Comparative Pharmacokinetics of Gallic Acid, Protocatechuic Acid, and Quercitrin in Normal and Pyelonephritis Rats after Oral Administration of a Polygonum capitatum Extract
Abstract
:1. Introduction
2. Results and Discussion
2.1. Evaluation of PYN Model
2.2. Method Validation
2.2.1. Selectivity
2.2.2. Linearity and Lower Limit of Quantification
2.2.3. Precision and Accuracy
2.2.4. Extraction Recovery and Matrix Effect
2.2.5. Stability
2.3. Pharmacokinetic Studies
3. Materials and Methods
3.1. Materials and Reagents
3.2. Polygonum Capitatum Extract Preparation
3.3. Animals and Treatments
3.4. Establishment and Evaluation of PYN Model
3.5. Plasma Sample Preparation
3.6. Stock and Working Solutions Preparation
3.7. Standard Solutions and Quality Control Samples Preparation
3.8. Instruments and Analytical Conditions
3.9. Method Validation
3.10. Pharmacokinetic Study
3.11. Pharmacokinetic Data Analyses
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Gupta, K.; Hooton, T.M.; Naber, K.G.; Wullt, B.; Colgan, R.; Miller, L.G.; Moran, G.J.; Nicolle, L.E.; Raz, R.; Schaeffer, A.J. International Clinical Practice Guidelines for the Treatment of Acute Uncomplicated Cystitis and Pyelonephritis in Women: A 2010 Update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Disease. Clin. Infect. Dis. 2011, 52, e103–e120. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.G. Pharmacology, 2nd ed.; Science Press: Beijing, China, 2007. [Google Scholar]
- Editorial Committee of Chinese Materia Medica, State Administration of Traditional Chinese Medicine, Miao’s Material Medica. Chinese Materia Medica (Zhonghua Bencao); Guizhou Science and Technology: Guiyang, China, 2005. [Google Scholar]
- Huang, G.H.; Gao, Y.; Wu, Z.J.; Yang, Y.; Huang, D.D.; Chen, W.S.; Sun, L.N. Chemical constituents from Polygonum capitatum Buch-Ham. ex D. Don. Biochem. Syst. Ecol. 2015, 59, 8–11. [Google Scholar] [CrossRef]
- Chinese Pharmacopoeia Commission. Comission Chinese Pharmacopoeia Version, 2015 ed.; China Medical Science Press: Beijing, China, 2015. [Google Scholar]
- Yan, X.L.; Li, C.Q.; Liu, Y.X.; Chang, X.; Kang, W.Y. Antioxidant Activity of Polygonum capitatum. China Pharm. 2010, 21, 3659–3661. [Google Scholar]
- Wang, P.Q.; Zhang, X.N.; Liu, Y.X.; Li, C.Q.; Kang, W.Y. Antibacterial Activities of Nine Polygonaceae Plants. Chin. J. Exp. Tradit. Med. Formulae 2013. [Google Scholar]
- Liao, S.G.; Zhang, L.J.; Sun, F.; Zhang, J.J.; Chen, A.Y.; Lan, Y.Y.; Li, Y.J.; Wang, A.M.; He, X.; Xiong, Y.; et al. Antibacterial and anti-inflammatory effects of extracts and fractions from Polygonum capitatum. J. Ethnopharmacol. 2011, 134, 1006–1009. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, Y.L.; Liao, S.G.; He, X.; Wang, A.M.; Li, Y.J.; Lan, Y.Y.; Zhang, L.J.; Wang, Z.; Zhang, B.L.; et al. Identification and characterisation of phenolics in Polygonum capitatum by ultrahigh-performance liquid chromatography with photodiode array detection and tandem mass spectrometry. Phytochem. Anal. 2013, 24, 556–568. [Google Scholar]
- Zhang, K.X.; Zhang, J.; Wei, S.H.; Jing, W.G.; Wang, Y.S.; Liu, A. Development and validation of HPLC coupled with triple quadrupole MS for the simultaneous determination of six phenolic acids, six flavonoids, and a lignan in Polygonum capitatum. J. Sep. Sci. 2013, 36, 2407–2413. [Google Scholar] [CrossRef]
- Ma, F.W.; Zhao, Y.; Gong, X.J.; Xie, Y.; Zhou, X. Optimization of quercitrin and total flavonoids extraction from Herba Polygoni Capitati by response surface methodology. Pharmacogn. Mag. 2014, 10, S57. [Google Scholar]
- Yang, Y.; Cai, F.; Yang, Q.; Yang, Y.B.; Sun, L.N.; Chen, W.S. Study on chemical constituents of Polygonum capitatum Buch.-Ham. ex D. Don (I). Acad. J. Second Mil. Med. Univ. 2009, 30, 937–940. [Google Scholar]
- Zhao, H.X.; Bai, H.; Li, W.; Wang, Y.S.; Liu, Y.J.; Liu, A.Q. Chemical constituents from Polygonum capitatum. Nat. Prod. Res. Dev. 2011, 23, 262–266. [Google Scholar]
- Ma, F.W.; Gong, X.J.; Zhou, X.; Zhao, Y.; Li, M.L. An UHPLC–MS/MS method for simultaneous quantification of gallic acid and protocatechuic acid in rat plasma after oral administration of Polygonum capitatum extract and its application to pharmacokinetics. J. Ethnopharmacol. 2015, 162, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Priscilla, D.H.; Prince, P.S.M. Cardioprotective effect of gallic acid on cardiac troponin-T, cardiac marker enzymes, lipid peroxidation products and antioxidants in experimentally induced myocardial infarction in Wistar rats. Chemico-Biological Interactions. 2009, 179, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Kroes, B.H.; van den Berg, A.J.; Quarles van Ufford, H.C.; van Dijk, H.; Labadie, R.P. Anti-inflammatory activity of gallic acid. Planta Med. 1992, 58, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Shin, T.Y.; Kim, S.H.; Jun, C.D.; Lim, H.; Kim, D.K.; Shin, H.Y.; Park, S.; Choi, B.J.; Suk, K. Gallic acid inhibits histamine release and pro-inflammatory cytokine production in mast cells. Toxicol. Sci. 2006, 91, 123–131. [Google Scholar]
- Sameermahmood, Z.; Raji, L.; Saravanan, T.; Vaidya, A.; Mohan, V.; Balasubramanyam, M. Gallic acid protects RINm5F B-cells from glucolipotoxicity by its antiapoptotic and insulin-secretagogue actions. Phytother. Res. 2010, 24, S83–S94. [Google Scholar] [CrossRef]
- Vysakh, A.; Raji, N.R.; Suma, D.; Jayesh, K.; Jyothis, M.; Latha, M.S. Role of antioxidant defence, renal toxicity markers and inflammatory cascade in disease progression of acute pyelonephritis in experimental rat model. Microb. Pathog. 2017, 109, 189–194. [Google Scholar] [CrossRef]
- Kuang, X.H.; Lv, S.W.; Liu, Y.J. Effects of Anti-infective Part of Filifolium sibiricum on Pyelonephritis in Rats. Chin. J. Exp. Tradit. Med. Formulae 2011, 17, 141–144. [Google Scholar]
- Chen, J. The Study of Daochichengqi Decoction in the Treatment of Escherichia Coli Induced Rat Acute Pyelonephritis (APN). Master’s Thesis, Hebei Medical University, Hebei, China, 2016. [Google Scholar]
- Li, M. The Study of Effect of Simulated Weightlessness on Pyelonephritis and TLR4 Expression of Rats. Master’s Thesis, Anhui Medical University, Anhui, China, 2015. [Google Scholar]
- Zheng, L.; Lu, Y.; Cao, X. Evaluation of the impact of Polygonum capitatum, a traditional Chinese herbal medicine, on rat hepatic cytochrome P450 enzymes by using a cocktail of probe drugs. J. Ethnopharmacol. 2014, 158, 276–282. [Google Scholar] [CrossRef]
- Gong, Z.P.; Chen, Y.; Zhang, R.J.; Yang, Q.; Zhu, X.X. Advances on pharmacokinetics of traditional Chinese medicine under disease states. China J. Chin. Mater. Med. 2015, 40, 169. [Google Scholar]
- Wang, C.H. Study on New Methods and Strategies of Multicomponent Pharmacokinetics of Traditional Chinese Medicine. Ph.D. Thesis, Peking Union Medical College, Beijing, China, 2017. [Google Scholar]
- Song, H.Y.; Li, J.Y.; Yun, S.M. Clinical analysis of cefoperazone combined with sulbactam in the treatment of 55 cases of pyelonephritis. Clin. Med. 2012, 32, 57–58. [Google Scholar]
- Wei, L.; Han, X. Clinical Observation on the Treatment of Pyelonephritis with Cefoperazone Sulbactam. Med. Recapitul. 2012, 18, 1119–1120. [Google Scholar]
- Morgan, E.T.; Goralski, K.B.; Piquettemiller, M.; Renton, K.W.; Robertson, G.R.; Chaluvadi, M.R.; Charles, K.A.; Clarke, S.J.; Kacevska, M.; Liddle, C. Regulation of Drug-Metabolizing Enzymes and Transporters in Infection, Inflammation, and Cancer. Annu. Rev. Pharm. Toxicol. 2006, 46, 123–149. [Google Scholar]
- Gandhi, A.; Moorthy, B.; Ghose, R. Drug disposition in pathophysiological conditions. Curr. Drug Metab. 2012, 13, 1327–1344. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.T. Chapter 2 – Regulation of Drug-Metabolizing Enzymes and Drug Metabolism by Inflammatory Responses. Drug Metab. Dis. 2017, 21–58. [Google Scholar]
- Alshogran, O.Y.; Naud, J.; Ocque, A.J.; Leblond, F.A.; Pichette, V.; Nolin, T.D. Effect of experimental kidney disease on the functional expression of hepatic reductases. Drug Metab. Dispos. Biol. Fate Chem. 2015, 43, 100. [Google Scholar] [CrossRef]
- Nolin, T.D. Chapter 4 – Drug Metabolism in Kidney Disease. Drug Metab. Dis. 2017, 91–113. [Google Scholar]
- Qian, T.-s. Nephrology, 1st ed.; Jiangsu Science and Technology Press: Nanjing, China, 1990. [Google Scholar]
- Li, J.K.; Yan, W.J. Therapeutic effect of cefoperazone combined with sulbactam on pyelonephritis. Chin. J. Clin. Ration. Drug Use 2016, 9, 56–57. [Google Scholar]
- Wang, X.B. The clinical experience of treatment for 66 cases acute pyelonephtitis. Seek Med. Ask Med. 2012, 10, 255. [Google Scholar]
- Lei, D.-H. Study of treatment with ceftazidime combine with Sanjin tablet on acute pyelonephritis. Chin. Med. Dig. Intern. Med. 2009, 4, 201–202. [Google Scholar]
- Evirgen, O.; Gökçe, A.; Ozturk, O.H.; Nacar, E.; Onlen, Y.; Ozer, B.; Motor, V.K. Effect of Thymoquinone on Oxidative Stress in Escherichia coli–Induced Pyelonephritis in Rats. Curr. Ther. Res. 2011, 72, 204–215. [Google Scholar] [CrossRef]
- Bennett, R.T.; Mazzaccaro, R.J.; Chopra, N.; Melman, A.; Franco, I. Suppression of renal inflammation with vitamins A and E in ascending pyelonephritis in rats. J. Urol. 1999, 161, 1681. [Google Scholar] [CrossRef]
- Görür, S.; Çelik, S.; Hakverdi, S.; Aslantaş, Ö.; Erdoğan, S.; Aydın, M.; Ocak, S.; Kiper, A.N. Preventive Effect of Rolipram, a Phosphodiesterase 4 Enzyme Inhibitor, on Oxidative Renal Injury in Acute Ascending Pyelonephritis Model in Rats. Urology 2008, 72, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Plotnikov, E.Y.; Pulkova, N.V.; Pevzner, I.B.; Zorova, L.D.; Silachev, D.N.; Morosanova, M.A.; Sukhikh, G.T.; Zorov, D.B. Inflammatory pre-conditioning of mesenchymal multipotent stromalcells improves their immunomodulatory potency in acute pyelonephritis in rats. Cytotherapy 2013, 15, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Celik, S.; Gorur, S.; Aslantas, O.; Erdogan, S.; Ocak, S.; Hakverdi, S. Caffeic acid phenethyl ester suppresses oxidative stress in Escherichia coli -induced pyelonephritis in rats. Mol. Cell. Biochem. 2007, 297, 131–138. [Google Scholar] [CrossRef]
- Li, M.; Na, Y.; Wei, J.M.; Gao, Y.H.; Li, S.; Liu, H.M.; Gao, J.J.; Huang, H. Rat model of acute pyelonephritis by simple bladder injection without laparotomy. Anhui Med. Pharm. J. 2015, 846–849. [Google Scholar]
- Larsson, P.; Kaijser, B.; Baltzer, I.M.; Olling, S. An experimental model for ascending acute pyelonephritis caused by Escherichia coli or proteus in rats. J. Clin. Pathol. 1980, 33, 408–412. [Google Scholar] [CrossRef]
- Gong, X.Z.; Zheng, P.D.; Yang, J.; Meng, Q. Building rat model of chronic pyelonephritis. Beijing Med. J. 2004, 26, 391–394. [Google Scholar]
- Zhou, D.; Sun, W.; He, W.M.; Gao, K.; Tao, X.; Chen, J.H. Establishment and Observation of Rats Model with Acute Pyelonephritis. Chin. J. Inf. Tcm. 2007, 14, 30–32. [Google Scholar]
- Federal Drug Administration. Guidance for Industry, Bioanalytical Method Validation. Fed. Regist. 2001, 66, 206–207. [Google Scholar]
- Shah, V.P.; Midha, K.K.; Findlay, J.W.A.; Hill, H.M.; Hulse, J.D.; Mcgilveray, I.J.; Mckay, G.; Miller, K.J.; Patnaik, R.N.; Powell, M.L. Bioanalytical Method Validation—A Revisit with a Decade of Progress. Pharm. Res. 2000, 17, 1551–1557. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Constituent | Y = AX + B | R | Linear Range (µg/mL) | LLOQ (µg/mL) |
---|---|---|---|---|
Gallic acid | Y = 0.1471X + 0.4686 | 0.9994 | 0.2793–203.6 | 0.2793 |
Protocatechuic acid | Y = 0.4496X + 0.0458 | 0.9998 | 0.0228–16.62 | 0.0228 |
Quercitrin | Y = 0.4218X - 0.0192 | 0.9995 | 0.0195–14.20 | 0.0195 |
Analyte | Concentration (µg/mL) | Intra-Day (RSD, %) | Inter-Day (RSD, %) | Accuracy (%, mean ± SD) | Recovery (%, mean ± SD) | Matrix Effect (%, mean ± SD) |
---|---|---|---|---|---|---|
Gallic acid | 1.02 | 9.88 | 8.91 | 96.11 ± 9.50 | 90.90 ± 5.88 | 94.22 ± 4.34 |
20.36 | 8.40 | 9.12 | 100.43 ± 8.44 | 92.17 ± 4.89 | 93.66 ± 3.21 | |
203.6 | 5.89 | 4.63 | 100.00 ± 5.89 | 93.33 ± 7.29 | 94.79 ± 3.19 | |
Protocatechuic acid | 0.08 | 6.56 | 6.36 | 102.49 ± 6.72 | 89.35 ± 4.06 | 93.42 ± 2.80 |
1.66 | 7.15 | 8.76 | 100.00 ± 7.15 | 87.18 ± 2.07 | 95.32 ± 9.58 | |
16.62 | 3.78 | 3.62 | 106.23 ± 4.01 | 88.65 ± 3.92 | 93.54 ± 2.36 | |
Quercitrin | 0.07 | 8.23 | 9.06 | 100.93 ± 8.31 | 92.76 ± 5.87 | 98.17 ± 6.73 |
1.42 | 4.66 | 4.92 | 101.40 ± 3.18 | 89.42 ± 4.16 | 94.37 ± 4.17 | |
14.2 | 5.26 | 4.23 | 100.00 ± 5.26 | 88.53 ± 3.84 | 96.25 ± 8.30 |
Component | Concentration Spiked (μg/mL) | 8 h at 24 °C | Three Freeze-Thaw Cycles | Short-Term Stability (−20 °C, 24 h) | |||
---|---|---|---|---|---|---|---|
Precision (RSD, %) | Accuracy (%) | Precision (RSD, %) | Accuracy (%) | Precision (RSD, %) | Accuracy (%) | ||
Gallic acid | 1.02 | 12.24 | 94.51 ± 11.57 | 12.35 | 98.43 ± 12.16 | 13.86 | 97.65 ± 13.53 |
20.36 | 10.28 | 97.99 ± 10.07 | 3.78 | 105.16 ± 3.98 | 4.58 | 102.95 ± 4.72 | |
203.60 | 7.34 | 97.96 ± 7.19 | 7.82 | 100.56 ± 7.86 | 1.98 | 103.95 ± 2.05 | |
Protocatechuic acid | 0.08 | 8.43 | 103.75 ± 8.75 | 7.41 | 101.25 ± 7.50 | 5.06 | 98.75 ± 5.00 |
1.66 | 4.09 | 103.01 ± 4.22 | 1.79 | 101.20 ± 1.81 | 8.02 | 97.59 ± 7.83 | |
16.62 | 4.97 | 106.50 ± 5.29 | 3.87 | 107.34 ± 4.15 | 3.74 | 107.88 ± 4.03 | |
Quercitrin | 0.07 | 5.71 | 100.00 ± 5.71 | 8.45 | 101.43 ± 8.57 | 10.00 | 100.00 ± 10.00 |
1.42 | 2.76 | 102.11 ± 2.82 | 2.78 | 101.41 ± 2.82 | 3.50 | 100.70 ± 3.52 | |
14.20 | 7.36 | 100.42 ± 7.39 | 4.39 | 102.68 ± 4.51 | 0.78 | 99.65 ± 0.77 |
Parameter | Gallic Acid | Protocatechuic Acid | Quercitrin | ||||
---|---|---|---|---|---|---|---|
Normal Group | PYN Model Group | Normal Group | PYN Model Group | Normal Group | PYN Model Group | ||
AUC(0-t) | mg·h/L | 303.15 ± 81.41 | 559.57 ± 93.64 ** | 8.43 ± 2.03 | 12.09 ± 3.82 | 2.76 ± 1.33 | 4.72 ± 0.86 * |
AUC(0-∞) | mg·h/L | 311.76 ± 84.83 | 614.19 ± 74.95 ** | 9.30 ± 1.84 | 14.81 ± 5.69 * | 2.94 ± 1.36 | 5.05 ± 0.84 ** |
MRT(0-t) | h | 5.54 ± 0.52 | 7.18 ± 0.41 ** | 4.64 ± 0.98 | 5.06 ± 1.15 | 1.14 ± 0.20 | 1.58 ± 0.32 * |
MRT(0-∞) | h | 6.22 ± 0.84 | 10.48 ± 2.77 ** | 7.97 ± 4.10 | 11.25 ± 5.29 | 2.13 ± 0.84 | 2.45 ± 1.10 |
Tmax | h | 0.33 ± 0.12 | 0.33 ± 0.17 | 0.53 ± 0.27 | 0.25 ± 0.14 * | 0.22 ± 0.09 | 0.25 ± 0.09 |
CL | L/h/kg | 9.01 ± 2.37 | 4.37 ± 0.59 ** | 8.92 ± 1.96 | 6.06 ± 2.16 * | 118.43 ± 56.50 | 58.78 ± 9.42 * |
Cmax | mg/L | 81.12 ± 9.73 | 104.91 ± 9.67 ** | 5.61 ± 1.20 | 9.47 ± 3.14 * | 5.07 ± 1.56 | 5.28 ± 0.81 |
Analyte | Polarity | Q1 Mass (Da) | Q3 Mass (Da) | CV (V) | CE (eV) |
---|---|---|---|---|---|
Gallic acid | ESI- | 169.00 | 125.00 | 35 | 15 |
Protocatechuic acid | ESI- | 152.90 | 109.00 | 35 | 15 |
Quercitrin | ESI+ | 449.20 | 303.10 | 20 | 10 |
Puerarin | ESI+ | 417.15 | 267.10 | 40 | 30 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Zhou, Z.; Yang, W.; Gong, Z.; Li, Y.; Chen, S.; Wang, Y.; Wang, A.; Lan, Y.; Liu, T.; et al. Comparative Pharmacokinetics of Gallic Acid, Protocatechuic Acid, and Quercitrin in Normal and Pyelonephritis Rats after Oral Administration of a Polygonum capitatum Extract. Molecules 2019, 24, 3873. https://doi.org/10.3390/molecules24213873
Huang Y, Zhou Z, Yang W, Gong Z, Li Y, Chen S, Wang Y, Wang A, Lan Y, Liu T, et al. Comparative Pharmacokinetics of Gallic Acid, Protocatechuic Acid, and Quercitrin in Normal and Pyelonephritis Rats after Oral Administration of a Polygonum capitatum Extract. Molecules. 2019; 24(21):3873. https://doi.org/10.3390/molecules24213873
Chicago/Turabian StyleHuang, Yong, Zuying Zhou, Wu Yang, Zipeng Gong, Yueting Li, Siying Chen, Yonglin Wang, Aimin Wang, Yanyu Lan, Ting Liu, and et al. 2019. "Comparative Pharmacokinetics of Gallic Acid, Protocatechuic Acid, and Quercitrin in Normal and Pyelonephritis Rats after Oral Administration of a Polygonum capitatum Extract" Molecules 24, no. 21: 3873. https://doi.org/10.3390/molecules24213873
APA StyleHuang, Y., Zhou, Z., Yang, W., Gong, Z., Li, Y., Chen, S., Wang, Y., Wang, A., Lan, Y., Liu, T., & Zheng, L. (2019). Comparative Pharmacokinetics of Gallic Acid, Protocatechuic Acid, and Quercitrin in Normal and Pyelonephritis Rats after Oral Administration of a Polygonum capitatum Extract. Molecules, 24(21), 3873. https://doi.org/10.3390/molecules24213873