Development and Optimization of Alpha-Pinene-Loaded Solid Lipid Nanoparticles (SLN) Using Experimental Factorial Design and Dispersion Analysis
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Lipid Screening
2.3. Experimental Factorial Design
2.4. Preparation of Nanoparticles
2.5. Characterization of Nanoparticles
2.6. Accelerated Stability Analysis
3. Results and Discussion
3.1. Lipid Screening
3.2. Experimental Factorial Design
3.3. Stability Analysis with LUMiSizer®
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Souto, E.B.; Muller, R.H. Cosmetic features and applications of lipid nanoparticles (SLN, NLC). Int. J. Cosmet. Sci. 2008, 30, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Muller, R.H.; Shegokar, R.; Keck, C.M. 20 years of lipid nanoparticles (SLN & NLC): Present state of development & industrial applications. Curr. Drug Discov. Technol. 2011, 8, 207–227. [Google Scholar] [PubMed]
- Sanchez-Lopez, E.; Espina, M.; Doktorovova, S.; Souto, E.B.; Garcia, M.L. Lipid nanoparticles (SLN, NLC): Overcoming the anatomical and physiological barriers of the eye-Part I-Barriers and determining factors in ocular delivery. Eur. J. Pharm. Biopharm. 2017, 110, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Doktorovova, S.; Kovacevic, A.B.; Garcia, M.L.; Souto, E.B. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: Current evidence from in vitro and in vivo evaluation. Eur. J. Pharm. Biopharm. 2016, 108, 235–252. [Google Scholar] [CrossRef] [PubMed]
- Doktorovova, S.; Souto, E.B.; Silva, A.M. Hansen solubility parameters (HSP) for prescreening formulation of solid lipid nanoparticles (SLN): In vitro testing of curcumin-loaded SLN in MCF-7 and BT-474 cell lines. Pharm. Dev. Technol. 2018, 23, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Souto, E.B.; Müller, R.H. Investigation of the factors influencing the incorporation of Clotrimazole in SLN and NLC prepared by Hot High-Pressure Homogenization. J. Microencapsul. 2006, 23, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Doktorovova, S.; Souto, E.B.; Silva, A.M. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers-a systematic review of in vitro data. Eur. J. Pharm. Biopharm. 2014, 87, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Araujo, J.; Garcia, M.L.; Mallandrich, M.; Souto, E.B.; Calpena, A.C. Release profile and transscleral permeation of triamcinolone acetonide loaded nanostructured lipid carriers (TA-NLC): In vitro and ex vivo studies. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 1034–1041. [Google Scholar] [CrossRef] [PubMed]
- Naseri, N.; Valizadeh, H.; Zakeri-Milani, P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure, preparation and application. Adv. Pharm. Bull. 2015, 5, 305. [Google Scholar] [CrossRef]
- Müller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev. 2002, 54, S131–S155. [Google Scholar] [CrossRef]
- El Asbahani, A.; Miladi, K.; Badri, W.; Sala, M.; Addi, E.A.; Casabianca, H.; El Mousadik, A.; Hartmann, D.; Jilale, A.; Renaud, F. Essential oils: From extraction to encapsulation. Int. J. Pharm. 2015, 483, 220–243. [Google Scholar] [CrossRef] [PubMed]
- Pimentel-Moral, S.; Teixeira, M.C.; Fernandes, A.R.; Arraez-Roman, D.; Martinez-Ferez, A.; Segura-Carretero, A.; Souto, E.B. Lipid nanocarriers for the loading of polyphenols-A comprehensive review. Adv. Colloid Interface Sci. 2018, 260, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Santini, A.; Tenore, G.C.; Novellino, E. Nutraceuticals: A paradigm of proactive medicine. Eur. J. Pharm. Sci. 2017, 96, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; D’Addezio, L.; Camilli, E.; Piccinelli, R.; Turrini, A.; Marletta, L.; Marconi, S.; Lucarini, M.; Lisciani, S.; Gabrielli, P.; et al. From plant compounds to botanicals and back: A current snapshot. Molecules 2018, 23, 1844. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A. Extractable and Non-Extractable Polyphenols: An Overview. In Non-Extractable Polyphenolsand Carotenoids: Importance in Human Nutrition and Health; Saura-Calixto, F., Pérez-Jiménez, J., Eds.; Royal Society of Chemistry: London, UK, 2018; pp. 1–37. [Google Scholar]
- Durazzo, A.; Lucarini, M. A current shot and re-thinking of antioxidant research strategy. Braz. J. Anal. Chem. 2018, 5, 9–11. [Google Scholar] [CrossRef]
- Santini, A.; Novellino, E. Nutraceuticals-shedding light on the grey area between pharmaceuticals and food. Expert Rev. Clin. Pharm. 2018, 11, 545–547. [Google Scholar] [CrossRef] [PubMed]
- Santini, A.; Cammarata, S.M.; Capone, G.; Ianaro, A.; Tenore, G.C.; Pani, L.; Novellino, E. Nutraceuticals: Opening the debate for a regulatory framework. Br. J. Clin. Pharm. 2018, 84, 659–672. [Google Scholar] [CrossRef] [PubMed]
- Daliu, P.; Santini, A.; Novellino, E. From pharmaceuticals to nutraceuticals: Bridging disease preventionand management. Expert Rev. Clin. Pharm. 2019, 12, 1–7. [Google Scholar] [CrossRef]
- Durazzo, A.; Massimo, L.; Souto, E.B.; Cicala, C.; Caiazzo, E.; Izzo, A.A.; Novellino, E.; Santini, A. Polyphenols: A concise overview on the chemistry, occurrence and human health. Phytol. Res. 2019, 1–23. [Google Scholar] [CrossRef]
- Kanavy, H.E.; Gerstenblith, M.R. Ultraviolet radiation and melanoma, in: Seminars in Cutaneous Medicine and Surgery. Frontline Med. Commun. 2011, 30, 222–228. [Google Scholar]
- Galata, M.; Sarker, L.S.; Mahmoud, S.S. Transcriptome profiling, and cloning and characterization of the main monoterpene synthases of Coriandrum sativum L. Phytochemistry 2014, 102, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.P.; Hader, D.P. Physiological Aspects of UV-Excitation of DNA. In Photoinduced Phenomena in Nucleic Acids II; Barbatti, M., Borin, A., Ullrich, S., Eds.; Springer: Cham, Switzerland, 2015; Volume 356, pp. 203–248. [Google Scholar]
- Wang, J.; Hua, W.; Yue, Y.; Gao, Z. MSU-S mesoporous materials: An efficient catalyst for isomerization of α-pinene. Bioresour. Technol. 2010, 101, 7224–7230. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Zhao, Y.; Firempong, C.K.; Xu, X. Preparation, characterization and pharmacokinetic studies of linalool-loaded nanostructured lipid carriers. Pharm. Biol. 2016, 54, 2320–2328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, L. Lavandula angustifolia and Lavandula latifolia essential oils from Spain: Aromatic profile and bioactivities. Planta Med. 2016, 82, 163–170. [Google Scholar] [PubMed]
- Salehi, B.; Armstrong, L.; Rescigno, A.; Yeskaliyeva, B.; Seitimova, G.; Beyatli, A.; Sharmeen, J.; Mahomoodally, M.F.; Sharopov, F.; Durazzo, A.; et al. Lamium Plants-A Comprehensive Review on Health Benefits and Biological Activities. Molecules 2019, 24, 1913. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, N.; Luo, M.; Zu, Y.; Efferth, T. Antibacterial activity and anticancer activity of Rosmarinus officinalis L. essential oil compared to that of its main components. Molecules 2012, 17, 2704–2713. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, M.J. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals; O’Neill, M.J., Ed.; Royal Society of Chemistry: Cambridge, UK, 2006. [Google Scholar]
- George, K.W.; Alonso-Gutierrez, J.; Keasling, J.D.; Lee, T.S. Isoprenoid drugs, biofuels, and chemicals—Artemisinin, farnesene, and beyond. Adv. Biochem. Eng. Biotechnol. 2015, 148, n355–n389. [Google Scholar]
- Edris, A.E. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: A review. Phytother. Res. 2007, 21, 308–323. [Google Scholar] [CrossRef]
- Dhar, P.; Chan, P.; Cohen, D.T.; Khawam, F.; Gibbons, S.; Snyder-Leiby, T.; Dickstein, E.; Rai, P.K.; Watal, G. Synthesis, antimicrobial evaluation, and structure–activity relationship of α-pinene derivatives. J. Agric. Food Chem. 2014, 62, 3548–3552. [Google Scholar] [CrossRef]
- Sarria, S.; Wong, B.; Martín, H.G.; Keasling, J.D.; Peralta-Yahya, P. Microbial synthesis of pinene. Am. Chem. Soc. Synt. Biol. 2014, 3, 466–475. [Google Scholar] [CrossRef]
- Rottava, L.; Cortina, P.F.; Zanella, C.A.; Cansian, R.L.; Toniazzo, G.; Treichel, H.; Antunes, O.A.C.; Oestreicher, E.G.; Oliveira, D. Microbial oxidation of (-)-α-pinene to verbenol production by newly isolated strains. Appl. Biochem. Biotechnol. 2010, 162, 2221–2231. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, H.; Jeon, Y.; Han, Y.; Kee, J.; Kim, H.; Shin, H.; Kang, J.; Lee, B.S.; Kim, S.; et al. Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages. Am. J. Chin. Med. 2015, 43, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, A.; Nowak, I. Chapter 10-Solid lipid nanoparticles and nanostructured lipid carriers as novel carriers for cosmetic ingredients. In Nanobiomaterials in Galenic Formulations and Cosmetics; Grumezescu, A.M., William Andrew Imprint, Eds.; Elsevier: New York, NY, USA, 2016; pp. 231–255. [Google Scholar]
- Mercier, B.; Prost, J.; Prost, M. The essential oil of turpentine and its major volatile fraction (α-and β-pinenes): A review. Int. J. Occup. Med. Environ. Health 2009, 22, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.Q.; Xu, B.; Mao, J.W.; Wei, F.X.; Li, M.; Liu, T.; Jin, X.B.; Zhang, L.R. Inhibitory effects of α-pinene on hepatoma carcinoma cell proliferation. Asian Pac. J. Cancer Prev. 2014, 15, 3293–3297. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J. Antitumor monoterpenes. In Bioactive Essential Oils and Cancer; Sousa, D.P., Ed.; Springer: Berlin, Germany, 2015; pp. 175–200. [Google Scholar]
- Kang, E.; Lee, H.D.; Jung, Y.J.; Shin, S.Y.; Koh, D.; Lee, Y.H. α-Pinene inhibits tumor invasion through downregulation of nuclear factor (NF)-κB-regulated matrix metalloproteinase-9 gene expression in MDA-MB-231 human breast cancer cells. Appl. Biol. Chem. 2016, 59, 511–516. [Google Scholar] [CrossRef]
- Kusuhara, M.; Urakami, K.; Masuda, Y.; Zangiacomi, V.; Ishii, H.; Tai, S.; Maruyama, K.; Yamaguchi, K. Fragrant environment with alpha-pinene decreases tumor growth in mice. Biomed. Res. 2012, 33, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Neuenschwander, U.; Guignard, F.; Hermans, I. Mechanism of the aerobic oxidation of α-Pinene. Chem. Sustain. Energy Mater. 2010, 3, 75–84. [Google Scholar] [CrossRef]
- Silva, A.C.R.; Lopes, P.M.; Azevedo, M.M.B.; Costa, D.C.M.; Alviano, C.S.; Alviano, D.S. Biological activities of a-pinene and β-pinene enantiomers. Molecules 2012, 17, 6305–6316. [Google Scholar] [CrossRef]
- Chen, W.; Liu, Y.; Li, M.; Mao, J.; Zhang, L.; Huang, R.; Jin, X.; Ye, L. Anti-tumor effect of α-pinene on human hepatoma cell lines through inducing G2/M cell cycle arrest. J. Pharm. Sci. 2015, 127, 332–338. [Google Scholar] [CrossRef]
- Shrestha, H.; Bala, R.; Arora, S. Lipid-based drug delivery systems. J. Pharm. 2014, 2014, 10. [Google Scholar] [CrossRef]
- Fangueiro, J.F.; Andreani, T.; Egea, M.A.; Garcia, M.L.; Souto, S.B.; Souto, E.B. Experimental factorial design applied to mucoadhesive lipid nanoparticles via multiple emulsion process. Colloids Surf. B Biointerface 2012, 100, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.; Ferreira, N.; Fangueiro, J.; Santos, A.; Veiga, F.; Cabral, C.; Silva, A.; Souto, E. Ibuprofen nanocrystals developed by 22 factorial design experiment: Aq new approach for poorly water-soluble drugs. Saudi Pharm. J. 2017, 25, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Qi, Y.; Wang, X.; Li, X.; Wang, S.; Cao, Y.; Wang, C.; Sun, B.; Decker, E.; Panya, A. The influence of flaxseed gum on the microrheological properties and physicochemical stability of whey protein stabilized beta-carotene emulsions. Food Funct. 2017, 8, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Makinen, O.E.; Uniacke-Lowe, T.; O’Mahony, J.A.; Arendt, E.K. Physicochemical and acid gelation properties of commercial UHT-treated plant-based milk substitutes and lactose free bovine milk. Food Chem. 2015, 168, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Caddeo, C.; Manconi, M.; Fadda, A.M.; Lai, F.; Lampis, S.; Diez-Sales, O.; Sinico, C. Nanocarriers for antioxidant resveratrol: Formulation approach, vesicle self-assembly and stability evaluation. Colloids Surf. B Biointerface 2013, 111, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Agrawal, Y. Ciprofloxacin hydrochloride-loaded glyceryl monostearate nanoparticle: Factorial design of Lutrol F68 and Phospholipon 90G. J. Microencapsul. 2012, 29, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Freitas, C.; Müller, R.H. Effect of light and temperature on zeta potential and physical stability in Solid Lipid Nanoparticle (SLN™) dispersions. Int. J. Pharm. 1998, 168, 221–229. [Google Scholar] [CrossRef]
- Kalur, G.C.; Frounfelker, B.D.; Cipriano, B.H.; Norman, A.I.; Raghavan, S. R: Viscosity increase with temperature in cationic surfactant solutions due to the growth of wormlike micelles. Langmuir 2005, 21, 10998–11004. [Google Scholar] [CrossRef]
- Cai, W.; Su, N.; Liu, X. Unsteady convection flow and heat transfer over a vertical stretching surface. PLoS ONE 2014, 9, e107229. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Variables | Levels | ||
---|---|---|---|
Low (−1) | Central Point (0) | High (+1) | |
Imwitor® 900 K (wt.%) | 2 | 4 | 8 |
Poloxamer 188 (wt.%) | 1.25 | 2.5 | 5 |
Name of Lipid + α-Pinene (Ratio 1:100) | Solubility (Naked Eye) | ||||
---|---|---|---|---|---|
15 min. | 30 min. | 1 h | 24 h | 72 h | |
Compritol® 888 ATO | ☑ | ☑ | ☑ | ☑ | ☑ |
Dynasan® 116 | ⊠ | ⊠ | ⊠ | ⊠ | ⊠ |
Dynasan®118 | ⊠ | ⊠ | ⊠ | ⊠ | ⊠ |
Dynasan® P 60 (F) | ☑ | ☑ | ☑ | ☑ | ⊠ |
Imwitor® 900 K | ☑ | ☑ | ☑ | ☑ | ☑ |
Kolliwax® GMS II | ⊠ | ⊠ | ⊠ | ⊠ | ⊠ |
Precirol® ATO 5 | ⊠ | ⊠ | ⊠ | ⊠ | ⊠ |
Witepsol® E85 | ☑ | ☑ | ☑ | ☑ | ⊠ |
Independent Variables | Dependent Variables | ||||
---|---|---|---|---|---|
Sample Name | Imwitor® 900 K (wt.%) | Poloxamer 188 (wt.%) | Z-Ave (nm) ± SD | PDI (–) ± SD | ZP (mV) ± SD |
SLN1 | 2 | 1.25 | 211.6 ± 2.0 | 0.338 ± 0.020 | 0.016 ± 0.110 |
SLN2 | 8 | 1.25 | 3002.3 ± 268.9 | 0.775 ± 0.290 | −0.049 ± 0.100 |
SLN3 | 2 | 5 | 157.5 ± 0.8 | 0.266 ± 0.000 | −0.094 ± 0.190 |
SLN4 | 8 | 5 | 184.4 ± 0.9 | 0.333 ± 0.010 | −0.085 ± 0.090 |
SLN5 | 4 | 2.5 | 136.7 ± 0.7 | 0.170 ± 0.010 | 0.060 ± 0.170 |
SLN6 | 4 | 2.5 | 142.7 ± 1.2 | 0.276 ± 0.010 | 0.121 ± 0.120 |
SLN7 | 4 | 2.5 | 137.3 ± 1.0 | 0.270 ± 0.010 | 0.026 ± 0.350 |
Sample Name | D10% (µm/s) | D50% (µm/s) | D90% (µm/s) |
---|---|---|---|
SLN1 | 137.1 | 180.9 | 220.3 |
SLN2 | * | * | * |
SLN3 | 1.123 | 47.02 | 548.2 |
SLN4 | * | * | * |
SLN5 | 42.67 | 75.35 | 133.3 |
SLN6 | 36.90 | 66.97 | 96.23 |
SLN7 | 30.06 | 72.96 | 189.0 |
Sample Name | Storage Temperature (°C) | D10% (µm/s) | D50% (µm/s) | D90% (µm/s) |
---|---|---|---|---|
empty-SLN | 4 | 0.9722 | 1.919 | 12.49 |
empty-SLN | 25 | 1.989 | 11.79 | 62.20 |
empty-SLN | 40 | 0.2720 | 2.283 | 55.05 |
α-pinene-SLN | 4 | 1.413 | 2.102 | 4.732 |
α-pinene-SLN | 25 | 1.356 | 2.270 | 4.555 |
α-pinene-SLN | 40 | 1.570 | 8.535 | 296.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zielińska, A.; Ferreira, N.R.; Durazzo, A.; Lucarini, M.; Cicero, N.; Mamouni, S.E.; Silva, A.M.; Nowak, I.; Santini, A.; Souto, E.B. Development and Optimization of Alpha-Pinene-Loaded Solid Lipid Nanoparticles (SLN) Using Experimental Factorial Design and Dispersion Analysis. Molecules 2019, 24, 2683. https://doi.org/10.3390/molecules24152683
Zielińska A, Ferreira NR, Durazzo A, Lucarini M, Cicero N, Mamouni SE, Silva AM, Nowak I, Santini A, Souto EB. Development and Optimization of Alpha-Pinene-Loaded Solid Lipid Nanoparticles (SLN) Using Experimental Factorial Design and Dispersion Analysis. Molecules. 2019; 24(15):2683. https://doi.org/10.3390/molecules24152683
Chicago/Turabian StyleZielińska, Aleksandra, Nuno R. Ferreira, Alessandra Durazzo, Massimo Lucarini, Nicola Cicero, Soukaina El Mamouni, Amélia M. Silva, Izabela Nowak, Antonello Santini, and Eliana B. Souto. 2019. "Development and Optimization of Alpha-Pinene-Loaded Solid Lipid Nanoparticles (SLN) Using Experimental Factorial Design and Dispersion Analysis" Molecules 24, no. 15: 2683. https://doi.org/10.3390/molecules24152683
APA StyleZielińska, A., Ferreira, N. R., Durazzo, A., Lucarini, M., Cicero, N., Mamouni, S. E., Silva, A. M., Nowak, I., Santini, A., & Souto, E. B. (2019). Development and Optimization of Alpha-Pinene-Loaded Solid Lipid Nanoparticles (SLN) Using Experimental Factorial Design and Dispersion Analysis. Molecules, 24(15), 2683. https://doi.org/10.3390/molecules24152683