Enlarged Pore Size Chiral Mesoporous Silica Nanoparticles Loaded Poorly Water-Soluble Drug Perform Superior Delivery Effect
Abstract
:1. Introduction
2. Results and Discussions
2.1. Characterization
2.2. Drug Loading and Properties
2.3. Wetting Property and Drug Dissolution
2.4. In Vivo Biological Studies
3. Materials and Methods
3.1. Materials
3.2. Preparation of CMSN and E-CMSN
3.3. Characterization
3.3.1. FTIR
3.3.2. Circular Dichroism Spectrum
3.3.3. SEM
3.3.4. TEM
3.3.5. Nitrogen Adsorption/Desorption Measurement
3.4. Drug Loading Procedure
3.5. XRD
3.6. DSC
3.7. In Vitro Drug Dissolution
3.8. Contact Angle Measurement
3.9. In Vivo Pharmacokinetics
3.10. Anti-Inflammatory Pharmacodynamics
3.11. Mucous Membrane Adhesion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tang, Q.; Xu, Y.; Wu, D.; Sun, Y. A study of carboxylic-modified i-nesoporous silica in controlled delivery for drug famotidine. J. Solid State Chem. 2006, 179, 1513–1520. [Google Scholar] [CrossRef]
- Martinez-Carmona, M.; Gun’ko, Y.K.; Vallet-Regi, M. Mesoporous Silica Materials as Drug Delivery: “The Nightmare” of Bacterial Infection. Pharmaceutics 2018, 10, 279. [Google Scholar] [CrossRef]
- Narayan, R.; Nayak, U.Y.; Raichur, A.M.; Garg, S. Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. Pharmaceutics 2018, 10, 118. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, W.; Liu, T.; Xu, L.; Guo, Y.; Ke, J.; Li, S.; Li, H. Design and preparation of mesoporous silica carriers with chiral structures for drug release differentiation. Mat. Sci. Eng. C Mater. 2019, 103. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Garcia, D.; Ardiles, P.R.; Prashar, S.; Rodriguez-Dieguez, A.; Paez, P.L.; Gomez-Ruiz, S. Preparation and Study of the Antibacterial Applications and Oxidative Stress Induction of Copper Maleamate-Functionalized Mesoporous Silica Nanoparticles. Pharmaceutics 2019, 11, 30. [Google Scholar] [CrossRef] [PubMed]
- Hei, M.; Wu, H.; Fu, Y.; Xu, Y.; Zhu, W. Phenylboronic acid functionalized silica nanoparticles with enlarged ordered mesopores for efficient insulin loading and controlled release. J. Drug Deliv. Sci. Tec. 2019, 51, 320–326. [Google Scholar] [CrossRef]
- Li, J.; Du, X.; Zheng, N.; Xu, L.; Xu, J.; Li, S. Contribution of carboxyl modified chiral mesoporous silica nanoparticles in delivering doxorubicin hydrochloride in vitro: pH-response controlled release, enhanced drug cellular uptake and cytotoxicity. Colloid. Surf. B Biointerfaces 2016, 141, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Sai, H.; Spoth, K.A.; Tan, K.W.; Werner-Zwanziger, U.; Zwanziger, J.; Gruner, S.M.; Kourkoutis, L.F.; Wiesner, U. Stimuli-Responsive Shapeshifting Mesoporous Silica Nanoparticles. Nano Lett. 2016, 16, 651–655. [Google Scholar] [CrossRef]
- Kwon, D.; Cha, B.G.; Cho, Y.; Min, J.; Park, E.-B.; Kang, S.-J.; Kim, J. Extra-Large Pore Mesoporous Silica Nanoparticles for Directing in Vivo M2 Macrophage Polarization by Delivering IL-4. Nano Lett. 2017, 17, 2747–2756. [Google Scholar] [CrossRef]
- Luo, S.; Hao, J.; Gao, Y.; Liu, D.; Cai, Q.; Yang, X. Pore size effect on adsorption and release of metoprolol tartrate in mesoporous silica: Experimental and molecular simulation studies. Mat. Sci. Eng. C Mater. 2019, 100, 789–797. [Google Scholar] [CrossRef]
- Chiu, H.-Y.; Leonhardt, H.; Bein, T. Synthesis and Functionalization of Ordered Large-Pore Mesoporous Silica Nanoparticles for Biomedical Applications. Chem. Ing. Tech. 2017, 89, 876–886. [Google Scholar] [CrossRef] [Green Version]
- Moragues, A.; Guillem, C.; Mauri-Aucejo, A.; Tortajada, M.; Beltran, A.; Beltran, D.; Amoros, P. Enlarged pore size in nanoparticulated bimodal porous silicas: Improving accessibility. Micropor. Mesopor. Mat. 2016, 221, 150–158. [Google Scholar] [CrossRef]
- Li, J.; Shen, S.; Kong, F.; Jiang, T.; Tang, C.; Yin, C. Effects of pore size on in vitro and in vivo anticancer efficacies of mesoporous silica nanoparticles. RSC Adv. 2018, 8, 24633–24640. [Google Scholar] [CrossRef]
- AlOthman, Z.A.; Apblett, A.W. Synthesis and characterization of a hexagonal mesoporous silica with enhanced thermal and hydrothermal stabilities. Appl. Surf. Sci. 2010, 256, 3573–3580. [Google Scholar] [CrossRef]
- Sen Karaman, D.; Gulin-Sarfraz, T.; Zhang, J.; Rosenholm, J.M. One-pot synthesis of pore-expanded hollow mesoporous silica particles. Mater. Lett. 2015, 143, 140–143. [Google Scholar] [CrossRef]
- Xu, B.; Su, Y.; Chen, L.; Cai, J.; Huang, B. Preparation of mesoporous silica nanoparticles with controlled pore size, particle diameter, morphology, and structure by two-step process of chlorosilane residue. Ceram. Int. 2018, 44, 22241–22248. [Google Scholar] [CrossRef]
- Rashidi, L.; Vasheghani-Farahani, E.; Rostami, K.; Ganji, F.; Fallahpour, M. Mesoporous silica nanoparticles with different pore sizes for delivery of pH-sensitive gallic acid. Asia Pac. J. Chem. Eng. 2014, 9, 845–853. [Google Scholar] [CrossRef]
- Martinez-Carmona, M.; Lozano, D.; Colilla, M.; Vallet-Regi, M. Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta Biomater. 2018, 65, 393–404. [Google Scholar] [CrossRef]
- Kumar, P.; Tambe, P.; Paknikar, K.M.; Gajbhiye, V. Mesoporous silica nanoparticles as cutting-edge theranostics: Advancement from merely a carrier to tailor-made smart delivery platform. J. Control. Release 2018, 287, 35–57. [Google Scholar] [CrossRef]
- Maleki, A.; Kettiger, H.; Schoubben, A.; Rosenholm, J.M.; Ambrogi, V.; Hamidi, M. Mesoporous silica materials: From physico-chemical properties to enhanced dissolution of poorly water-soluble drugs. J. Control. Release 2017, 262, 329–347. [Google Scholar] [CrossRef]
- Li, T.; Geng, T.; Md, A.; Banerjee, P.; Wang, B. Novel scheme for rapid synthesis of hollow mesoporous silica nanoparticles (HMSNs) and their application as an efficient delivery carrier for oral bioavailability improvement of poorly water-soluble BCS type II drugs. Colloid. Surf. B Biointerfaces 2019, 176, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Meka, A.K.; Jenkins, L.J.; Davalos-Salas, M.; Pujara, N.; Wong, K.Y.; Kumeria, T.; Mariadason, J.M.; Popat, A. Enhanced Solubility, Permeability and Anticancer Activity of Vorinostat Using Tailored Mesoporous Silica Nanoparticles. Pharmaceutics 2018, 10, 283. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zheng, N.; Chen, L.; Xie, L.; Cui, M.; Li, S.; Xu, L. Effect of Shape on Mesoporous Silica Nanoparticles for Oral Delivery of Indomethacin. Pharmaceutics 2019, 11, 4. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhi, Z.; Jiang, T.; Zhang, J.; Wang, Z.; Wang, S. Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan. J. Control. Release 2010, 145, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Kao, K.-C.; Mou, C.-Y. Pore-expanded mesoporous silica nanoparticles with alkanes/ethanol as pore expanding agent. Micropor. Mesopor. Mater. 2013, 169, 7–15. [Google Scholar] [CrossRef]
- Jia, L.; Shen, J.; Li, Z.; Zhang, D.; Zhang, Q.; Liu, G.; Zheng, D.; Tian, X. In vitro and in vivo evaluation of paclitaxel-loaded mesoporous silica nanoparticles with three pore sizes. Int. J. Pharm. 2013, 445, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Gulsun, T.; Budak, C.; Vural, I.; Sahin, S.; Oner, L. Preparation and characterization of nimesulide containing nanocrystal formulations. Pharm. Dev. Technol. 2013, 18, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Fan, N.; Liu, R.; Ma, P.; Wang, X.; Li, C.; Li, J. The On-Off chiral mesoporous silica nanoparticles for delivering achiral drug in chiral environment. Colloid. Surf. B Biointerfaces 2019, 176, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Kim, J.; Lee, K.-W.; Lee, T.S. Removal of sodium dodecylbenzenesulfonate using surface-functionalized mesoporous silica nanoparticles. Micropor. Mesopor. Mater. 2019, 275, 270–277. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, J.; Zhi, Z.; Jiang, T.; Wang, S. Facile synthesis of 3D cubic mesoporous silica microspheres with a controllable pore size and their application for improved delivery of a water-insoluble drug. J. Colloid Interf. Sci. 2011, 363, 410–417. [Google Scholar] [CrossRef]
- Hu, Y.; Zhi, Z.; Wang, T.; Jiang, T.; Wang, S. Incorporation of indomethacin nanoparticles into 3-D ordered macroporous silica for enhanced dissolution and reduced gastric irritancy. Eur. J. Pharm. Biopharm. 2011, 79, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Ahmad, M.; Murtaza, G.; Aamir, M.N.; Nisar ur, R.; Kousar, R.; Rasool, F.; Akhtar, M. Formulation of Nimesulide Floating Microparticles Using Low-viscosity Hydroxypropyl Methylcellulose. Trop. J. Pharm. Res. 2010, 9, 293–299. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Li, C.; Fan, N.; Wang, J.; He, Z.; Sun, J. Viewing Molecular and Interface Interactions of Curcumin Amorphous Solid Dispersions for Comprehending Dissolution Mechanisms. Mol. Pharm. 2017, 14, 2781–2792. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, X.; Yang, B.; Li, J.; Xu, L.; Liu, H.; Li, S.; Xu, J.; Yang, M.; Wei, M. Evaluation of biomimetically synthesized mesoporous silica nanoparticles as drug carriers: Structure, wettability, degradation, biocompatibility and brain distribution. Mat. Sci. Eng. C Mater. 2019, 94, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, Q.; Han, N.; Bai, L.; Li, J.; Liu, J.; Che, E.; Hu, L.; Zhang, Q.; Jiang, T.; et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomed. Nanotechnol. 2015, 11, 313–327. [Google Scholar] [CrossRef]
- Li, J.; Xu, L.; Wang, H.; Yang, B.; Liu, H.; Pan, W.; Li, S. Comparison of bare and amino modified mesoporous silica@poly(ethyleneimine)s xerogel as indomethacin carrier: Superiority of amino modification. Mat. Sci. Eng. C Mater. 2016, 59, 710–716. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Fan, N.; Li, J.; He, Z.; Sun, J. Multimodal nanoporous silica nanoparticles functionalized with aminopropyl groups for improving loading and controlled release of doxorubicin hydrochloride. Mat. Sci. Eng. C Mater. 2017, 78, 370–375. [Google Scholar] [CrossRef]
- Li, H.; Li, H.; Wei, C.; Ke, J.; Li, J.; Xu, L.; Liu, H.; Li, S.; Yang, M. Biomimetic synthesis and evaluation of histidine-derivative templated chiral mesoporous silica for improved oral delivery of the poorly water-soluble drug, nimodipine. Eur. J. Pharm. Sci. 2018, 117, 321–330. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, Y.; Zhao, Y.; Zhao, Q.; He, B.; Zhang, Q.; Wang, S. Effects of surface modification and size on oral drug delivery of mesoporous silica formulation. J. Colloid Interf. Sci. 2018, 513, 736–747. [Google Scholar] [CrossRef]
- Zheng, Y.; Xiong, C.; Wang, Z.; Zhang, L. Enhanced osteoblast cells adhesion, spreading, and proliferation to surface-carboxylated poly (etheretherketone). J. Bioact. Compat. Pol. 2015, 30, 302–318. [Google Scholar] [CrossRef]
- Hu, H.; Wan, H.; Dong, L.; Lin, J.; Al-Furjan, M.S.H.; Cheng, K.; Weng, W.; Wang, H. Surface hydroxyls regulation promotes light-induced cell detachment on TiO2 nanodot films. Surf. Coat. Technol. 2019, 358, 461–466. [Google Scholar] [CrossRef]
- Peretti, E.; Miletto, I.; Stella, B.; Rocco, F.; Berlier, G.; Arpicco, S. Strategies to Obtain Encapsulation and Controlled Release of Pentamidine in Mesoporous Silica Nanoparticles. Pharmaceutics 2018, 10, 195. [Google Scholar] [CrossRef]
- Das, U.K.; Dastidar, P. Supramolecular Chirality in Organo-, Hydro-, and Metallogels Derived from Bis-amides of L-(+)-Tartaric Acid: Formation of Highly Aligned 1D Silica Fibers and Evidence of 5-c Net SnS Topology in a Metallogel Network. Chem. Eur. J. 2012, 18, 13079–13090. [Google Scholar] [CrossRef]
- Tubic, B.; Uzunovic, A.; Pilipovic, S.; Gagic, Z. Dissolution Profile of Nimesulide from Pharmaceutical Preparations for Oral Use. Acta Chim. Slov. 2016, 63, 193–199. [Google Scholar]
- Wu, F.; Xu, T.; Zhao, G.; Meng, S.; Wan, M.; Chi, B.; Mao, C.; Shen, J. Mesoporous Silica Nanoparticles-Encapsulated Agarose and Heparin as Anticoagulant and Resisting Bacterial Adhesion Coating for Biomedical Silicone. Langmuir 2017, 33, 5245–5252. [Google Scholar] [CrossRef]
- Fu, L.; Li, S.; Han, Z.; Liu, H.; Yang, H. Tuning the wettability of mesoporous silica for enhancing the catalysis efficiency of aqueous reactions. Chem. Commun. 2014, 50, 10045–10048. [Google Scholar] [CrossRef]
- Li, J.; Xu, L.; Liu, H.; Wang, Y.; Wang, Q.; Chen, H.; Pan, W.; Li, S. Biomimetic synthesized nanoporous silica@poly(ethyleneimine)s xerogel as drug carrier: Characteristics and controlled release effect. Int. J. Pharm. 2014, 467, 9–18. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Cong, J.; Wei, C.; Li, J.; Liu, H.; Li, S.; Yang, M. Biomimetic synthesis of proline-derivative templated mesoporous silica for increasing the brain distribution of diazepam and improving the pharmacodynamics of nimesulide. Drug Deliv. 2017, 24, 1086–1098. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Zhao, P.; Zhao, Q.; Wang, B.; Wang, S. The mechanism for increasing the oral bioavailability of poorly water-soluble drugs using uniform mesoporous carbon spheres as a carrier. Drug Deliv. 2016, 23, 420–428. [Google Scholar] [CrossRef]
- Hu, L.; Sun, H.; Zhao, Q.; Han, N.; Bai, L.; Wang, Y.; Jiang, T.; Wang, S. Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine. Mat. Sci. Eng. C Mater. 2015, 47, 313–324. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Sample | Surface Area (cm2/g) | Pore Volume (cm3/g) | Pore Diameter (nm) |
---|---|---|---|
CMSN | 440.666 | 0.358 | 2.2 |
NMS/CMSN | 9.408 | 0.043 | / |
E-CMSN | 474.360 | 1.103 | 4.3 |
NMS/E-CMSN | 14.635 | 0.082 | / |
Parameters | NMS | NMS/CMSN | NMS/E-CMSN |
---|---|---|---|
AUC(0–t) (mg*h/L) | 199.013 ± 66.606 | 1502.080 ± 217.521 | 1801.156 ± 134.861 |
MRT(0–t) (h) | 5.729 ± 0.354 | 10.006 ± 0.157 | 8.702 ± 0.565 |
t1/2z (h) | 5.081 ± 2.810 | 5.997 ± 0.107 | 4.554 ± 0.861 |
Tmax (h) | 4.000 ± 0.000 | 6.000 ± 0.000 | 4.000 ± 0.000 |
Cmax (mg/L) | 25.442 ± 9.682 | 100.457 ± 4.939 | 139.706 ± 9.556 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Gou, K.; Yang, B.; Wang, Y.; Pu, X.; Li, S.; Li, H. Enlarged Pore Size Chiral Mesoporous Silica Nanoparticles Loaded Poorly Water-Soluble Drug Perform Superior Delivery Effect. Molecules 2019, 24, 3552. https://doi.org/10.3390/molecules24193552
Guo Y, Gou K, Yang B, Wang Y, Pu X, Li S, Li H. Enlarged Pore Size Chiral Mesoporous Silica Nanoparticles Loaded Poorly Water-Soluble Drug Perform Superior Delivery Effect. Molecules. 2019; 24(19):3552. https://doi.org/10.3390/molecules24193552
Chicago/Turabian StyleGuo, Yingyu, Kaijun Gou, Baixue Yang, Yumei Wang, Xueyu Pu, Sanming Li, and Heran Li. 2019. "Enlarged Pore Size Chiral Mesoporous Silica Nanoparticles Loaded Poorly Water-Soluble Drug Perform Superior Delivery Effect" Molecules 24, no. 19: 3552. https://doi.org/10.3390/molecules24193552
APA StyleGuo, Y., Gou, K., Yang, B., Wang, Y., Pu, X., Li, S., & Li, H. (2019). Enlarged Pore Size Chiral Mesoporous Silica Nanoparticles Loaded Poorly Water-Soluble Drug Perform Superior Delivery Effect. Molecules, 24(19), 3552. https://doi.org/10.3390/molecules24193552