Chemical and Biocatalytic Routes to Arbutin †
Abstract
:1. Introduction
2. Chemical Syntheses of Arbutin
3. Biosyntheses of Arbutin
3.1. Biocatalytic Syntheses of Arbutin Using 4-Hydroxybenzoic Acid as the Starting Substrate
3.2. Biocatalytic Syntheses of Arbutin Using Benzene as the Starting Substrate
3.3. Biocatalytic Syntheses of Arbutin Derivatives and α-Arbutin
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lindpaintner, E. Arbutin und Methylarbutin und ihre Bestimmung in Drogen. Arch. Pharm. 1939, 277, 398–415. [Google Scholar] [CrossRef]
- Yamaha, T.; Cardini, C.E. The biosynthesis of plant glycosides. I. Monoglucosides. Arch. Biochem. Biophys. 1960, 86, 127–132. [Google Scholar] [CrossRef]
- Garrett, J.T. The Cherokee Herbal: Native Plant Medicine from the Four Directions; Bear & Company: Rochester, VT, USA, 2003. [Google Scholar]
- Garcia-Jimenez, A.; Teruel-Puche, J.A.; Berna, J.; Rodriguez-Lopez, J.N.; Tudela, J.; Garcia-Canovas, F. Action of tyrosinase on alpha and beta-arbutin: A kinetic study. PLoS ONE 2017, 12, e0177330. [Google Scholar] [CrossRef]
- Carmen, P.; Vlase, L.; Tamas, M. Natural resources containing arbutin. Determination of arbutin in the leaves of Bergenia crassifolia (L.) Fritsch. acclimated in Romania. Not. Bot. Horti Agrobot. Cluj-Napoca. 2009, 37, 129–132. [Google Scholar]
- Xu, W.; Liang, Q.; Zhang, Y.; Zhao, P. Naturally occurring arbutin derivatives and their bioactivities. Chem. Biodivers. 2015, 12, 54–81. [Google Scholar] [CrossRef]
- Migas, P.; Krauze-Baranowska, M. The significance of arbutin and its derivatives in therapy and cosmetics. Phytochem. Lett. 2015, 13, 35–40. [Google Scholar] [CrossRef]
- Maeda, K.; Fukuda, M. Arbutin: Mechanism of its depigmenting action in human melanocyte culture. J. Pharmacol. Exp. Ther. 1996, 276, 765–769. [Google Scholar]
- Spanos, G.A.; Wrolstad, R.E. Phenolics of apple, pear, and white grape juices and their changes with processing and storage. A review. J. Agric. Food Chem. 1992, 40, 1478–1487. [Google Scholar] [CrossRef]
- Hori, I.; Nihei, K.I.; Kubo, I. Structural criteria for depigmenting mechanism of arbutin. Phytother. Res. 2004, 18, 475–479. [Google Scholar] [CrossRef]
- Tang, H.-C.; Chen, Y.-C. Identification of tyrosinase inhibitors from traditional Chinese medicines for the management of hyperpigmentation. Springerplus. 2015, 4, 184. [Google Scholar] [CrossRef]
- Ortiz-Ruiz, C.V.; Garcia-Molina, M.d.M.; Serrano, J.T.; Tomas-Martinez, V.; Garcia-Canovas, F. Discrimination between alternative substrates and inhibitors of tyrosinase. J. Agric. Food Chem. 2015, 63, 2162–2171. [Google Scholar] [CrossRef]
- Wang, Y.F.; Zhou, Y.H.; Zhang, J.J. Pharmacodynamics of arbutin on relieving cough, dispelling phlegm and preventing asthma. Chin. Tradit. Herbal Drugs 2003, 34, 739–741. [Google Scholar]
- Masum, M.N.; Choodej, S.; Yamauchi, K.; Mitsunaga, T. Isolation of phenylpropanoid sucrose esters from the roots of Persicaria orientalis and their potential as inhibitors of melanogenesis. Med. Chem. Res. 2019, 28, 623–632. [Google Scholar] [CrossRef]
- Takebayashi, J.; Ishii, R.; Chen, J.; Matsumoto, T.; Ishimi, Y.; Tai, A. Reassessment of antioxidant activity of arbutin: Multifaceted evaluation using five antioxidant assay systems. Free Radical Res. 2010, 44, 473–478. [Google Scholar] [CrossRef]
- De Arriba, S.G.; Naser, B.; Nolte, K.-U. Risk assessment of free hydroquinone derived from arctostaphylos Uva-ursi folium. Int. J. Toxicol. 2013, 32, 442–453. [Google Scholar]
- Blaut, M.; Braune, A.; Wunderlich, S.; Sauer, P.; Schneider, H.; Glatt, H. Mutagenicity of arbutin in mammalian cells after activation by human intestinal bacteria. Food Chem. Toxicol. 2006, 44, 1940–1947. [Google Scholar] [CrossRef]
- Chakraborty, A.K.; Funasaka, Y.; Komoto, M.; Ichihashi, M. Effect of arbutin on melanogenic proteins in human melanocytes. Pigm. Cell Res. 1998, 11, 206–212. [Google Scholar] [CrossRef]
- Briganti, S.; Camera, E.; Picardo, M. Chemical and instrumental approaches to treat hyperpigmentation. Pigm. Cell Res. 2003, 16, 101–110. [Google Scholar] [CrossRef]
- Ye, J.; Guan, M.; Lu, Y.; Zhang, D.; Li, C.; Zhou, C. Arbutin attenuates LPS-induced lung injury via Sirt1/Nrf2/NF-κBp65 pathway. Pulm. Pharmacol. Ther. 2019, 54, 53–59. [Google Scholar] [CrossRef]
- Kawalier, A. Ueber die Blätter von Arctostaphylos uva ursi. Liebigs Ann. Chem. 1852, 82, 241–243. [Google Scholar] [CrossRef]
- Strecker, A. Über das Arbutin und seine Verwandlungen. Liebigs Ann. Chem. 1858, 107, 228–234. [Google Scholar] [CrossRef]
- Mannich, C. Ueber Arbutin und seine Synthese. Liebigs Ann. Chem. 1912, 250, 547–560. [Google Scholar] [CrossRef] [Green Version]
- Nycz, J.E.; Malecki, G.; Morag, M.; Nowak, G.; Ponikiewski, L.; Kusz, J.; Switlicka, A. Arbutin: Isolation, X-ray structure and computational studies. J. Mol. Struct. 2010, 980, 13–17. [Google Scholar] [CrossRef]
- Dietrich, C.; Munzert, V.; Zeller, K.-P.; Siehl, H.-U.; Berger, S.; Sicker, D. Abwarten und Bärentraubenblätter-Tee trinken—mit Arbutin. Chem. unserer Zeit. 2018, 52, 100–110. [Google Scholar] [CrossRef]
- Wang, Z.-X.; Shi, X.-X.; Chen, G.-R.; Ren, Z.-H.; Luo, L.; Yan, J. A new synthesis of α-arbutin via Lewis acid catalyzed selective glycosylation of tetra-O-benzyl-α-d-glucopyranosyl trichloroacetimidate with hydroquinone. Carbohydr. Res. 2006, 341, 1945–1947. [Google Scholar] [CrossRef]
- Zhu, L.; Jiang, D.; Zhou, Y.; Lu, Y.; Fan, Y.; Chen, X. Batch-feeding whole-cell catalytic synthesis of α-arbutin by amylosucrase from Xanthomonas campestris. J. Ind. Microbiol. Biotechnol. 2019, 46, 759–767. [Google Scholar] [CrossRef]
- Yu, S.; Wang, Y.; Tian, Y.; Xu, W.; Bai, Y.; Zhang, T.; Mu, W. Highly efficient biosynthesis of α-arbutin from hydroquinone by an amylosucrase from Cellulomonas carboniz. Process Biochem. 2018, 68, 93–99. [Google Scholar] [CrossRef]
- Huang, S.L.; Zhu, Y.L.; Pan, Y.J.; Wu, S.H. Synthesis of arbutin by two-step reaction from glucose. J. Zhejiang Univ. Sci. 2004, 5, 1509–1511. [Google Scholar] [CrossRef]
- Cepanec, I.; Litvić, M. Simple and efficient synthesis of arbutin. ARKIVOC 2008, 2, 19–24. [Google Scholar]
- Xue, J.-L.; Yang, J.-W.; Deng, Q.; He, X.-P.; Chen, G.-R. A shortcut to the preparation of naturally occurring arbutin. Bull. Korean Chem. Soc. 2010, 31, 1825–1826. [Google Scholar] [CrossRef]
- Schmidt, R.R. New methods for the synthesis of glycosides and oligosaccharides—are there alternatives to the Koenigs-Knorr method? Angew. Chem. Int. Ed. Engl. 1986, 25, 212–235. [Google Scholar] [CrossRef]
- Huccetogullari, D.; Luo, Z.W.; Lee, S.Y. Metabolic engineering of microorganisms for production of aromatic compounds. Microb. Cell Fact. 2019, 18, 41. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Fu, C.; Bilal, M.; Hu, H.; Wang, W.; Zhang, X. Enhanced biosynthesis of arbutin by engineering shikimate pathway in Pseudomonas chlororaphis P3. Microb. Cell Fact. 2018, 17, 174. [Google Scholar] [CrossRef] [PubMed]
- Nidetzky, B.; Gutmann, A.; Zhong, C. Leloir glycosyltransferases as biocatalysts for chemical production. ACS Catal. 2018, 8, 6283–6300. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, B.; Wang, F.; Yu, X.; Ma, L.; Li, A.; Reetz, M.T. Chemo- and regioselective dihydroxylation of benzene to hydroquinone enabled by engineered cytochrome P450 monooxygenase. Angew. Chem. Int. Ed. 2019, 58, 764–768. [Google Scholar] [CrossRef]
- Wang, X.; Wang, F.; Bo, C.; Cheng, K.; Wang, J.; Zhang, J.; Song, H. Promotion of phenol photodecomposition and the corresponding decomposition mechanism over g-C3N4/TiO2 nanocomposites. Appl. Surf. Sci. 2018, 453, 320–329. [Google Scholar] [CrossRef]
- Whitehouse, C.J.; Bell, S.G.; Wong, L.-L. P450 BM3 (CYP102A1): Connecting the dots. Chem. Soc. Rev. 2012, 41, 1218–1260. [Google Scholar] [CrossRef]
- Li, A.; Ilie, A.; Sun, Z.; Lonsdale, R.; Xu, J.H.; Reetz, M.T. Whole-cell-catalyzed multiple regio- and stereoselective functionalizations in cascade reactions enabled by directed evolution. Angew. Chem. Int. Ed. 2016, 55, 12026–12029. [Google Scholar] [CrossRef]
- Arend, J.; Warzecha, H.; Hefner, T.; Stöckigt, J. Utilizing genetically engineered bacteria to produce plant-specific glucosides. Biotechnol. Bioeng. 2001, 76, 126–131. [Google Scholar] [CrossRef]
- Shen, X.; Wang, J.; Wang, J.; Chen, Z.; Yuan, Q.; Yan, Y. High-level de novo biosynthesis of arbutin in engineered Escherichia coli. Metab. Eng. 2017, 42, 52–58. [Google Scholar] [CrossRef]
- Ishihara, K.; Katsube, Y.; Kumazawa, N.; Kuratani, M.; Masuoka, N.; Nakajima, N. Enzymatic preparation of arbutin derivatives: Lipase-catalyzed direct acylation without the need of vinyl ester as an acyl donor. J. Biosci. Bioeng. 2010, 109, 554–556. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, M.; Iwabuchi, S.; Oishi, Y.; Shibasaki, Y. Water-soluble polyphenol synthesis via oxidative coupling polymerisation of β-arbutin with copper catalyst in alkaline media. Eur. Polym. J. 2016, 81, 152–160. [Google Scholar] [CrossRef]
- Matsumoto, T.; Nakajima, T.; Iwadate, T.; Nihei, K.-i. Chemical synthesis and tyrosinase-inhibitory activity of isotachioside and its related glycosides. Carbohydr. Res. 2018, 465, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Kim, T.-S.; Parajuli, P.; Pandey, R.P.; Sohng, J.K. Sustainable production of dihydroxybenzene glucosides using immobilized amylosucrase from Deinococcus geothermalis. J. Microbiol. Biotechnol. 2018, 28, 1447–1456. [Google Scholar] [PubMed]
Catalysts | Conv. [%] [a] | Product Distribution [%] [b] | ||
---|---|---|---|---|
HQ (5) | Phenol (12) | Catechol | ||
WT | - [c] | - [c] | - [c] | - [c] |
A82F | 87 | 86 | 10 | 4 |
A82F/A328F | 97 | 93 | 6 | 1 |
V78F/A82F/A328F | 92 | 93 | 4 | 3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Zhao, J.; Li, A.; Reetz, M.T. Chemical and Biocatalytic Routes to Arbutin †. Molecules 2019, 24, 3303. https://doi.org/10.3390/molecules24183303
Zhou H, Zhao J, Li A, Reetz MT. Chemical and Biocatalytic Routes to Arbutin †. Molecules. 2019; 24(18):3303. https://doi.org/10.3390/molecules24183303
Chicago/Turabian StyleZhou, Hangyu, Jing Zhao, Aitao Li, and Manfred T. Reetz. 2019. "Chemical and Biocatalytic Routes to Arbutin †" Molecules 24, no. 18: 3303. https://doi.org/10.3390/molecules24183303