Eutectic Solvents for Isolation of Nanocellulose
6.1. Modes of Cellulose Isolation from Plant-Based Biomass
6.2. Cellulose Nanocrystals
6.3. Cellulose Nanofibrils
6.4. Modification of Cellulose
7. Polymers from Renewable Sources: Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P.; Capper, G.; McKenzie, K.J.; Ryder, K.S. Voltammetric and impedance studies of the electropolishing of type 316 stainless steel in a choline chloride based ionic liquid. Electrochim. Acta 2006, 51, 4420–4425. [Google Scholar] [CrossRef]
- Dai, Y.; van Spronsen, J.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta. 2013, 766, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, H.; Yu, H.; Guo, S.; Chen, D. Deep eutectic solvent as a green solvent for enhanced extraction of narirutin, naringin, hesperidin and neohesperidin from Aurantii Fructus. Phytochem. Anal. 2019, 30, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.C.; Yao, C.F.; Wu, W.Z. Deep eutectic solvents: Green solvents for separation applications. Acta Phys. Chim. Sin. 2018, 34, 873–885. [Google Scholar]
- Vanda, H.; Dai, Y.; Wilson, E.G.; Verpoorte, R.; Choi, Y.H. Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. C. R. Chim. 2018, 21, 628–638. [Google Scholar] [CrossRef]
- Roda, A.; Matias, A.A. Polymer science and engineering using deep eutectic solvents. Polymers 2019, 11, 912. [Google Scholar] [CrossRef]
- Wu, M.; Ma, H.; Ma, Z.; Jin, Y.; Chen, C.; Guo, X.; Qiao, Y.; Pedersen, C.M.; Hou, X.; Wang, Y. Deep eutectic solvents: Green solvents and catalysts for the preparation of pyrazine derivatives by self-condensation of d-glucosamine. ACS Sustain. Chem. Eng. 2018, 6, 9434–9441. [Google Scholar] [CrossRef]
- Huang, Z.-L.; Wu, B.-P.; Wen, Q.; Yang, T.-X.; Yang, Z. Deep eutectic solvents can be viable enzyme activators and stabilizers. J. Chem. Technol. Biot. 2014, 89, 1975–1981. [Google Scholar] [CrossRef]
- Durand, E.; Lecomte, J.; Villeneuve, P. Deep eutectic solvents: Synthesis, application, and focus on lipase-catalyzed reactions. Eur. J. Lipid Sci. Tech. 2013, 115, 379–385. [Google Scholar] [CrossRef]
- Jablonský, M.; Šima, J. Deep Eutectic Solvents in Biomass Valorization; Spektrum STU: Bratislava, Slovakia, 2019; p. 176. [Google Scholar]
- Mbous, Y.P.; Hayyan, M.; Hayyan, A.; Wong, W.F.; Hashim, M.A.; Looi, C.Y. Applications of deep eutectic solvents in biotechnology and bioengineering-Promises and challenges. Biotechnol. Adv. 2017, 35, 105–134. [Google Scholar] [CrossRef] [PubMed]
- Procentese, A.; Johnson, E.; Orr, V.; Garruto Campanile, A.; Wood, J.A.; Marzocchella, A.; Rehmann, L. Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresour. Technol. 2015, 192, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.C.; Ding, J.C.; Han, R.Z.; Dong, J.J.; Ni, Y. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresour. Technol. 2016, 203, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Doble, M.; Kruthiventi, A.K. Green Chemistry and Engineering; Academic Press Elsevier: Cambridge, MA, USA, 2007; 344p. [Google Scholar]
- Häckl, K.; Kunz, W. Some aspects of green solvents. C. R. Chim. 2018, 21, 572–580. [Google Scholar] [CrossRef]
- Tarczykowska, A. Green solvents. J. Educ. Health Sport 2017, 7, 224–232. [Google Scholar]
- Capello, C.; Fischer, U.; Hungerbuhler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green. Chem. 2007, 9, 927–934. [Google Scholar] [CrossRef]
- Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.M.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; Robert McElroy, C.; Sherwood, J. Tools and techniques for solvent selection: Green solvent selection guides. Sustain. Chem. Process. 2016, 4, 7. [Google Scholar] [CrossRef]
- Oliveira Vigier, K.; Garcia-Alvarez, J. Deep eutectic and low-melting mixtures. In Bio-Based Solvents; Jerome, F., Luque, R., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 83–114. [Google Scholar]
- Ruß, C.; König, B. Low melting mixtures in organic synthesis—An alternative to ionic liquids? Green Chem. 2012, 14, 2969–2982. [Google Scholar] [CrossRef]
- Liu, Y.-T.; Chen, Y.-A.; Xing, Y.-J. Synthesis and characterization of novel ternary deep eutectic solvents. Chinese Chem. Lett. 2014, 25, 104–106. [Google Scholar] [CrossRef]
- Mota-Morales, J.D.; Sánchez-Leija, R.J.; Carranza, A.; Pojman, J.A.; del Monte, F.; Luna-Bárcenas, G. Free-Radical polymerizations of and in deep eutectic solvents: Green synthesis of functional materials. Prog. Polym. Sci. 2018, 78, 139–153. [Google Scholar] [CrossRef]
- Liu, Y.; Friesen, J.B.; McAlpine, J.B.; Lankin, D.C.; Chen, S.N.; Pauli, G.F. Natural deep eutectic solvents: Properties, applications, and perspectives. J. Nat. Prod. 2018, 81, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Ibsen, K.; Brown, T.; Chen, R.; Agatemor, C.; Mitragotri, S. Reply to rogers and gurau: Definitions of ionic liquids and deep eutectic solvents. Proc. Natl. Acad. Sci. USA 2018, 115, E11000–E11001. [Google Scholar] [CrossRef] [PubMed]
- Pui Yee Shak, K.; Ling Pang, Y.; Keat Mah, S. Nanocellulose: Recent advances and its prospects in environmental remediation. Beilstein J. Nanotech. 2018, 9, 2479–2498. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Liu, W.; Zhang, M.; Si, C.; Zhang, X.; Li, B. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohyd. Polym. 2019, 209, 130–144. [Google Scholar] [CrossRef] [PubMed]
- Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chem. Rev. 2010, 110, 3479–3500. [Google Scholar] [CrossRef]
- Rol, F.; Belgacem, M.N.; Gandini, A.; Bras, J. Recent advances in surface-modified cellulose nanofibrils. Prog. Polym. Sci. 2019, 88, 241–264. [Google Scholar] [CrossRef]
- Kumar, A.K.; Parikh, B.S.; Pravakar, M. Natural deep eutectic solvent mediated pretreatment of rice straw: Bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ. Sci. Pollut. Res. Int. 2016, 23, 9265–9275. [Google Scholar] [CrossRef]
- El Achkar, T.; Fourmentin, S.; Greige-Gerges, H. Deep eutectic solvents: An overview on their interactions with water and biochemical compounds. J. Mol. Liq. 2019, 288, 111028. [Google Scholar] [CrossRef]
- Yiin, C.L.; Quitain, A.T.; Yusup, S.; Sasaki, M.; Uemura, Y.; Kida, T. Characterization of natural low transition temperature mixtures (LTTMs): Green solvents for biomass delignification. Bioresour. Technol. 2016, 199, 258–264. [Google Scholar] [CrossRef]
- Alvarez-Vasco, C.; Ma, R.; Quintero, M.; Guo, M.; Geleynse, S.; Ramasamy, K.K.; Wolcott, M.; Zhang, X. Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): A source of lignin for valorization. Green Chem. 2016, 18, 5133–5141. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [PubMed]
- Buchman, A.L. The addition of choline to parenteral nutrition. Gastroenterology 2009, 137, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Choline. Available online: https://www.urmc.rochester.edu/encyclopedia/content.aspx?contenttypeid=19&contentid=Choline (accessed on 27 October 2019).
- Kadhom, M.A.; Abdullah, G.H.; Al-Bayati, N. Studying two series of ternary deep eutectic solvents (choline chloride-urea-glycerol) and (choline chloride-malic acid-glycerol), synthesis and characterizations. Arab. J. Sci. Eng. 2017, 42, 1579–1589. [Google Scholar] [CrossRef]
- Wang, J.; Baker Sheila, N. Pyrrolidinium salt based binary and ternary deep eutectic solvents: Green preparations and physiochemical property characterizations. Green Proc. Synth. 2018, 7, 353. [Google Scholar] [CrossRef]
- Jablonský, M.; Škulcová, A.; Malvis, A.; Šima, J. Extraction of value-added components from food industry based and agro-forest biowastes by deep eutectic solvents. J. Biotechnol. 2018, 282, 46–66. [Google Scholar] [CrossRef]
- Troter, D.; Todorovic, Z.; Đokić-Stojanović, D.; Đordević, S.B.; Todorovic, V.; Konstantinović, S.; Veljković, V. The physicochemical and thermodynamic properties of the choline chloride-based deep eutectic solvents. J. Serb. Chem. Soc. 2017, 82, 1039–1052. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jérôme, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [Google Scholar] [CrossRef]
- Isaifan, R.; Amhamed, A. Review on carbon dioxide absorption by choline chloride/urea deep eutectic solvents. Adv. Chem. 2018, 2018, 1–6. [Google Scholar] [CrossRef]
- Rumble, J.R.; Lide, D.R.; Bruno, T.J. CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Reichardt, C.W.T. Solvents and Solvent Effects in Organic Chemistry; John Wiley and Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Florindo, C.; McIntosh, A.J.S.; Welton, T.; Branco, L.C.; Marrucho, I.M. A closer look into deep eutectic solvents: Exploring intermolecular interactions using solvatochromic probes. Phys. Chem. Chem. Phys. 2017, 20, 206–213. [Google Scholar] [CrossRef]
- Teles, A.R.R.; Capela, E.V.; Carmo, R.S.; Coutinho, J.A.P.; Silvestre, A.J.D.; Freire, M.G. Solvatochromic parameters of deep eutectic solvents formed by ammonium-based salts and carboxylic acids. Fluid Phase Equilib. 2017, 448, 15–21. [Google Scholar] [CrossRef]
- Buhvestov, U.; Rived, F.; Ràfols, C.; Bosch, E.; Rosés, M. Solute-solvent and solvent-solvent interactions in binary solvent mixtures. Part 7. Comparison of the enhancement of the water structure in alcohol-water mixtures measured by solvatochromic indicators. J. Phys. Org. Chem. 1998, 11, 185–192. [Google Scholar] [CrossRef]
- Kim, S.H.; Park, S.; Yu, H.; Kim, J.H.; Kim, H.J.; Yang, Y.-H.; Kim, Y.H.; Kim, K.J.; Kan, E.; Lee, S.H. Effect of deep eutectic solvent mixtures on lipase activity and stability. J. Mol. Catal. B: Enzym. 2016, 128, 65–72. [Google Scholar] [CrossRef]
- Yinghuai, Z.; Yuanting, K.T.; Hosmane, N. Applications of ionic liquids in lignin chemistry. In Ionic Liquids—New Aspects for the Future; IntechOpen: London, UK, 2013; pp. 315–346. [Google Scholar]
- Kerton, F. Renewable solvents. In Alternative Solvents for Green Chemistry; RSC Publishing: Cambridge, UK, 2009; pp. 97–117. [Google Scholar]
- Phan, L.; Andreatta, J.R.; Horvey, L.K.; Edie, C.F.; Luco, A.-L.; Mirchandani, A.; Darensbourg, D.J.; Jessop, P.G. Switchable-Polarity solvents prepared with a single liquid component. J. Org. Chem. 2008, 73, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Spange, S.; Vilsmeier, E.; Fischer, K.; Reuter, A.; Prause, S.; Zimmermann, Y.; Schmidt, C. Empirical polarity parameters for various macromolecular and related materials. Macromol. Rapid Commun. 2000, 21, 643–659. [Google Scholar] [CrossRef]
- Czerwinski, W.K. Solvent effects on free-radical polymerization. 6. Solvatochromic (LSER) analysis of the solvent effect on the homopolymerization rate on the basis of the reaction-solvent complex model. Macromolecules 1995, 28, 5405–5410. [Google Scholar] [CrossRef]
- Chadha, R.N.; Shukla, J.S.; Misra, G.S. Studies in chain-transfer. Part 2—Catalyzed polymerization of methyl methacrylate. Trans. Faraday Soc. 1957, 53, 240–246. [Google Scholar] [CrossRef]
- Mitra, B.C.; Chadha, S.C.; Ghosh, P.; Palit, S.R. Studies on some radical transfer reactions. Part I. Hydrogen atom abstraction from some organic substrates by OH radicals. J. Polym. Sci. Part. A Polym. Chem. 1966, 4, 901–906. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Zhang, X.; You, T.-T.; Xu, F. Deep eutectic solvents (DESs) for cellulose dissolution: A mini-review. Cellulose 2018, 26, 1–9. [Google Scholar] [CrossRef]
- Loow, Y.-L.; New, E.K.; Yang, G.H.; Ang, L.Y.; Foo, L.Y.W.; Wu, T.Y. Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion. Cellulose 2017, 24, 3591–3618. [Google Scholar] [CrossRef]
- Zdanowicz, M.; Wilpiszewska, K.; Spychaj, T. Deep eutectic solvents for polysaccharides processing. A review. Carbohydr. Polym. 2018, 200, 361–380. [Google Scholar] [CrossRef]
- Carriazo, D.; Serrano, M.C.; Gutiérrez, M.C.; Ferrer, M.L.; del Monte, F. Deep-Eutectic solvents playing multiple roles in the synthesis of polymers and related materials. Chem. Soc. Rev. 2012, 41, 4996–5014. [Google Scholar] [CrossRef] [PubMed]
- Del Monte, F.; Carriazo, D.; Serrano, M.C.; Gutiérrez, M.C.; Ferrer, M.L. Deep eutectic solvents in polymerizations: A greener alternative to conventional syntheses. ChemSusChem 2014, 7, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Pojman, J.A. Traveling fronts of methacrylic acid polymerization. J. Amer. Chem. Soc. 1991, 113, 6284–6286. [Google Scholar] [CrossRef]
- Pojman, J.A.; Ilyashenko, V.M.; Khan, A.M. Free-Radical frontal polymerization: Self-Propagating thermal reaction waves. J. Chem. Soc. Faraday Trans. 1996, 92, 2825–2837. [Google Scholar] [CrossRef]
- Mota-Morales, J.D.; Gutiérrez, M.C.; Ferrer, M.L.; Jiménez, R.; Santiago, P.; Sanchez, I.C.; Terrones, M.; Del Monte, F.; Luna-Bárcenas, G. Synthesis of macroporous poly(acrylic acid)–carbon nanotube composites by frontal polymerization in deep-eutectic solvents. J. Mater. Chem. A 2013, 1, 3970–3976. [Google Scholar] [CrossRef]
- Bednarz, S.; Wesołowska, A.; Trątnowiecka, M.; Bogdal, D. Polymers from Biobased-Monomers: Macroporous Itaconic Xerogels Prepared in Deep Eutectic Solvents. J. Renew. Mater. 2016, 4, 18–23. [Google Scholar] [CrossRef]
- Bednarz, S.; Fluder, M.; Galica, M.; Bogdal, D.; Maciejaszek, I. Synthesis of hydrogels by polymerization of itaconic acid-choline chloride deep eutectic solvent. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Sánchez-Leija, R.J.; Pojman, J.A.; Luna-Bárcenas, G.; Mota-Morales, J.D. Controlled release of lidocaine hydrochloride from polymerized drug-based deep-eutectic solvents. J. Mater. Chem. B 2014, 2, 7495–7501. [Google Scholar] [CrossRef]
- Wesołowska, A.; Bednarz, S.; Milanowski, Ł. Study of Copper Ion. Adsorption by Itaconic-Based Hydrogels. In Proceedings of the 18th International Electronic Conference on Synthetic Organic Chemistry session Polymer and Supramolecular Chemistry, Lugo, Spain, 3 November 2014; p. d013. [Google Scholar]
- Marcus, Y. Estimation of the critical temperatures of some more deep eutectic solvents from their surface tensions. Adv. Mater. Sci. Eng. 2018, 2018, 1–3. [Google Scholar] [CrossRef]
- Mirza, N.R.; Nicholas, N.J.; Wu, Y.; Kentish, S.; Stevens, G.W. Estimation of normal boiling temperatures, critical properties, and acentric factors of deep eutectic solvents. J. Chem. Eng. Data 2015, 60, 1844–1854. [Google Scholar] [CrossRef]
- Bednarz, S.; Błaszczyk, A.; Błażejewska, D.; Bogdał, D. Free-Radical polymerization of itaconic acid in the presence of choline salts: Mechanism of persulfate decomposition. Catal. Today 2015, 257, 297–304. [Google Scholar] [CrossRef]
- Bednarz, S.; Kowalski, G.; Konefał, R. Unexpected irregular structures of poly(itaconic acid) prepared in deep eutectic solvents. Eur. Polym. J. 2019, 115, 30–36. [Google Scholar] [CrossRef]
- Bednarz, S.; Półćwiartek, K.; Wityk, J.; Strachota, B.; Kredatusová, J.; Beneš, H.; Wesołowska-Piętak, A.; Kowalski, G. Polymerization-Crosslinking of renewable itaconic acid in water and in deep eutectic solvents. Eur. Polym. J. 2017, 95, 241–254. [Google Scholar] [CrossRef]
- Isik, M.; Ruiperez, F.; Sardon, H.; Gonzalez, A.; Zulfiqar, S.; Mecerreyes, D. Innovative Poly(Ionic Liquid)s by the polymerization of deep eutectic monomers. Macromol. Rapid Commun. 2016, 37, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
- Isik, M.; Zulfiqar, S.; Edhaim, F.; Ruiperez, F.; Rothenberger, A.; Mecerreyes, D. Sustainable Poly(Ionic Liquids) for CO2 capture based on deep eutectic monomers. ACS Sustain. Chem. Eng. 2016, 4, 7200–7208. [Google Scholar] [CrossRef]
- Mota-Morales, J.D.; Gutiérrez, M.C.; Ferrer, M.L.; Sanchez, I.C.; Elizalde-Peña, E.A.; Pojman, J.A.; Monte, F.D.; Luna-Bárcenas, G. Deep eutectic solvents as both active fillers and monomers for frontal polymerization. J. Polym. Sci. Pol. Chem. 2013, 51, 1767–1773. [Google Scholar] [CrossRef]
- Li, R.A.; Chen, G.; He, M.; Tian, J.; Su, B. Patternable transparent and conductive elastomers towards flexible tactile/strain sensors. J. Mater. Chem. C. 2017, 5, 8475–8481. [Google Scholar] [CrossRef]
- Qin, H.; Panzer, M.J. Chemically cross-linked Poly(2-hydroxyethyl methacrylate)-supported deep eutectic solvent gel electrolytes for eco-friendly supercapacitors. ChemElectroChem 2017, 4, 2556–2562. [Google Scholar] [CrossRef]
- Mukesh, C.; Upadhyay, K.K.; Devkar, R.V.; Chudasama, N.A.; Raol, G.G.; Prasad, K. Preparation of a noncytotoxic hemocompatible ion gel by self-polymerization of HEMA in a green deep eutectic solvent. Macromol. Chem. Phys. 2016, 217, 1899–1906. [Google Scholar] [CrossRef]
- Mukesh, C.; Gupta, R.; Srivastava, D.; Sanna Kotrappanavar, N.; Prasad, K. Preparation of natural deep eutectic solvent mediated self polymerized highly flexible transparent gel having super capacitive behaviour. RSC Adv. 2016, 6. [Google Scholar] [CrossRef]
- Wang, J.; Han, J.; Khan, M.Y.; He, D.; Peng, H.; Chen, D.; Xie, X.; Xue, Z. Deep eutectic solvents for green and efficient iron-mediated ligand-free atom transfer radical polymerization. Polym. Chem. 2017, 8, 1616–1627. [Google Scholar] [CrossRef]
- García-Argüelles, S.; García, C.; Serrano, M.C.; Gutiérrez, M.C.; Ferrer, M.L.; del Monte, F. Near-To-Eutectic mixtures as bifunctional catalysts in the low-temperature-ring-opening-polymerization of ε-caprolactone. Green Chem. 2015, 17, 3632–3643. [Google Scholar] [CrossRef]
- Garcia-Arguelles, S.; Serrano, M.C.; Gutierrez, M.C.; Ferrer, M.L.; Yuste, L.; Rojo, F.; del Monte, F. Deep eutectic solvent-assisted synthesis of biodegradable polyesters with antibacterial properties. Langmuir 2013, 29, 9525–9534. [Google Scholar] [CrossRef] [PubMed]
- Serrano, M.C.; Gutiérrez, M.C.; Jiménez, R.; Ferrer, M.L.; Monte, F.D. Synthesis of novel lidocaine-releasing poly(diol-co-citrate) elastomers by using deep eutectic solvents. Chem. Commun. 2012, 48, 579–581. [Google Scholar] [CrossRef]
- Mendonça, P.V.; Lima, M.S.; Guliashvili, T.; Serra, A.C.; Coelho, J.F.J. Deep eutectic solvents (DES): Excellent green solvents for rapid SARA ATRP of biorelevant hydrophilic monomers at ambient temperature. Polymer 2017, 132, 114–121. [Google Scholar] [CrossRef]
- Hosu, O.; Barsan, M.M.; Cristea, C.; Săndulescu, R.; Brett, C.M.A. Nanocomposites based on carbon nanotubes and redox-active polymers synthesized in a deep eutectic solvent as a new electrochemical sensing platform. Microchim. Acta 2017, 184, 3919–3927. [Google Scholar] [CrossRef]
- Hosu, O.; Bârsan, M.M.; Cristea, C.; Săndulescu, R.; Brett, C.M.A. Nanostructured electropolymerized poly(methylene blue) films from deep eutectic solvents. Optimization and characterization. Electrochim. Acta 2017, 232, 285–295. [Google Scholar] [CrossRef]
- Ezgi Unlu, A.; Prasad, B.; Anavekar, K.; Bubenheim, P.; Liese, A. Investigation of a green process for the polymerization of catechin. Prep. Biochem. Biotechnol. 2017, 47, 918–924. [Google Scholar] [CrossRef]
- Sánchez-Leija, R.J.; Torres-Lubián, J.R.; Reséndiz-Rubio, A.; Luna-Bárcenas, G.; Mota-Morales, J.D. Enzyme-Mediated free radical polymerization of acrylamide in deep eutectic solvents. RSC Adv. 2016, 6, 13072–13079. [Google Scholar] [CrossRef]
- Yang, B.; Cai, T.; Li, Z.; Guan, M.; Qiu, H. Surface radical chain-transfer reaction in deep eutectic solvents for preparation of silica-grafted stationary phases in hydrophilic interaction chromatography. Talanta 2017, 175, 256–263. [Google Scholar] [CrossRef]
- Zhang, L.S.; Gao, S.P.; Huang, Y.P.; Liu, Z.S. Green synthesis of polymer monoliths incorporated with carbon nanotubes in room temperature ionic liquid and deep eutectic solvents. Talanta 2016, 154, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Carranza, A.; Pojman, J.A.; Mota-Morales, J.D. Deep-Eutectic solvents as a support in the nonaqueous synthesis of macroporous poly(HIPEs). RSC Adv. 2014, 4, 41584–41587. [Google Scholar] [CrossRef]
- Pérez-García, M.G.; Carranza, A.; Puig, J.E.; Pojman, J.A.; del Monte, F.; Luna-Bárcenas, G.; Mota-Morales, J.D. Porous monoliths synthesized via polymerization of styrene and divinyl benzene in nonaqueous deep-eutectic solvent-based HIPEs. RSC Adv. 2015, 5, 23255–23260. [Google Scholar] [CrossRef]
- Sapir, L.; Stanley, C.B.; Harries, D. Properties of polyvinylpyrrolidone in a deep eutectic solvent. J. Phys. Chem. A 2016, 120, 3253–3259. [Google Scholar] [CrossRef] [PubMed]
- Mano, F.; Aroso, I.M.; Barreiros, S.; Borges, J.P.; Reis, R.L.; Duarte, A.R.C.; Paiva, A. Production of Poly(vinyl alcohol) (PVA) fibers with encapsulated natural deep eutectic solvent (NADES) using electrospinning. ACS Sustain. Chem. Eng. 2015, 3, 2504–2509. [Google Scholar] [CrossRef]
- Nardecchia, S.; Gutierrez, M.C.; Ferrer, M.L.; Alonso, M.; Lopez, I.M.; Rodriguez-Cabello, J.C.; del Monte, F. Phase behavior of elastin-like synthetic recombinamers in deep eutectic solvents. Biomacromolecules 2012, 13, 2029–2036. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, M.C.; Rubio, F.; del Monte, F. Resorcinol-Formaldehyde polycondensation in deep eutectic solvents for the preparation of carbons and carbon-carbon nanotube composites. Chem. Mater. 2010, 22, 2711–2719. [Google Scholar] [CrossRef]
- Patiño, J.; Gutiérrez, M.C.; Carriazo, D.; Ania, C.O.; Parra, J.B.; Ferrer, M.L.; Monte, F.D. Deep eutectic assisted synthesis of carbon adsorbents highly suitable for low-pressure separation of CO2-CH4 gas mixtures. Energ. Environ. Sci. 2012, 5, 8699–8707. [Google Scholar] [CrossRef]
- Ren, H.; Chen, C.; Guo, S.; Zhao, D.; Wang, Q. Synthesis of a novel allyl-functionalized deep eutectic solvent to promote dissolution of cellulose. BioResources 2016, 11, 4. [Google Scholar] [CrossRef]
- Ren, H.; Chen, C.; Wang, Q.; Zhao, D.; Guo, S. The properties of choline chloride-based deep eutectic solvents and their performance in the dissolution of cellulose. BioResources 2016, 11, 2. [Google Scholar] [CrossRef]
- Supeno, S.; Daik, R.; El-Sheikh, S.M. The synthesis of a macro-initiator from cellulose in a zinc-based ionic liquid. BioResources 2014, 9, 1. [Google Scholar] [CrossRef]
- Zhang, Q.; Benoit, M.; De Oliveira Vigier, K.; Barrault, J.; Jérôme, F. Green and inexpensive choline-derived solvents for cellulose decrystallization. Chem. Eur. J. 2012, 18, 1043–1046. [Google Scholar] [CrossRef] [PubMed]
- Laitinen, O.; Ojala, J.; Sirviö, J.A.; Liimatainen, H. Sustainable stabilization of oil in water emulsions by cellulose nanocrystals synthesized from deep eutectic solvents. Cellulose 2017, 24, 1679–1689. [Google Scholar] [CrossRef] [Green Version]
- Laitinen, O.; Suopajärvi, T.; Sirviö, J.; Liimatainen, H. Superabsorbent aerogels from cellulose nanofibril hydrogels. In Cellulose-Based Superabsorbent Hydrogels. Polymers and Polymeric Composites: A Reference Series; Mondal, M., Ed.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Li, P.; Sirviö, J.A.; Haapala, A.; Liimatainen, H. Cellulose nanofibrils from nonderivatizing urea-based deep eutectic solvent pretreatments. ACS Appl. Mater. Interfaces 2017, 9, 2846–2855. [Google Scholar] [CrossRef] [PubMed]
- Ojala, J.; Visanko, M.; Laitinen, O. Emulsion stabilization with functionalized cellulose nanoparticles fabricated using deep eutectic solvents. Molecules 2018, 23, 2765. [Google Scholar] [CrossRef]
- Selkala, T.; Sirvio, J.A.; Lorite, G.S.; Limatainen, H. Anionically stabilized cellulose nanofibrils through succinylation pretreatment in urea-lithium chloride deep eutectic solvent. ChemSusChem 2016, 9, 3074–3083. [Google Scholar] [CrossRef] [PubMed]
- Sirviö, J.; Visanko, M.; Liimatainen, H. Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production. Biomacromolecules 2016, 17, 3025–3032. [Google Scholar] [CrossRef]
- Sirviö, J.A.; Visanko, M.; Liimatainen, H. Deep eutectic solvent system based on choline chloride-urea as a pre-treatment for nanofibrillation of wood cellulose. Green Chem. 2015, 17, 3401–3406. [Google Scholar] [CrossRef]
- Suopajärvi, T.; Sirviö, J.A.; Liimatainen, H. Nanofibrillation of deep eutectic solvent-treated paper and board cellulose pulps. Carbohydr. Polym. 2017, 169, 167–175. [Google Scholar] [CrossRef]
- Tenhunen, T.-M.; Pöhler, T.; Kokko, A.; Orelma, H.; Gane, P.; Schenker, M.; Tammelin, T. Enhancing the stability of aqueous dispersions and foams comprising cellulose nanofibrils (CNF) with CaCO3 particles. Nanomaterials 2018, 8, 651. [Google Scholar] [CrossRef]
- Tenhunen, T.-M.; Lewandowska, A.E.; Orelma, H.; Johansson, L.-S.; Virtanen, T.; Harlin, A.; Österberg, M.; Eichhorn, S.J.; Tammelin, T. Understanding the interactions of cellulose fibres and deep eutectic solvent of choline chloride and urea. Cellulose 2018, 25, 137–150. [Google Scholar] [CrossRef]
- Willberg-Keyriläinen, P.; Hiltunen, J.; Ropponen, J. Production of cellulose carbamate using urea-based deep eutectic solvents. Cellulose 2018, 25, 195–204. [Google Scholar] [CrossRef]
- Lynam, J.G.; Kumar, N.; Wong, M.J. Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density. Bioresour. Technol. 2017, 238, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Sirviö, J.A.; Heiskanen, J.P. Synthesis of alkaline-soluble cellulose methyl carbamate using a reactive deep eutectic solvent. ChemSusChem 2017, 10, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Laitinen, O.; Suopajärvi, T.; Österberg, M.; Liimatainen, H. Hydrophobic, superabsorbing aerogels from choline chloride-based deep eutectic solvent pretreated and silylated cellulose nanofibrils for selective oil removal. ACS Appl. Mater. Interfaces 2017, 9, 25029–25037. [Google Scholar] [CrossRef]
- Slavik, I. Celulóza a Jej Chemické Spracovanie; Slovenská Akadémia Vied: Bratislava, Slovakia, 1953. [Google Scholar]
- Liu, Y.; Guo, B.; Xia, Q.; Meng, J.; Chen, W.; Liu, S.; Wang, Q.; Liu, Y.; Li, J.; Yu, H. Efficient cleavage of strong hydrogen bonds in cotton by deep eutectic solvents and facile fabrication of cellulose nanocrystals in high yields. ACS Sustain. Chem. Eng. 2017, 5, 7623–7631. [Google Scholar] [CrossRef]
- Ling, Z.; Edwards, J.V.; Guo, Z.; Prevost, N.T.; Nam, S.; Wu, Q.; French, A.D.; Xu, F. Structural variations of cotton cellulose nanocrystals from deep eutectic solvent treatment: Micro and nano scale. Cellulose 2019, 26, 861–876. [Google Scholar] [CrossRef]
- Sirviö, J.A. Fabrication of regenerated cellulose nanoparticles by mechanical disintegration of cellulose after dissolution and regeneration from a deep eutectic solvent. J. Mater. Chem. A 2019, 7, 755–763. [Google Scholar] [CrossRef]
- Yang, X.; Xie, H.; Du, H.; Zhang, X.; Zou, Z.; Zou, Y.; Liu, W.; Lan, H.; Zhang, X.; Si, C. Facile extraction of thermally stable and dispersible cellulose nanocrystals with high yield via a green and recyclable FeCl3-catalyzed deep eutectic solvent system. ACS Sustain. Chem. Eng. 2019, 7, 7200–7208. [Google Scholar] [CrossRef]
- Oksman, K.; Aitomäki, Y.; Mathew, A.P.; Siqueira, G.; Zhou, Q.; Butylina, S.; Tanpichai, S.; Zhou, X.; Hooshmand, S. Review of the recent developments in cellulose nanocomposite processing. Compos. Part. A Appl. S. 2016, 83, 2–18. [Google Scholar] [CrossRef]
- Li, P.; Sirviö, J.A.; Asante, B.; Liimatainen, H. Recyclable deep eutectic solvent for the production of cationic nanocelluloses. Carbohydr. Polym. 2018, 199, 219–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, W.; Wang, C.; Yi, Y.; Zhou, W.; Wang, H.; Yang, Y.; Tan, Z. Choline chloride-based deep eutectic solvent systems as a pretreatment for nanofibrillation of ramie fibers. Cellulose 2019. [Google Scholar] [CrossRef]
- Ma, Y.; Xia, Q.; Liu, Y.; Chen, W.; Liu, S.; Wang, Q.; Liu, Y.; Li, J.; Yu, H. Production of nanocellulose using hydrated deep eutectic solvent combined with ultrasonic treatment. ACS Omega 2019, 4, 8539–8547. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Sirviö, J.A.; Haapala, A.; Khakalo, A.; Liimatainen, H. Anti-Oxidative and UV-absorbing biohybrid film of cellulose nanofibrils and tannin extract. Food Hydrocolloid. 2019, 92, 208–217. [Google Scholar] [CrossRef]
- Jablonsky, M.; Majova, V.; Ondrigova, K.; Sima, J. Preparation and characterization of physicochemical properties and application of novel ternary deep eutectic solvents. Cellulose 2019, 26, 3031–3045. [Google Scholar] [CrossRef]
- Tenhunen, T.-M.; Hakalahti, M.; Kouko, J.; Salminen, A.; Härkäsalmi, T.; Pere, J.; Harlin, A.; Hänninen, T. Method for forming pulp fibre yarns developed by a design-driven process. BioResources 2016, 11, 2492–2503. [Google Scholar] [CrossRef]
- Peng, L.; Hao, J.W.; Mo, L.P.; Zhang, Z.H. Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Adv. 2015, 60, 48675–48704. [Google Scholar]
- Alonso, A.D.; Baeza, A.; Chinchilla, R.; Guillena, G.; Pastor, I.M.; Ramón, D.J. Deep eutectic solvents: The organic reaction medium of the century. Eur. J. Org. Chem. 2016, 4, 612–632. [Google Scholar] [CrossRef]
Type | General formula | Terms |
---|---|---|
I | Cat+X− × z MClx (quarternary halide + metal chloride) | M = ZnII, SnII, AlIII, GaIII, InIII; X = Cl, Br |
II | Cat+X− × z MClx × y H2O (quarternary halide + metal chloride hydrate) | M = CrIII, CoII, CuII, FeII, NiII; X = Cl, Br |
III | Cat+X− × z RZ (quarternary halide + hydrogen bond donor) | Z = CONH2, COOH, OH; X = Cl, Br |
IV | MClx + RZ = (MClx−1)+ × RZ + (MClx+1)− (metal halide hydrate + hydrogen bond donor | M = AlIII, ZnII; Z = CONH2, OH |
HBA/HBD, Molar Ratio | Freezing Point [°C] | Viscosity [cP] | Density [g cm−3] | Conductivity [mS cm−1] |
---|---|---|---|---|
ChCl/U, 1:2 | 12 | 750 | 1.25 | 0.75 |
ChCl/U, 1:2 | 12 | 169 (40 °C) | 0.199 (40 °C) | |
ChCl/Me-U, 1:2 | 29 | |||
ChCl/1,3-Me2-U, 1:2 | 70 | |||
ChCl/CF3CONH2, 1:2 | 77 (40 °C) | 1.342 | ||
ChCl/EG, 1:2 | −20 | 37 | 1.12 | 7.61 |
ChCl/EG, 1:3 | 19 (20 °C) | |||
ChCl/Gly, 1:2 | −40 | 376 | 1.18 | 1.18 |
ChCl/Gly, 1:3 | 450 (20 °C) | |||
ChCl/D-Fru, 1:2 | 4 | |||
ChCl/D-Glu, 1:2 | 14 | |||
ChCl/phenol, 1:3 | 44.6 | 3.14 | ||
ChCl/phenol, 1:3 | 28.2 (35 °C) | 4.77 (35 °C) | ||
ChCl/phenol, 1:3 | 19.2 (45 °C) | 6.77 (45 °C) | ||
ChCl/1,4-butanediol, 1:3 | 140 (20 °C) | |||
ChCl/1,4-butanediol, 1:4 | 88 (20 °C) | |||
ChCl/imidazole, 3:7 | 15 (70 °C) | 12 (60 °C) | ||
ChCl/acetamide, 1:2 | 51 | |||
ChCl/MalA, 1:1 | 10 | 721 | 0.55 | |
ChCl/MalA, 1:2 | 1124 | |||
ChCl/valeric acid, 1:2 | 22 | |||
ChCl/mandelic acid, 1:2 | 33 | |||
ChCl/OxA, 1:1 | 34 | |||
ChCl/phenylacetic acid, 1:1 | 25 | |||
ChCl/glutamic acid, 1:2 | 13 | |||
ChCl/phenylpropionic acid, 1:1 | 20 | |||
ChCl/CitA, 2:1 | 69 | |||
[P(Me)(Ph)3]Br/Gly, 1:1.75 | −4.03 | 887 (45 °C) | 1.29 | 0.165 |
[P(Me)(Ph)3]Br/EG, 1:4 | −49.34 | 109.8 | 1.23 | 0.788 |
[N(Bu)4]Br/imidazole, 3:7 | 810 (20 °C) | 0.24 (60 °C) | ||
[P(Bz)(Ph)3]Cl/EG | 47.91 | |||
[P(Bz)(Ph)3]Cl/Gly | 50.36 | |||
[NH3(Et)]Cl/acetamide, 2:3 | 64 (40 °C) | 1.041 | 0.688 (40 °C) | |
[NH3(Et)]Cl/CF3CONH2, 2:3 | 256 (40 °C) | 1.273 | 0.39 (40 °C) | |
[NH3(Et)]Cl/U, 2:3 | 0.348 (40 °C) | |||
[N(Bu)3(Me)]Cl/EG, 1:3 | 202 (55 °C) | 0.48 (55 °C) | ||
[N(Bu)3(Me)]Cl/Gly, 1:5 | 534 (55 °C) | 0.163 (55 °C) |
Composition, Molar Ratio. | Freezing Point [°C] | Viscosity [cP] | Density [g cm−3] | Ref. |
---|---|---|---|---|
ChCl/MA/Gly, 1:1:1 | 1.254 | [37] | ||
ChCl/MA/Gly, 2:1:3 | −54gt | 1.148 | ||
ChCl/MA/Gly, 1:2:1 | −52gt | 1.263 | ||
[BMPI]Br/ChCl/Gly, 2:1:2 | −24.0gt | 14.46 | [38] | |
[BMPI]Br/ChCl/Gly, 1:1:2 | −26.0gt | 11.57 | ||
[BMPI]Br/ChCl/Gly, 1:2.4 | −24.5gt | 14.81 | ||
[BMPI]Br/ChCl/Gly, 1:5:10 | −27.0gt | 9.33 |
Composition, Molar Ratio | α | β | π* | Ref. |
---|---|---|---|---|
Water | 1.23 | 0.49 | 1.14 | [47] |
Butanoic acid | 1.06 | 0.22 | 0.47 | [46] |
Hexanoic acid | 1.05 | 0.21 | 0.43 | [46] |
Octanoic acid | 0.94 | 0.23 | 0.38 | [46] |
Methanol | 0.93 | 0.66 | 0.58 | [46] |
Ethanol | 0.83 | 0.75 | 0.51 | [46] |
Glycerol | 1.21 | 0.51 | 0.62 | [46] |
Choline chloride/Glycerol, 1:2 | 0.937 | 0.544 | 1.61 | [48] |
[N(Et)4]Cl/Butanoic acid, 1:2 | 0.99 | 0.76 | 0.92 | [46] |
[N(Et)4]Cl/Hexanoic acid, 1:2 | 0.97 | 0.85 | 0.86 | [46] |
[N(Et)4]Cl/Octanoic acid, 1:2 | 0.96 | 0.87 | 0.81 | [46] |
[N(Pr)4]Cl/Butanoic acid, 1:2 | 0.94 | 0.84 | 0.93 | [46] |
[N(Pr)4]Cl/Hexanoic acid, 1:2 | 0.91 | 0.92 | 0.85 | [46] |
[N(Pr)4]Cl/Octanoic acid, 1:2 | 0.90 | 0.96 | 0.80 | [46] |
[N(Bu)4]Cl/Butanoic acid, 1:2 | 0.92 | 0.99 | 0.86 | [46] |
[N(Bu)4]Cl/Hexanoic acid, 1:2 | 0.90 | 1.02 | 0.81 | [46] |
[N(Bu)4]Cl/Octanoic acid, 1:2 | 0.84 | 1.19 | 0.80 | [46] |
[N(Bu)4]Cl/Decanoic acid, 1:2 | 0.85 | 1.28 | 0.69 | [46] |
[N(Bu)4]Cl/Decanoic acid, 1:1 | 0.91 | 1.21 | 0.86 | [46] |
[N(Pr)4]Br/Butanoic acid, 1:2 | 1.07 | 0.80 | 0.93 | [46] |
[N(Pr)4]Br/Hexanoic acid, 1:2 | 1.02 | 0.86 | 0.87 | [46] |
[N(Bu)4]Br/Butanoic acid, 1:2 | 1.02 | 0.81 | 0.93 | [46] |
[N(Bu)4]Br/Butanoic acid, 1:1 | 1.09 | 0.84 | 0.90 | [46] |
[N(Bu)4]Br/Butanoic acid, 2:1 | 0.94 | 0.82 | 0.95 | [46] |
[N(Bu)4]Br/Hexanoic acid, 1:2 | 1.02 | 0.93 | 0.92 | [46] |
[N(Bu)4]Br/Octanoic acid, 1:2 | 0.98 | 1.09 | 0.84 | [46] |
[N(Bu)4]Br/Decanoic acid, 1:2 | 0.95 | 1.05 | 0.71 | [46] |
Choline chloride/Acetic acid, 1:2 | 0.53 | 1.10 | [45] | |
Choline chloride /Levulinic acid, 1:2 | 0.51 | 0.57 | 1.00 | [45] |
Choline chloride /Malonic acid, 1:1 | 1.39 | 0.42 | 1.08 | [45] |
Choline chloride /Glycolic acid, 1:1 | 0.49 | 0.50 | 1.08 | [45] |
Choline chloride /Urea, 1:2 | 1.42 | 0.50 | 1.14 | [45] |
Choline chloride /Ethylene glycol, 1:2 | 1.47 | 0.57 | 1.07 | [45] |
Choline chloride /Glycerol, 1:2 | 1.49 | 0.52 | 1.11 | [45] |
DL-Menthol/Acetic acid, 1:1 | 1.64 | 0.60 | 0.53 | [45] |
DL-Menthol/Levulinic acid, 1:1 | 1.56 | 0.58 | 0.66 | [45] |
DL-Menthol/Octanoic acid, 1:1 | 1.77 | 0.50 | 0.41 | [45] |
DL-Menthol/Dodecanoic acid, 2:1 | 1.79 | 0.57 | 0.37 | [45] |
[N(Bu)4]Cl/Levulinic acid, 1:2 | 0.82 | 1.06 | [45] | |
[N(Bu)4]Cl/Octanoic acid, 1:2 | 1.41 | 0.99 | 0.76 | [45] |
[N(Bu)4]Cl/Decanoic acid, 1:2 | 1.36 | 0.97 | 0.73 | [45] |
[N(Bu)4]Cl/Dodecanoic acid, 1:2 | 1.45 | 1.04 | 0.71 | [45] |
Material | α | β | π* | Notes |
---|---|---|---|---|
Polystyrene | 0.00 | 0.28 | 0.66 | |
Poly(ethylene oxide) | 0.00 | 0.65 | 0.86 | |
Poly(methyl methacrylate) | 0.00 | 0.38 | 0.71 | |
Poly(vinylpyrrolidone) | 0.01 | 0.93 | 0.93 | |
Polyvinylchloride | 0.33 | 0.04 | 0.16 | |
Poly(vinyl acetate) | 0.00 | 0.70 | 0.77 | |
Never dry cellulose | 0.98 | 0.66 | ||
Chitin | 0.67 | 0.91 | ||
γ-Al2O3 | 1.44 | 0.59 | dried at 673 K | |
γ-AlO(OH) | 1.49 | 0.66 | dried at 1 073 K | |
Silica (KG 60) | 1.13 | 1.08 | dried at 673 K | |
Aerosil 300® untreated | 1.17 | −0.23 | 0.94 | room temperature |
Aerosil 300® dried | 1.06 | −0.26 | 0.92 | room temperature |
LiChrospher® 18-5 μm | 1.04 | 0.83 | surface coverage 0.81 μmol·m–2 |
Composition, Molar Ratio | Boiling Point (K) |
---|---|
Choline chloride/Urea, 1:2 | 445.6 |
Choline chloride/Ethylene glycol, 1:2 | 439.0 |
Choline chloride/Glycerol, 1:2 | 515.4 |
Choline chloride/Malonic acid, 1:2 | 550.3 |
Choline chloride/Butanediol, 1:3 | 471.0 |
Choline chloride/Trifluoroacetamide, 1:2 | 408.8 |
Choline chloride/Lactic acid, 10:13 | 495.2 |
Choline chloride/Phenol, 1:2 | 445.3 |
Acetylcholine chloride/Urea, 1:2 | 461.6 |
Ethylammonium chloride/Urea, 2:3 | 381.6 |
Ethylammonium chloride/Acetamide, 2:3 | 351.8 |
Ethylammonium chloride/Trifluoroacetamide, 2:3 | 348.5 |
N,N-diethylethanolammonium chloride/Ethylene glycol, 1:2 | 446.5 |
N,N-diethylethanolammonium chloride/Glycerol, 1:2 | 522.9 |
Methyltriphenylphosphonium bromide/Glycerol, 1:2 | 635.4 |
Methyltriphenylphosphonium bromide/Ethylene glycol, 1:3 | 526.7 |
Methyltriphenylphosphonium bromide/Triethylene glycol, 1:5 | 608.0 |
Choline chloride /Glycerol, 1:1 | 500.9 |
Choline chloride /Glycerol, 1:3 | 522.6 |
N,N-diethylethanolammonium chloride/Trifluoroacetamide, 1:2 | 416.4 |
Choline chloride /Ethylene glycol, 1:3 | 436.7 |
Choline chloride /Phenol, 1:3 | 443.8 |
Choline chloride /Phenol, 1:4 | 442.9 |
Choline chloride /Lactic acid, 2:3 | 497.5 |
Choline chloride /Lactic acid, 1:2 | 502.0 |
Choline chloride /Lactic acid, 2:5 | 505.2 |
Choline chloride /Lactic acid, 1:3 | 507.6 |
Choline chloride /Lactic acid, 2:7 | 509.4 |
Choline chloride /Lactic acid, 1:4 | 510.9 |
Choline chloride /Lactic acid, 1:5 | 513.1 |
Choline chloride /Lactic acid, 1:8 | 516.8 |
Choline chloride /Lactic acid, 1:10 | 518.2 |
Choline chloride /Lactic acid, 1:15 | 520.1 |
Methyltriphenylphosphonium bromide/Glycerol, 4:7 | 643.7 |
Methyltriphenylphosphonium bromide/Ethylene glycol, 1:4 | 507.3 |
Choline chloride /Fructose, 5:2 | 574.9 |
Choline chloride /Fructose, 2:1 | 594.5 |
Choline chloride /Fructose, 3:2 | 621.9 |
Choline chloride /Fructose, 1:1 | 663.0 |
Composition, Molar Ratio | Initiator | Conversion (%) | Ref. |
---|---|---|---|
Acrylic acid/Choline chloride, 5:8 | 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane (Luperox 231) (0.2 mol %) | 100 | [75] |
Acrylic acid/Choline chloride, 5:8 | Luperox 231 (0.3 mol %) | 100 | [75] |
Acrylic acid/Choline chloride, 5:8 | Luperox 231 (0.4 mol %) | 94 | [75] |
Acrylic acid/Choline chloride, 5:8 | Luperox 231 (0.5 mol %) | 93.6 | [75] |
Acrylic acid/Choline chloride, 5:8 | Luperox 231 (0.7 mol %) | 94.2 | [75] |
Acrylic acid/Choline chloride, 5:8 | Luperox 231 (1 mol %) | 92.5 | [75] |
Methacrylic acid/Choline chloride, 1:2 | Luperox 231 (0.2 mol %) | 98 | [75] |
Methacrylic acid/Choline chloride, 1:2 | Luperox 231 (1 mol %) | 100 | [75] |
Acrylic acid/Lidocaine hydrochloride, 3:1 | Luperox 231 (1.5 mol %) | 100 | [75] |
Acrylic acid/Lidocaine hydrochloride, 3:1 | Luperox 231 (0.2 mol %) | 100 | [75] |
Acrylamide/Choline chloride, 1:2 | Luperox 231 (0.1 mol %) | 90 | [75] |
Acrylic acid/Choline chloride + acrylamide, 1:2 | Luperox 231 (0.03 mol %) | 100 | [75] |
Acrylic acid/Choline chloride + N-isopropylacrylamide, 1:2 | Luperox 231 (0.03 mol %) | 100 | [75] |
Choline chloride/Acrylic acid, 5:8; 1:2 | Crosslinkers: poly(ethylene glycol) diacrylate and 2-hydroxy-4-(2-hydroxyethoxy)-2-methylpropiophenone photoinitiator | [76] | |
Choline chloride/Itaconic acid, 1:1 | Initiator: N,N′-methylenedisacrylamide, ammonium sulphate | >90 | [65] |
Choline chloride/Itaconic acid, 1:1 | Initiator: N,N′-methylenedisacrylamide (2–15 mol %, ammonium sulphate | 29–100 | [64] |
Choline chloride/Itaconic acid, 1:1 | Initiator: N,N′-methylenedisacrylamide, ammonium sulphate, second inert diluent–poly(ethyleneglycol) | 64–74 | [64] |
Choline chloride/Itaconic acid, 1:1 | Initiator: N,N′-methylenedisacrylamide (2-15 mol %, ammonium sulphate | 90–99 (post-gel stage) | [72] |
Choline chloride/Itaconic acid, 1:1 | Initiator: N,N′-methylenedisacrylamide (2-15 mol %, ammonium sulphate | 90–99 (pre-gelation stage) | [72] |
Choline chloride/Itaconic acid/Water, 1:1:1 | Initiator: ammonium sulphate | 96 | [71] |
Tetraethylammonium chloride/Itaconic acid/Water, 1:1:1 | Initiator: ammonium sulphate | 87 | [71] |
Lidocaine hydrochloride/Acrylic acid, 1:3 | Luperox 231, as thermal initiator and ethylene glycol methacrylate or pentaerithrytol triacrylate | 100 | [66] |
Lidocaine hydrochloride/Methacrylic acid, 1:3 | Luperox 231, as thermal initiator and ethylene glycol dimethacrylate or pentaerithrytol triacrylate | 100 | [66] |
Lidocaine hydrochloride/Acrylic acid + Lidocaine hydrochloride/Methacrylic acid (1:1), mixture | Luperox 231, as thermal initiator and ethylene glycol dimethacrylate or pentaerithrytol triacrylate | 100 | [66] |
2-Cholinium bromide methacrylate/Citric acid, 1:1 | Photopolymerization, crosslinker ethylene glycol dimethacrylate, photoinitiator 2-hydroxy-2-methylpropiophenone | [73] | |
2-Cholinium bromide methacrylate /Amidoxime methacrylate, 1:1 | Photopolymerization, crosslinker ethylene glycol dimethacrylate, photoinitiator 2-hydroxy-2-methylpropiophenone | [73] | |
Ammonium tetraol/citric acid, 3:4 | Polycondensation | ≈90 | [73] |
Ammoniumtriol/citric acid, 1:1 | Polycondensation | ≈90 | [73] |
Ammonium tetraol/citric acid/terephthalic acid, 6:5:4 | Polycondensation | ≈90 | [73] |
Ammonium triol/citric acid/terephthalic acid, 8:5:4 | Polycondensation | ≈90 | [73] |
Cholinium bromide methacrylate/Citric acid, 1:1 | Photopolymerization, crosslinker ethylene glycol dimethacrylate, photoinitiator 2-hydroxy-2-methylpropiophenone | 100 | [74] |
Cholinium bromide methacrylate/Citric acid, 2:3 | Photopolymerization, crosslinker ethylene glycol dimethacrylate, photoinitiator 2-hydroxy-2-methylpropiophenone | 100 | [74] |
Cholinium bromide methacrylate/Oxalic acid, 1:2 | Photopolymerization, crosslinker ethylene glycol dimethacrylate, photoinitiator 2-hydroxy-2-methylpropiophenone | 100 | [74] |
Cholinium bromide methacrylate/Malonic acid, 1:2 | Photopolymerization, crosslinker ethylene glycol dimethacrylate, photoinitiator 2-hydroxy-2-methylpropiophenone | 100 | [74] |
Cholinium bromide methacrylate/Maleic acid, 1:2 | Photopolymerization, crosslinker ethylene glycol dimethacrylate, photoinitiator 2-hydroxy-2-methylpropiophenone | 100 | [74] |
Cholinium bromide methacrylate/Benzeneimidamide, 1:1 | Photopolymerization, crosslinker ethylene glycol dimethacrylate, photoinitiator 2-hydroxy-2-methylpropiophenone | 100 | [74] |
Cholinium bromide methacrylate/Trifluorobenzeimidamide, 1:1 | Photopolymerization, crosslinker ethylene glycol dimethacrylate, photoinitiator 2-hydroxy-2-methylpropiophenone | 100 | [74] |
Cholinium bromide methacrylate/Propanimidamide, 1:1 | Photopolymerization, crosslinker ethylene glycol dimethacrylate, photoinitiator 2-hydroxy-2-methylpropiophenone | 100 | [74] |
Cholinium bromide methacrylate/Diaminopyridine, 1:1 | Photopolymerization, crosslinker ethylene glycol dimethacrylate, photoinitiator 2-hydroxy-2-methylpropiophenone | 100 | [74] |
Composition, Molar Ratio | Monomer | Agent | Time (h); Conversion (%) | Note | Ref. |
---|---|---|---|---|---|
Acetamide/Urea, 2:1 | Methyl methacrylate | FeBr2 | 14.5; 9.6 | [MMA]0/[FeBr2]0/[EBPA]0/[Na2CO3]0 = 200:1:1:0; MMA/DES (v/v) = 3:1, 60 °C | [80] |
Acetamide/Urea, 2:1 | Methyl methacrylate | FeBr2 | 6; 32.5 | [MMA]0/[FeBr2]0/[EBPA]0/[Na2CO3]0 = 200:1:1:2; MMA/DES (v/v) = 200:1, 60 °C | [80] |
Urea/Caprolactam, 1:3 | Methyl methacrylate | FeBr2 | 14.5; 13.3 | [MMA]0/[FeBr2]0/[EBPA]0/[Na2CO3]0 = 200:1:1:0; MMA/DES (v/v) = 3:1, 60 °C | [80] |
Urea/Caprolactam, 1:3 | Methyl methacrylate | FeBr2 | 6; 36.3 | [MMA]0/[FeBr2]0/[EBPA]0/[Na2CO3]0 = 200:1:1:2; MMA/DES (v/v) = 200:1, 60 °C | [80] |
Caprolactam/ Acetamide, 1:1 | Methyl methacrylate | FeBr2 | 3.5; 18.1 | [MMA]0/[FeBr2]0/[EBPA]0/[Na2CO3]0 = 200:1:1:0; MMA/DES (v/v) = 3:1, 60 °C | [80] |
Caprolactam/ Acetamide, 1:1 | Methyl methacrylate | FeBr2 | 5; 77.4 | [MMA]0/[FeBr2]0/[EBPA]0/[Na2CO3]0 = 200:1:1:2; MMA/DES (v/v) = 200:1, 60 °C | [80] |
Caprolactam/ Acetamide, 1:1 | Methyl methacrylate | FeBr2 | 4.5; 78.8 | [MMA]0/[FeBr2]0/[EBPA]0/[Na2CO3]0 =50:1:1:0; MMA/DES (v/v) = 3:1, 60 °C | [80] |
Caprolactam/ Acetamide, 1:1 | Methyl methacrylate | FeBr2 | 1.5; 76.5 | [MMA]0/[FeBr2]0/[EBPA]0/[Na2CO3]0 =50:1:1:2; MMA/DES (v/v) = 3:1, 60 °C | [80] |
Caprolactam/ Acetamide, 1:1 | Methyl methacrylate | FeBr2 | 7.5; 46.4 | [MMA]0/[FeBr2]0/[EBPA]0/[Na2CO3]0 =100:1:1:0; MMA/DES (v/v) = 3:1, 60 °C | [80] |
Caprolactam/ Acetamide, 1:1 | Methyl methacrylate | FeBr2 | 2; 58.6 | [MMA]0/[FeBr2]0/[EBPA]0/[Na2CO3]0 = 100:1:1:2; MMA/DES (v/v) = 3:1, 60 °C | [80] |
Caprolactam/ Acetamide, 1:1 | Methyl methacrylate | FeBr2 | 3.5; 18.1 | [MMA]0/[FeBr2]0/[EBPA]0/[Na2CO3]0 = 200:1:1:0; MMA/DES (v/v) = 3:1, 60 °C | [80] |
Caprolactam/ Acetamide, 1:1 | Methyl methacrylate | FeBr2 | 2; 28.5 | [MMA]0/[FeBr2]0/[EBPA]0/[Na2CO3]0 = 200:1:1:2; MMA/DES (v/v) = 3:1, 60 °C | [80] |
Acetamide/ NH4SCN, 3:1 | Methyl methacrylate | FeBr2 | 18; 25.2 | [MMA]0/[FeBr2]0/[EBPA]0 = 200:1:1; MMA/DES (v/v) = 200:1, 60 °C | [80] |
Acetamide/ NH4SCN, 3:1 | Methyl methacrylate | FeBr2 | 14; 42.0 | [MMA]0/[FeBr2]0/[EBPA]0 = 100:1:1; MMA/DES (v/v) = 100:1, 60 °C | [80] |
Urea/NH4SCN, 3:2 | Methyl methacrylate | FeBr2 | 7; 13.0 | [MMA]0/[FeBr2]0/[EBPA]0 = 200:1:1; MMA/DES (v/v) = 200:1, 60 °C | [80] |
Urea/NH4SCN, 3:2 | Methyl methacrylate | FeBr2 | 14; 37.0 | [MMA]0/[FeBr2]0/[EBPA]0 = 200:1:1; MMA/DES (v/v) = 100:1, 60 °C | [80] |
Acetamide/NH4SCN, 3:1 | Methyl methacrylate | FeBr2 | 1.85; 84.7 | [MMA]0/[FeBr2]0/[EBPA]0/[Na2CO3]0 = 200:1:1:2; MMA/DES (v/v) = 200:1, 60 °C | [80] |
Urea/NH4SCN, 3:2 | Methyl methacrylate | FeBr2 | 1.67; 86.0 | [MMA]0/[FeBr2]0/[EBPA]0/[Na2CO3]0 = 200:1:1:2; MMA/DES (v/v) = 200:1, 60 °C | [80] |
Caprolactam/ NH4SCN, 3:1 | Methyl methacrylate | FeBr2 | 4.75; 74.3 | [MMA]0/[FeBr2]0/[EBPA]0/[Na2CO3]0 = 200:1:1:2; MMA/DES (v/v) = 200:1, 60 °C | [80] |
Acetamide/KSCN, 3:1 | Methyl methacrylate | FeBr2 | 3.50; 70.2 | [MMA]0/[FeBr2]0/[EBPA]0/[Na2CO3]0 = 200:1:1:2; MMA/DES (v/v) = 200:1, 60 °C | [80] |
Caprolactam/ KSCN, 3:1 | Methyl methacrylate | FeBr2 | 3.67; 80.5 | [MMA]0/[FeBr2]0/[EBPA]0/[Na2CO3]0 = 200:1:1:2; MMA/DES (v/v) = 200:1 | [80] |
Choline chloride/Urea, 1:2 | Methyl methacrylate | FeBr2 | 4.0; 70.6 | [MMA]0/[FeBr2]0/[EBPA]0/[Na2CO3]0 = 200:1:1:2; MMA/DES (v/v) = 200:1, 60 °C | [80] |
Choline chloride/ Ethylene glycol, 1:2 | Methyl methacrylate | FeBr2 | 46.0; 14.4 | [MMA]0/[FeBr2]0/[EBPA]0/[Na2CO3]0 = 200:1:1:2; MMA/DES (v/v) = 200:1, 60 °C | [80] |
Choline chloride/Glycerol, 1:2 | Methyl methacrylate | FeBr2 | 21.0; 21.5 | [MMA]0/[FeBr2]0/[EBPA]0/[Na2CO3]0 = 200:1:1:2; MMA/DES (v/v) = 200:1 | [80] |
Choline chloride/Malonic acid, 1:1 | Methyl methacrylate | FeBr2 | 46.0; 20.7 | [MMA]0/[FeBr2]0/[EBPA]0/[Na2CO3]0 = 200:1:1:2; MMA/DES (v/v) = 200:1, 60 °C | [80] |
Tetrabutylammonium bromide/ Ethylene glycol, 1:2 | Methyl methacrylate | FeBr2 | 8.5; 61.1 | [MMA]0/[FeBr2]0/[EBPA]0/[Na2CO3]0 = 200:1:1:2; MMA/DES (v/v) = 200:1, 60 °C | [80] |
Tetrabutylammonium bromide/ Glycerol, 1:2 | Methyl methacrylate | FeBr2 | 5.0; 80.6 | [MMA]0/[FeBr2]0/[EBPA]0/[Na2CO3]0 = 200:1:1:2; MMA/DES (v/v) = 200:1, 60 °C | [80] |
1,5,7-Triaza-bicyclo[4.4.0]-dec-5-ene/Methanesulfonic acid, 0.1:1.5 | ε-caprolactane | Benzyl alcohol (0.15 mmol) | 2; 99 (Yield) | [81] | |
1,5,7-Triaza-bicyclo[4.4.0]dec-5-ene/Methanesulfonic acid, 0.1:1.5 | ε-caprolactane | Benzyl alcohol (0.3 mmol) | 2; 99 | [81] | |
1,5,7-Triaza-bicyclo[4.4.0]dec-5-ene/Methanesulfonic acid, 0.05:0.75 | ε-caprolactane | Benzyl alcohol (0.15 mmol) | 2; 99 | [81] | |
1,5,7-Triaza-bicyclo[4.4.0]dec-5-ene/Methanesulfonic acid, 0.05:0.75 | ε-caprolactane | Benzyl alcohol (0.3 mmol) | 2; 99 | [81] | |
1,5,7-Triaza-bicyclo[4.4.0]dec-5-ene/Methanesulfonic acid, 0.1:1.5 | ε-caprolactane | 2; 98 | [81] | ||
1,5,7-Triaza-bicyclo[4.4.0]dec-5-ene/Methanesulfonic acid, 0.5:1.5 | ε-caprolactane | 2; 98 | [81] | ||
1,8-Octanediol/ Choline chloride, 3:1 | Citric acid | [82] | |||
1,8-Octanediol/ Tetraethylammonium bromide, 3:1 | Citric acid | [82] | |||
1,8-Octanediol/ Hexadecyltrimethyl-ammonium bromide, 3:1 | Citric acid | [82] | |||
1,8-Octanediol/ Methyltriphenyl-phosphonium bromide, 3:1; 3:0.75 | Citric acid | [82] | |||
1,8-Octanediol/ Lidocaine, 1:1 | Citric acid | [83] | |||
1,8-Octanediol/ Lidocaine, 2:1 | Citric acid | [83] | |||
1,8-Octanediol/ Lidocaine, 3:1 | Citric acid | [83] | |||
Choline chloride/Urea, 1:2 | HEA: 2-hydroxy-ethylacrylate | SARA agent (Na2S2O4) | 28-47 min; 16-73 | [HEA]0/[HEBiB]0/[Na2S2O4]0/[CuBr2]0/[Me6TREN]0=DP/0.5/0.1/0.125; [HEA]0/[reline] = 2/1 (v/v); T = 30 °C (DP (100–1000), CuBr2 (1000–100 ppm) | [84] |
Choline chloride/Urea, 1:2 | HEA: 2-hydroxy-ethylacrylate | SARA agent (Na2S2O4) | 2.7; 44 | [monomer]0/[HEBiB]0/[Cu (0)]0/[CuBr2]0/[ligand]0 = DP/Cu(0) wire/ [CuBr2] 0/[ligand]0; Cu(0) wire: l = 5 cm and d = 1 mm; solvent: reline; T = 30 °C; [CuBr2]0/ [TPMA]0 = 0.1/0.3; [monomer]0/[reline] = 2/1 (v/v); DP = 200 | [84] |
Choline chloride/Urea, 1:2 | HEMA: 2-hydroxyethyl methacrylate | 7.8; 34 | [monomer]0/[HEBiB]0/[Cu (0)]0/[CuBr2]0/[ligand]0 = DP/Cu(0) wire/ [CuBr2]0/[ligand]0; Cu(0) wire: l = 5 cm and d = 1 mm; solvent: reline; T = 30 °C; [CuBr2]0/[TPMA]0 = 0.1/0.3; [monomer]0/[reline] = 2/1 (v/v); DP = 200 | [84] | |
Choline chloride/Urea, 1:2 | AMPTMA: 3-acryl-amidopropyl-triethylammonium chloride | 0.7; 83 | monomer]0/[HEBiB]0/[Cu (0)]0/[CuBr2]0/[ligand]0 = DP/Cu(0) wire/ [CuBr2]0/[ligand]0; Cu(0) wire: l = 5 cm and d = 1 mm; solvent: reline; T = 30 °C; [CuBr2]0/[Me6TREN]0 = 0.5/1.5; [AMPTMA]0/[reline] = 1/1 (v/v); DP = 100 | [84] | |
Choline chloride/Urea, 1:2 | AMPTMA: 3-acrylamidopropyl-triethylammonium chloride (75 wt% aq.) | 3.1; 87 | monomer]0/[HEBiB]0/[Cu(0)]0/[CuBr2]0/[ligand]0 = DP/Cu(0) wire/ [CuBr2]0/[ligand]0; Cu(0) wire: l = 5 cm and d = 1 mm; solvent: reline; T = 30 °C; [CuBr2]0/[Me6TREN]0 = 0.5/1.5; [AMPTMA 75 wt% aq]0 = 1.45 M; DP = 150 | [84] | |
Choline chloride/Urea, 1:2 | HEA: 2-hydroxyethyl-acrylate | SARA agent (Na2S2O4) | 6.5; 81 | FR(Na2S2O4) = 50 nmol/min; [HEA]0/[HEBiB]0 = 200; [HEA]0/[reline]0 = 2/1 (v/v); [CuBr2]0/[TPMA]0 = 0.1/0.3 | [84] |
Choline chloride/Urea, 1:2 | HEA: 2-hydroxyethyl-acrylate | SARA agent (Na2S2O4) | 5.0; 77 | FR(Na2S2O4) = 50 nmol/min; [HEA]0/[HEBiB]0 = 200; [HEA]0/[reline]0 = 2/1 (v/v); [CuBr2]0/[TPMA]0 = 0.1/0.6 | [84] |
Choline chloride/Urea, 1:2 | HEA: 2-hydroxyethyl-acrylate | SARA agent (Na2S2O4) | 5.8; 53 | FR(Na2S2O4) = 50 nmol/min; [HEA]0/[HEBiB]0 = 200; [HEA]0/[reline]0 = 2/1 (v/v); [CuBr2]0/[TPMA]0 = 0.3/0.9 | [84] |
Choline chloride/Urea, 1:2 | HEA: 2-hydroxyethyl-acrylate | SARA agent (Na2S2O4) | 4.5; 46 | FR(Na2S2O4) = 50 nmol/min; [HEA]0/[HEBiB]0 = 200; [HEA]0/[reline]0 = 2/1 (v/v); [CuBr2]0/[TPMA]0 = 0.3/1.8 | [84] |
Choline chloride/ Ethylene glycol, 1:2 | Methylene blue | Electropolymerization | [85,86] | ||
Betaine/ Mannose, 5:2 | Catechin | -; 36–83 | Laccase catalysed polymerization | [87] | |
Choline chloride/Ethylene glycol, 1:2 | Catechin | -; 68–92 | Laccase catalysed polymerization | [87] | |
Choline chloride/Glycerol, 1.2 | Catechin | -; 72 | Laccase catalysed polymerization | [87] | |
Choline chloride/Urea, 1:2 | Acrylamide | catalytic system horseradish peroxidase /H2O2/2,4-pentanedione | -; >90 | Enzyme-mediated free radical polymerization | [88] |
Choline chloride/Glycerol, 1:2 | Acrylamide | catalytic system horseradish peroxidase /H2O2/2,4-pentanedione | -; >99 | Enzyme-mediated free radical polymerization | [88] |
Choline chloride/Fructose, 2:1 | 2-hydroxyethyl-methacrylate | Indomethacin (in ethanol) | Self-polymerization | [78] | |
Choline chloride/Orcinol, 1:1.5 | 2-hydroxyethyl-methacrylate | Self-polymerization | [79] | ||
Choline chloride/Ethylene glycol, 1:2 | 2-hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol)diacrylate (PEGDA). | 2-hydroxy-2-methylpropiophenone photoinitiator | Photopolymerization | [77] | |
Choline chloride/Ethylene glycol, 1:2 | Acrylic acid | Azobisisobutyronitrile and 1-vinylimidazole | Chemical polymerization on the surface of silica particles | [89] | |
Choline chloride/Ethylene glycol, 1:2 | Butyl methacrylate | Cosolvent: 1-butyl-3-methyl-imidazolium tetrafluoro-borate | Synthesis of macroporous poly(HIPEs)–high internal phase emulsions | [90] | |
Choline chloride/Urea, 1:2 | Methylmethacrylate; Stearyl methacrylate; Lauryl acrylate | Different crosslinker: Ethylene glycol dimethyl-acrylate, butanediol diacrylate for acrylates | Synthesis of macroporous poly(HIPEs) | [91] | |
Choline chloride/Urea, 1:2 | Styrene | [92] | |||
Choline chloride/Glycerol, 1:2 | Styrene | [92] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jablonský, M.; Škulcová, A.; Šima, J. Use of Deep Eutectic Solvents in Polymer Chemistry–A Review. Molecules 2019, 24, 3978. https://doi.org/10.3390/molecules24213978
Jablonský M, Škulcová A, Šima J. Use of Deep Eutectic Solvents in Polymer Chemistry–A Review. Molecules. 2019; 24(21):3978. https://doi.org/10.3390/molecules24213978
Chicago/Turabian StyleJablonský, Michal, Andrea Škulcová, and Jozef Šima. 2019. "Use of Deep Eutectic Solvents in Polymer Chemistry–A Review" Molecules 24, no. 21: 3978. https://doi.org/10.3390/molecules24213978
APA StyleJablonský, M., Škulcová, A., & Šima, J. (2019). Use of Deep Eutectic Solvents in Polymer Chemistry–A Review. Molecules, 24(21), 3978. https://doi.org/10.3390/molecules24213978