Quantitative Structure–Activity Relationship Study of Bitter Di-, Tri- and Tetrapeptides Using Integrated Descriptors
Abstract
:1. Introduction
2. Results
2.1. QSAR Models for Bitter Taste di-, tri- and Tetrapeptides Using Integrated Descriptors
2.2. QSAR Models for Bitter Di-, Tri- and Tetrapeptides Using a Single Set of Amino Acid Descriptor
2.3. Variable Importance Analysis
2.3.1. Dipeptides
2.3.2. Tripeptides
2.3.3. Tetrapeptides
3. Discussion
4. Materials and Methods
4.1. Preparation of Data Set
4.2. Independent Variables Used for Development of QSAR Model
4.3. Independent Variable Selection
4.4. QSAR Model Building
4.5. Model Validation
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Tu, M.; Cheng, S.; Lu, W.; Du, M. Trends in Analytical Chemistry Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. Trends Anal. Chem. 2018, 105, 7–17. [Google Scholar] [CrossRef]
- Manikkam, V.; Vasiljevic, T.; Donkor, O.N.; Mathai, M.L. A Review of Potential Marine-derived Hypotensive and Anti-obesity Peptides. Crit. Rev. Food Sci. Nutr. 2016, 56, 92–112. [Google Scholar] [CrossRef] [PubMed]
- Agyei, D.; Tsopmo, A.; Udenigwe, C.C. Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Anal. Bioanal. Chem. 2018, 410, 3463–3472. [Google Scholar] [CrossRef] [PubMed]
- Chandrashekar, J.; Mueller, K.L.; Hoon, M.A.; Adler, E.; Feng, L.; Guo, W.; Zuker, C.S.; Ryba, N.J.P. T2Rs function as bitter taste receptors. Cell 2000, 100, 703–711. [Google Scholar] [CrossRef]
- Kim, H.O.; Li-Chan, E.C.Y. Quantitative structure-activity relationship study of bitter peptides. J. Agric. Food Chem. 2006, 54, 10102–10111. [Google Scholar] [CrossRef] [PubMed]
- Hrynkiewicz, M.; Iwaniak, A.; Bucholska, J.; Minkiewicz, P.; Darewicz, M. Structure–Activity Prediction of ACE Inhibitory/Bitter Dipeptides—A Chemometric Approach Based on Stepwise Regression. Molecules 2019, 24, 950. [Google Scholar] [CrossRef] [PubMed]
- Pripp, A.H.; Ardö, Y. Modelling relationship between angiotensin-(I)-converting enzyme inhibition and the bitter taste of peptides. Food Chem. 2007, 102, 880–888. [Google Scholar] [CrossRef]
- Udenigwe, C.C. Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends Food Sci. Technol. 2014, 36, 137–143. [Google Scholar] [CrossRef]
- Iwaniak, A.; Minkiewicz, P.; Darewicz, M.; Protasiewicz, M.; Mogut, D. Chemometrics and cheminformatics in the analysis of biologically active peptides from food sources. J. Funct. Foods 2015, 16, 334–351. [Google Scholar] [CrossRef]
- Mei, H. Support vector machine applied in QSAR modelling. Chin. Sci. Bull. 2005, 50, 2291. [Google Scholar] [CrossRef]
- Hellberg, S.; Sjöström, M.; Skagerberg, B.; Wold, S. Peptide Quantitative Structure-Activity Relationships, a Multivariate Approach. J. Med. Chem. 1987, 30, 1126–1135. [Google Scholar] [CrossRef] [PubMed]
- Collantes, E.R.; Dunn, W.J. Amino Acid Side Chain Descriptors for Quantitative Structure-Activity Relationship Studies of Peptide Analogues. J. Med. Chem. 1995, 38, 2705–2713. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Yang, L.; Lv, F.; Yang, Q.; Zhou, P. In silico quantitative prediction of peptides binding affinity to human MHC molecule: An intuitive quantitative structure-activity relationship approach. Amino Acids 2009, 36, 535–554. [Google Scholar] [CrossRef] [PubMed]
- Venkatarajan, M.; Braun, W. New quantitative descriptors of amino acids based on multidimensional scaling of a large number of physical-chemical properties. J. Mol. Model. 2001, 7, 445–453. [Google Scholar]
- Iwaniak, A.; Hrynkiewicz, M.; Bucholska, J.; Minkiewicz, P.; Darewicz, M. Understanding the nature of bitter-taste di- and tripeptides derived from food proteins based on chemometric analysis. J. Food Biochem. 2019, 43, 1–7. [Google Scholar] [CrossRef]
- Hassan, I.; Kumar, V.; Somvanshi, R.K.; Dey, S.; Singh, T.E.J.P.; Yadav, S. Structure-guided design of peptidic ligand for human prostate specific antigen. J. Pept. Sci. 2007, 13, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Yang, L.; Kang, L.; Mei, H.; Li, Z. Using multidimensional patterns of amino acid attributes for QSAR analysis of peptides. Amino Acids 2009, 37, 583–591. [Google Scholar] [CrossRef]
- Lin, Z.H.; Long, H.X.; Bo, Z.; Wang, Y.Q.; Wu, Y.Z. New descriptors of amino acids and their application to peptide QSAR study. Peptides 2008, 29, 1798–1805. [Google Scholar] [CrossRef]
- Tong, J.; Liu, S.; Zhou, P.; Wu, B.; Li, Z. A novel descriptor of amino acids and its application in peptide QSAR. J. Theor. Biol. 2008, 253, 90–97. [Google Scholar] [CrossRef]
- Soltani, S.; Haghaei, H.; Shayanfar, A.; Vallipour, J.; Asadpour Zeynali, K.; Jouyban, A. QSBR Study of Bitter Taste of Peptides: Application of GA-PLS in Combination with MLR, SVM, and ANN Approaches. Biomed Res. Int. 2013, 2013, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Sandberg, M.; Eriksson, L.; Jonsson, J.; Sjöström, M.; Wold, S. New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. J. Med. Chem. 1998, 41, 2481–2491. [Google Scholar] [CrossRef]
- Zaliani, A.; Gancia, E. MS-WHIM scores for amino acids: A new 3D-description for peptide QSAR and QSPR studies. J. Chem. Inf. Comput. Sci. 1999, 39, 525–533. [Google Scholar] [CrossRef]
- Mei, H.; Liao, Z.H.; Zhou, Y.; Li, S.Z. A new set of amino acid descriptors and its application in peptide QSARs. Biopolym. Pept. Sci. Sect. 2005, 80, 775–786. [Google Scholar] [CrossRef]
- Liang, G.; Li, Z. Factor analysis scale of generalized amino acid information as the source of a new set of descriptors for elucidating the structure and activity relationships of cationic antimicrobial peptides. QSAR Comb. Sci. 2007, 26, 754–763. [Google Scholar] [CrossRef]
- Tian, F.; Zhou, P.; Li, Z. T-scale as a novel vector of topological descriptors for amino acids and its application in QSARs of peptides. J. Mol. Struct. 2007, 830, 106–115. [Google Scholar] [CrossRef]
- Yang, L.; Shu, M.; Ma, K.; Mei, H.; Jiang, Y.; Li, Z. ST-scale as a novel amino acid descriptor and its application in QSAM of peptides and analogues. Amino Acids 2010, 38, 805–816. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Lin, Y.; Ding, Y.; Wang, Y.; Cheng, X.; Lin, Z. QSAR study on angiotensin-converting enzyme inhibitor oligopeptides based on a novel set of sequence information descriptors. J. Mol. Model. 2011, 17, 1599–1606. [Google Scholar] [CrossRef]
- Shu, M.; Mei, H.; Yang, S.; Liao, L.; Li, Z. Structural parameter characterization and bioactivity simulation based on peptide sequence. QSAR Comb. Sci. 2009, 28, 27–35. [Google Scholar] [CrossRef]
- Tauber, J.M.; Brown, E.B.; Li, Y.; Yurgel, M.E.; Masek, P.; Keene, A.C. A subset of sweet-sensing neurons identified by IR56d are necessary and sufficient for fatty acid taste. PLoS Genet. 2017, 13, 1–18. [Google Scholar] [CrossRef]
- Deng, B.; Ni, X.; Zhai, Z.; Tang, T.; Tan, C.; Yan, Y.; Deng, J.; Yin, Y. New Quantitative Structure-Activity Relationship Model for Angiotensin-Converting Enzyme Inhibitory Dipeptides Based on Integrated Descriptors. J. Agric. Food Chem. 2017, 65, 9774–9781. [Google Scholar] [CrossRef]
- Wei, P.; Lu, Z.; Song, J. Variable importance analysis: A comprehensive review. Reliab. Eng. Syst. Saf. 2015, 142, 399–432. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; Fitzgerald, R.J. Learnings from quantitative structure-activity relationship (QSAR) studies with respect to food protein-derived bioactive peptides: A review. RSC Adv. 2016, 6, 75400–75413. [Google Scholar] [CrossRef]
- Haney, E.F.; Brito-Sánchez, Y.; Trimble, M.J.; Mansour, S.C.; Cherkasov, A.; Hancock, R.E.W. Computer-aided Discovery of Peptides that Specifically Attack Bacterial Biofilms. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Guan, X.; Liu, J. QSAR Study of Angiotensin I-Converting Enzyme Inhibitory Peptides Using SVHEHS Descriptor and OSC-SVM. Int. J. Pept. Res. Ther. 2019, 25, 247–256. [Google Scholar] [CrossRef]
- Yin, J.; Diao, Y.; Wen, Z.; Wang, Z.; Li, M. Studying peptides biological activities based on multidimensional descriptors (E) using support vector regression. Int. J. Pept. Res. Ther. 2010, 16, 111–121. [Google Scholar] [CrossRef]
- Deng, B.C.; Yun, Y.H.; Cao, D.S.; Yin, Y.L.; Wang, W.T.; Lu, H.M.; Luo, Q.Y.; Liang, Y.Z. A bootstrapping soft shrinkage approach for variable selection in chemical modeling. Anal. Chim. Acta 2016, 908, 63–74. [Google Scholar] [CrossRef]
- Pripp, A.H.; Isaksson, T.; Stepaniak, L.; Sørhaug, T.; Ardö, Y. Quantitative structure activity relationship modelling of peptides and proteins as a tool in food science. Trends Food Sci. Technol. 2005, 16, 484–494. [Google Scholar] [CrossRef]
- Ney, K.H. Bitterness of Peptides: Amino Acid Composition and Chain Length. In Food Taste Chemistry, 1st ed.; Boudreau, J.C., Ed.; ACS Publications: Washington, DC, USA, 1979; Volume 115, pp. 149–173. [Google Scholar]
- Otagiri, K.; Nosho, Y.; Shinoda, I.; Fukui, H.; Okai, H. Studies on a model of bitter peptides including arginine, proline and phenylalanine residues. I. bitter taste of di- and tripeptides, and bitterness increase of the model peptides by extension of the peptide chain. Agric. Biol. Chem. 1985, 49, 1019–1026. [Google Scholar]
- Nosho, Y.; Otagiri, K.; Shinoda, I.; Fukui, H.; Okai, H. Studies on a model of bitter peptides including arginine, proline and phenylalanine residues. II. bitter taste of di- and tripeptides, and bitterness increase of the model peptides by extension of the peptide chain. Agric. Biol. Chem. 1985, 49, 1019–1026. [Google Scholar]
- Ishibashi, N.; Arita, Y.; Kanehisa, H.; Kouge, K.; Okai, H.; Fukui, S. Bitterness of Leucine-containing Peptides. Agric. Biol. Chem. 1987, 51, 2389–2394. [Google Scholar] [CrossRef]
- Ishibashi, N.; Sadamori, K.; Yamamoto, O.; Kanehisa, H.; Kouge, K.; Kikuchi, E. Bitterness of Phenylalanine- and Tyrosine-containing peptides. Agric. Biol. Chem. 1987, 51, 3309–3313. [Google Scholar] [CrossRef]
- Asao, M.; Iwamura, H.; Akamatsu, M.; Fujita, T. Quantitative Structure-Activity Relationships of the Bitter Thresholds of Amino Acids, Peptides, and Their Derivatives. J. Med. Chem. 1987, 30, 1873–1879. [Google Scholar] [CrossRef]
- Tamura, M.; Miyoshi, T.; Mori, N.; Kinomura, K.; Kawaguchi, M.; Ishibashi, N.; Okai, H. Mechanism for the bitter tasting potency of peptldes using o-aminoacyl sugars as model compounds. Agric. Biol. Chem. 1990, 54, 1401–1409. [Google Scholar]
- Ishibashi, N.; Ono, I.; Kato, K.; Shigenaga, T.; Shinoda, I.; OKAi, H.; Fukui, S. Role of the Hydrophobic Amino Acid Residue in the Bitterness of Peptides. Agric. Biol. Chem. 1988, 52, 91–94. [Google Scholar] [CrossRef]
- Otagiri, K.; Miyake, I.; Ishibashi, N.; Fukui, H.; Kanehisa, H.; Okai, H. Studies of bitter peptides from casein hydrolyzate. II. Syntheses of bitter peptide fragments and analogs of BPIa (Arg-Gly-Pro-Pro-Phe-Ile-Val). Bull. Chem. Soc. Jpn. 1983, 56, 1116–1119. [Google Scholar] [CrossRef]
- Shinoda, I.; Nosho, Y.; Kouge, K.; Ishibashi, N.; Okai, H.; Tatsumi, K.; Kikuchi, E. Variation in Bitterness Potency When Introducing Gly-Gly Residue into Bitter Peptides. Agric. Biol. Chem. 1987, 51, 2103–2110. [Google Scholar] [CrossRef]
- Ohyama, S.; Ishibashi, N.; Tamura, M.; Hiroshi, N.; Okai, H. Synthesis of bitter peptides composed of aspartic acid and glutamic acid. Agric. Biol. Chem. 1988, 52, 871–872. [Google Scholar]
- Ishibashi, N.; Kubo, T.; Chino, M.; Fukui, H.; Shinoda, I.; Kikuchi, E.; Okai, H. Taste of Proline-containing peptides C. Peptides 1988, 52, 95–98. [Google Scholar] [CrossRef]
- Shinoda, I.; Tada, M.; Fukui, S. Bitter taste of h-pro-phe-pro-gly-pro-ile-pro-oh corresponding to the partial sequence (Positions 61-67) of bovine β-casein, and related peptidest. Agric. Biol. Chem. 1986, 50, 1247–1254. [Google Scholar] [CrossRef]
- Hesterberg, T. Bootstrap. Wiley Interdiscip. Rev. Comput. Stat. 2011, 3, 497–526. [Google Scholar]
- Stamatakis, A.; Hoover, P.; Rougemont, J. A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 2008, 5, 758–771. [Google Scholar] [CrossRef]
- Li, H.D.; Liang, Y.Z.; Cao, D.S.; Xu, Q.S. Model-population analysis and its applications in chemical and biological modeling. TrAC Trends Anal. Chem. 2012, 38, 154–162. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
BOSS a | Variable Number | Name of Group | Statistical Parameters b | ||||
---|---|---|---|---|---|---|---|
A | R2 | Q2 | RMSECV | RMSE | |||
No | 174 | Dipeptides | 4.000 | 0.948 | 0.874 | 0.222 | 0.142 |
Yes | 174 | Dipeptides | 2.000 ± 0.604 | 0.950 ± 0.002 | 0.941 ± 0.001 | 0.152 ± 0.001 | 0.139 ± 0.002 |
No | 261 | Tripeptides | 3.000 | 0.760 | 0.521 | 0.407 | 0.289 |
Yes | 261 | Tripeptides | 2.000 ± 0.450 | 0.770 ± 0.006 | 0.742 ± 0.004 | 0.299 ± 0.002 | 0.282 ± 0.004 |
No | 361 | Tetrapeptides | 6.000 | 0.965 | 0.682 | 0.429 | 0.143 |
Yes | 361 | Tetrapeptides | 6.000 ± 1.222 | 0.972 ± 0.002 | 0.956 ± 0.002 | 0.160 ± 0.004 | 0.127 ± 0.004 |
Descriptor | Variable Number | Statistical Parameters a | ||||
---|---|---|---|---|---|---|
A | R2 | Q2 | RMSECV | RMSE | ||
3z-scale [11] | 6 | 3 | 0.838 | 0.792 | 0.284 | 0.251 |
5z-scale [21] | 10 | 5 | 0.916 | 0.869 | 0.225 | 0.180 |
DPPS [13] | 20 | 5 | 0.934 | 0.849 | 0.242 | 0.160 |
MS-WHIM [22] | 6 | 4 | 0.757 | 0.686 | 0.349 | 0.307 |
ISA-ECI [12] | 4 | 2 | 0.845 | 0.808 | 0.273 | 0.245 |
VHSE [23] | 16 | 7 | 0.943 | 0.894 | 0.202 | 0.149 |
FASGAI [24] | 12 | 9 | 0.921 | 0.814 | 0.269 | 0.175 |
VSW [19] | 18 | 4 | 0.911 | 0.773 | 0.297 | 0.185 |
T-scale [25] | 10 | 6 | 0.900 | 0.830 | 0.257 | 0.197 |
ST-scale [26] | 16 | 10 | 0.913 | 0.655 | 0.366 | 0.184 |
E-scale [14] | 10 | 9 | 0.940 | 0.865 | 0.229 | 0.152 |
V [18] | 6 | 5 | 0.904 | 0.863 | 0.231 | 0.193 |
G-scale [27] | 16 | 9 | 0.937 | 0.855 | 0.238 | 0.157 |
HESH [28] | 24 | 4 | 0.942 | 0.881 | 0.215 | 0.150 |
ID b | 174 | 4 | 0.948 | 0.874 | 0.222 | 0.142 |
ID + BOSS1 c | 174 | 2.000 ± 0.604 | 0.950 ± 0.002 | 0.941 ± 0.001 | 0.152 ± 0.001 | 0.139 ± 0.002 |
ID+BOSS2 d | 174 | 2 | 0.952 | 0.943 | 0.148 | 0.137 |
Descriptor | Variable Number | Statistical Parameters a | ||||
---|---|---|---|---|---|---|
A | R2 | Q2 | RMSECV | RMSE | ||
3z-scale [11] | 9 | 1 | 0.503 | 0.385 | 0.462 | 0.415 |
5z-scale [21] | 15 | 2 | 0.669 | 0.526 | 0.405 | 0.339 |
DPPS [13] | 30 | 5 | 0.722 | 0.444 | 0.439 | 0.310 |
MS-WHIM [22] | 9 | 1 | 0.592 | 0.445 | 0.439 | 0.376 |
ISA-ECI [12] | 6 | 1 | 0.525 | 0.357 | 0.472 | 0.406 |
VHSE [23] | 24 | 3 | 0.689 | 0.439 | 0.441 | 0.329 |
FASGAI [24] | 18 | 5 | 0.770 | 0.572 | 0.385 | 0.282 |
VSW [19] | 27 | 5 | 0.789 | 0.504 | 0.415 | 0.270 |
T-scale [25] | 15 | 1 | 0.629 | 0.375 | 0.465 | 0.359 |
ST-scale [26] | 24 | 1 | 0.638 | 0.548 | 0.396 | 0.354 |
E-scale [14] | 15 | 2 | 0.678 | 0.532 | 0.403 | 0.334 |
V [18] | 9 | 2 | 0.560 | 0.432 | 0.444 | 0.390 |
G-scale [27] | 24 | 6 | 0.745 | 0.533 | 0.402 | 0.298 |
HESH [28] | 36 | 1 | 0.669 | 0.520 | 0.408 | 0.339 |
ID b | 261 | 3 | 0.760 | 0.521 | 0.407 | 0.289 |
ID + BOSS1 c | 261 | 2.000 ± 0.450 | 0.770 ± 0.006 | 0.742 ± 0.004 | 0.299 ± 0.002 | 0.282 ± 0.004 |
ID + BOSS2 d | 261 | 1 | 0.773 | 0.751 | 0.294 | 0.280 |
Descriptor | Variable Number | Statistical Parameters a | ||||
---|---|---|---|---|---|---|
A | R2 | Q2 | RMSECV | RMSE | ||
3z-scale [11] | 12 | 2 | 0.822 | 0.490 | 0.544 | 0.322 |
5z-scale [21] | 20 | 6 | 0.938 | 0.533 | 0.521 | 0.189 |
DPPS [13] | 40 | 8 | 0.968 | 0.676 | 0.433 | 0.136 |
MS-WHIM [22] | 12 | 3 | 0.813 | 0.349 | 0.615 | 0.330 |
ISA-ECI [29] | 8 | 3 | 0.717 | 0.017 | 0.755 | 0.406 |
VHSE [23] | 32 | 4 | 0.922 | 0.694 | 0.421 | 0.213 |
FASGAI [24] | 24 | 3 | 0.907 | 0.714 | 0.408 | 0.233 |
VSW [19] | 36 | 6 | 0.969 | 0.512 | 0.532 | 0.135 |
T-scale [25] | 20 | 1 | 0.624 | 0.452 | 0.564 | 0.467 |
ST-scale [26] | 32 | 1 | 0.642 | 0.155 | 0.700 | 0.456 |
E-scale [14] | 20 | 5 | 0.948 | 0.557 | 0.507 | 0.173 |
V [18] | 12 | 2 | 0.794 | 0.525 | 0.525 | 0.345 |
G-scale [27] | 32 | 4 | 0.879 | 0.620 | 0.469 | 0.265 |
HESH [28] | 48 | 4 | 0.934 | 0.703 | 0.415 | 0.195 |
ID b | 348 | 6 | 0.965 | 0.682 | 0.429 | 0.143 |
ID + BOSS1 c | 348 | 6.000 ± 1.222 | 0.972 ± 0.002 | 0.956 ± 0.002 | 0.160 ± 0.004 | 0.127 ± 0.004 |
ID + BOSS2 d | 348 | 6 | 0.973 | 0.956 | 0.160 | 0.123 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; Chung, H.Y. Quantitative Structure–Activity Relationship Study of Bitter Di-, Tri- and Tetrapeptides Using Integrated Descriptors. Molecules 2019, 24, 2846. https://doi.org/10.3390/molecules24152846
Xu B, Chung HY. Quantitative Structure–Activity Relationship Study of Bitter Di-, Tri- and Tetrapeptides Using Integrated Descriptors. Molecules. 2019; 24(15):2846. https://doi.org/10.3390/molecules24152846
Chicago/Turabian StyleXu, Biyang, and Hau Yin Chung. 2019. "Quantitative Structure–Activity Relationship Study of Bitter Di-, Tri- and Tetrapeptides Using Integrated Descriptors" Molecules 24, no. 15: 2846. https://doi.org/10.3390/molecules24152846
APA StyleXu, B., & Chung, H. Y. (2019). Quantitative Structure–Activity Relationship Study of Bitter Di-, Tri- and Tetrapeptides Using Integrated Descriptors. Molecules, 24(15), 2846. https://doi.org/10.3390/molecules24152846