A Selective, Dual Emission β-Alanine Aminopeptidase Activated Fluorescent Probe for the Detection of Pseudomonas aeruginosa, Burkholderia cepacia, and Serratia marcescens
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Substrate 9
2.2. In Vitro Fluorescence Study
2.3. Biological Activity
2.3.1. Antimicrobial Effect
2.3.2. Fluorescence on Agar
3. Materials and Methods
3.1. Synthetic Procedures
3.1.1. Preparation of 4-Dimethylamino-2′-hydroxychalcone 10
3.1.2. Preparation of 7
3.1.3. Preparation of 2-(p-Dimethylaminophenyl)-3-[4-{3′-(tert-butoxycarbonylamino) Propanamido Benzyloxy]-flavone 12
3.1.4. Preparation of 2-(p-Dimethylaminophenyl)-3-[4-propanamido benzyloxy]-flavone 9
3.2. In Vitro Fluorescence Studies
3.3. Biological Evaluation
3.3.1. Preparation of Culture Media Containing Substrate 9
3.3.2. Microbial Suspension Preparation
3.3.3. Multipoint Inoculation
3.3.4. Activity Determination
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hays, J.P.; Mitsakakis, K.; Luz, S.; van Belkum, A.; Becker, K.; van den Bruel, A.; Harbarth, S.; Rex, J.H.; Simonsen, G.S.; Werner, G.; et al. The successful uptake and sustainability of rapid infectious disease and antimicrobial resistance point-of-care testing requires a complex ‘mix-and-match’ implementation package. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Váradi, L.; Luo, J.L.; Hibbs, D.E.; Perry, J.D.; Anderson, R.J.; Orenga, S.; Groundwater, P.W. Methods for the detection and identification of pathogenic bacteria: Past, present, and future. Chem. Soc. Rev. 2017, 46, 4818–4832. [Google Scholar] [CrossRef] [PubMed]
- Van Belkum, A.; Durand, G.; Peyret, M.; Chatellier, S.; Zambardi, G.; Schrenzel, J.; Shortridge, D.; Engelhardt, A.; Dunne, W.M., Jr. Rapid clinical bacteriology and its future impact. Ann. Lab. Med. 2013, 33, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Orenga, S.; James, A.L.; Manafi, M.; Perry, J.D.; Pincus, D.H. Enzymatic substrates in microbiology. J. Microbiol. Methods 2009, 79, 139–155. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.D.; James, A.L.; Morris, K.A.; Oliver, M.; Chilvers, K.F.; Reed, R.H.; Gould, F.K. Evaluation of novel fluorogenic substrates for the detection of glycosidases in Escherichia coli and enterococci. J. Appl. Microbiol. 2006, 101, 977–985. [Google Scholar] [CrossRef]
- Perry, J.D.; Laine, L.; Hughes, S.; Nicholson, A.; Galloway, A.; Gould, F.K. Recovery of antimicrobial-resistant Pseudomonas aeruginosa from sputa of cystic fibrosis patients by culture on selective media. J. Antimicrob. Chemother. 2008, 61, 1057–1061. [Google Scholar] [CrossRef] [PubMed]
- Carnell, S.C.; Perry, J.D.; Borthwick, L.; Vollmer, D.; Biboy, J.; Facchini, M.; Bragonzi, A.; Silipo, A.; Vergunst, A.C.; Vollmer, W.; et al. Targeting the bacterial cytoskeleton of the Burkholderia cepacia complex for antimicrobial development: A cautionary tale. Int. J. Mol. Sci. 2018, 19, 1604. [Google Scholar] [CrossRef] [PubMed]
- Rossen, J.W.A.; Dombrecht, J.; Vanfleteren, D.; De Bruyne, K.; van Belkum, A.; Rosema, S.; Lokate, M.; Bathoorn, E.; Reuter, S.; Grundmann, H.; et al. Epidemiological typing of Serratia marcescens isolates by whole-genome multilocus sequence typing. J. Clin. Microbiol. 2019, 57, e01652–e01658. [Google Scholar] [CrossRef]
- Zaytsev, A.V.; Anderson, R.J.; Bedernjak, A.; Groundwater, P.W.; Huang, Y.; Perry, J.D.; Orenga, S.; Roger-Dalbert, C.; James, A. Synthesis and testing of chromogenic phenoxazinone substrates for β-alanyl aminopeptidase. Org. Biomol. Chem. 2008, 6, 682–692. [Google Scholar] [CrossRef]
- Váradi, L.; Gray, M.; Groundwater, P.W.; Hall, A.J.; James, A.L.; Orenga, S.; Perry, J.D.; Anderson, R.J. Synthesis and evaluation of fluorogenic 2-amino-1,8-naphthyridine derivatives for the detection of bacteria. Org. Biomol. Chem. 2012, 10, 2578–2589. [Google Scholar] [CrossRef]
- Cellier, M.; James, A.L.; Orenga, S.; Perry, J.D.; Rasul, A.K.; Stanforth, S.P. Detection of l-alanylaminopeptidase activity in microorganisms using chromogenic self-immolative enzyme substrates. Bioorg. Med. Chem. Lett. 2017, 27, 2102–2106. [Google Scholar] [CrossRef] [PubMed]
- Váradi, L.; Hibbs, D.E.; Orenga, S.; Babolat, M.; Perry, J.D.; Groundwater, P.W. β-alanyl aminopeptidase-activated fluorogenic probes for the rapid identification of Pseudomonas aeruginosa in clinical samples. RSC Adv. 2016, 6, 58884–58889. [Google Scholar] [CrossRef]
- Cellier, M.; Fazackerley, E.; James, A.L.; Orenga, S.; Perry, J.D.; Turnbull, G.; Stanforth, S.P. Synthesis of 2-arylbenzothiazole derivatives and their application in bacterial detection. Bioorg. Med. Chem. 2014, 22, 1250–1261. [Google Scholar] [CrossRef] [PubMed]
- Mihalcescu, I.; Van-Melle Gateau, M.; Chelli, B.; Pinel, C.; Ravanat, J.L. Green autofluorescence, a double edged monitoring tool for bacterial growth and activity in micro-plates. Phys. Biol. 2015, 12, 066016. [Google Scholar] [CrossRef]
- Váradi, L.; Wang, M.; Mamidi, R.R.; Luo, J.L.; Perry, J.D.; Hibbs, D.E.; Groundwater, P.W. A latent green fluorescent styrylcoumarin probe for the selective growth and detection of Gram negative bacteria. Bioorg. Med. Chem. 2018, 26, 4745–4750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cellier, M.; James, A.L.; Orenga, S.; Perry, J.D.; Turnbull, G.; Stanforth, S.P. The synthesis of l-alanyl and β-alanyl derivatives of 2-aminoacridone and their application in the detection of clinically-important microorganisms. PLoS ONE 2016, 11, e0158378. [Google Scholar] [CrossRef]
- Perry, J.D.; Morris, K.A.; James, A.L.; Oliver, M.; Gould, F.K. Evaluation of novel chromogenic substrates for the detection of bacterial β-glucosidase. J. Appl. Microbiol. 2007, 102, 410–415. [Google Scholar] [CrossRef]
- Sarkar, M.; Guha Ray, J.; Sengupta, P.K. Effect of reverse micelles on the intramolecular excited state proton transfer (ESPT) and dual luminescence behaviour of 3-hydroxyflavone. Spectrochim. Acta Part A 1996, 52, 275–278. [Google Scholar] [CrossRef]
- Chou, P.T.; Martinez, M.L.; Clements, J.H. Reversal of excitation behavior of proton-transfer vs. charge-transfer by dielectric perturbation of electronic manifolds. J. Phys. Chem. 1993, 97, 2618–2622. [Google Scholar] [CrossRef]
- Klymchenko, A.S.; Pivovarenko, V.G.; Ozturk, T.; Demchenko, A.P. Modulation of the solvent-dependent dual emission in 3-hydroxychromones by substituents. New J. Chem. 2003, 27, 1336–1343. [Google Scholar] [CrossRef]
- Postupalenko, V.Y.; Shvadchak, V.V.; Duportail, G.; Pivovarenko, V.G.; Klymchenko, A.S.; Mély, Y. Monitoring membrane binding and insertion of peptides by two-color fluorescent label. Biochim. Biophys. Acta (BBA) 2011, 1808, 424–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shynkar, V.V.; Klymchenko, A.S.; Piémont, E.; Demchenko, A.P.; Mély, Y. Dynamics of intermolecular hydrogen bonds in the excited states of 4′-dialkylamino-3-hydroxyflavones. On the pathway to an ideal fluorescent hydrogen bonding sensor. J. Phys. Chem. A 2004, 108, 8151–8159. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, G. A visible light excitable colorimetric and fluorescent ESIPT probe for rapid and selective detection of hydrogen sulfide. Org. Biomol. Chem. 2014, 12, 438–445. [Google Scholar] [CrossRef]
- Lin, C.C.; Chen, C.L.; Chung, M.W.; Chen, Y.J.; Chou, P.T. Effects of multibranching on 3-hydroxyflavone-based chromophores and the excited-state intramolecular proton transfer dynamics. J. Phys. Chem. A 2010, 114, 10412–10420. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, S.; Gunning, P.T. Mild, efficient and rapid o-debenzylation of ortho-substituted phenols with trifluoroacetic acid. Tetrahedron Lett. 2008, 49, 4817–4819. [Google Scholar] [CrossRef]
- Montenegro, D.C.; Gonçalves, F.G.; Oliveira Filho, A.A.; Lira, B.A.; Cassiano, T.T.; Lima, T.N.; Barbosa-Filho, M.J.; Diniz, D.M.; Pessôa, L.H. In silico study and bioprospection of the antibacterial and antioxidant effects of flavone and its hydroxylated derivatives. Molecules 2017, 22, 869. [Google Scholar] [CrossRef] [PubMed]
λex (nm) | λem (nm) | Stokes Shift | |
---|---|---|---|
7 | 426 | 536 | 110 |
9 | 388 (413) | 517 | 129 |
Spot # | Organism | Spot # | Organism |
---|---|---|---|
1 | E. coli NCTC 10418 * | 11 | S. pyogenes NCTC 8306 * |
2 | K. pneumoniae NCTC 9528 * | 12 | S. aureus (MRSA) NCTC 11939 * |
3 | P. rettgeri NCTC7475 | 13 | S. aureus NCTC 6571 * |
4 | E. cloacae NCTC11936 | 14 | S. epidermidis NCTC 11047 * |
5 | S. marcescens NCTC 10211 | 15 | L. monocytogenes NCTC 11994 |
6 | S. typhimurium NCTC 74 | 16 | E. faecium NCTC 7171 |
7 | P. aeruginosa NCTC 10662 | 17 | E. faecalis NCTC 775 |
8 | Y. enterocolitica NCTC 11176 | 18 | B. subtilis NCTC 9372 * |
9 | B. cepacia ATCC 25416 | 19 | C. albicans ATCC90028 |
10 | A. baumannii ATCC 19606 ** | 20 | C. glabrata NCPF 3943 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Váradi, L.; Najib, E.Y.; Hibbs, D.E.; Perry, J.D.; Groundwater, P.W. A Selective, Dual Emission β-Alanine Aminopeptidase Activated Fluorescent Probe for the Detection of Pseudomonas aeruginosa, Burkholderia cepacia, and Serratia marcescens. Molecules 2019, 24, 3550. https://doi.org/10.3390/molecules24193550
Váradi L, Najib EY, Hibbs DE, Perry JD, Groundwater PW. A Selective, Dual Emission β-Alanine Aminopeptidase Activated Fluorescent Probe for the Detection of Pseudomonas aeruginosa, Burkholderia cepacia, and Serratia marcescens. Molecules. 2019; 24(19):3550. https://doi.org/10.3390/molecules24193550
Chicago/Turabian StyleVáradi, Linda, Elias Y. Najib, David E. Hibbs, John D. Perry, and Paul W. Groundwater. 2019. "A Selective, Dual Emission β-Alanine Aminopeptidase Activated Fluorescent Probe for the Detection of Pseudomonas aeruginosa, Burkholderia cepacia, and Serratia marcescens" Molecules 24, no. 19: 3550. https://doi.org/10.3390/molecules24193550
APA StyleVáradi, L., Najib, E. Y., Hibbs, D. E., Perry, J. D., & Groundwater, P. W. (2019). A Selective, Dual Emission β-Alanine Aminopeptidase Activated Fluorescent Probe for the Detection of Pseudomonas aeruginosa, Burkholderia cepacia, and Serratia marcescens. Molecules, 24(19), 3550. https://doi.org/10.3390/molecules24193550