Effect of Anti-Clouding Agent on the Fate of 3-Monochloropropane-1,2-Diol Esters and Glycidyl Esters in Palm Olein during Repeated Frying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Frying Experiments
2.3. Analysis of 3-MCPD Esters and Glycidyl Esters
2.4. Analysis of Chloride Content
2.5. Analysis of Total Polar Compounds
2.6. Analysis of Polar Compound Fractions
2.7. Other Analytical Tests
2.8. Data Evaluation
3. Results and Discussion
3.1. Transients of 3-MCPD Esters and Glycidyl Esters during Repeated Frying
3.2. Thermal Resistance of Oils during Repeated Frying
3.3. Assessments of 3-MCPD Esters and Glycidyl Esters with Quality Parameters
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ahmad Tarmizi, A.H.; Ahmad, K. Feasibility of continuous frying system to improve the quality indices of palm olein for the production of extruded product. J. Oleo Sci. 2015, 64, 1259–1266. [Google Scholar] [CrossRef] [PubMed]
- Kushairi, A.; Singh, R.; Ong-Abdullah, M. The oil palm industry in Malaysia: Thriving with transformative technologies. J. Oil Palm Res. 2017, 29, 431–439. [Google Scholar]
- Idris, N.A.; Mat Dian, N.L.H.; Ismail, A.; Hassan, H. Palm Blends for Temperate countries; MPOB Information Series: Selangor, Malaysia, 2007. [Google Scholar]
- Basker, R. Usage of polyglycerol fatty acid ester (HIFED MF-18) as superior anti-crystallizer to retard crystal growth in palm olein and blended cooking oil. In Proceedings of the MPOB International Palm Oil Congress and Exhibition (PIPOC), Kuala Lumpur, Malaysia, 6–8 October 2015. [Google Scholar]
- Norn, V. Polyglycerol esters. In Emulsifiers in Food Technology; Norn, V., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2015; pp. 181–208. [Google Scholar]
- Tan, C.P.; Nakajima, M. Effect of polyglycerol esters of fatty acids on physicochemical properties and stability of β-carotene nanodispersions prepared by emulsification/evaporation method. J. Sci. Food Agric. 2005, 85, 121–126. [Google Scholar] [CrossRef]
- Tadros, T.F. Emulsion Formation and Stability; Wiley-VCH: Weinheim, Germany, 2013. [Google Scholar]
- Zhou, H.; Jin, Q.; Wang, X.; Xu, X. Effects of temperature and water content on the formation of 3-chloropropane-1,2-diol fatty acid esters in palm oil under conditions simulating deep fat frying. Eur. Food Res. Technol. 2004, 238, 495–501. [Google Scholar] [CrossRef]
- Aniołowska, M.; Kita, A. The effect of type of oil and degree of degradation on glycidyl esters content during the frying of French fries. J. Am. Oil Chem. Soc. 2015, 92, 1621–1631. [Google Scholar] [CrossRef] [PubMed]
- Aniołowska, M.; Kita, A. The effect of frying on glycidyl esters content in palm oil. Food Chem. 2016, 203, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Dingel, A.; Matissek, R. Esters of 3-monochloropropane-1,2-diol and glycidyl: No formation by deep frying during large-scale production of potato crisps. Eur. Food Res. Technol. 2015, 241, 719–723. [Google Scholar] [CrossRef]
- Wong, Y.H.; Muhamad, H.; Abas, F.; Lai, O.M.; Nyam, K.L.; Tan, C.P. Effects of temperature and NaCl on the formation of 3-MCPD esters and glycidyl esters in refined, bleached and deodorized palm olein during deep-fat frying of potato chips. Food Chem. 2017, 219, 126–130. [Google Scholar] [CrossRef]
- Wong, Y.H.; Lai, O.M.; Abas, F.; Nyam, K.L.; Nehdi, I.A.; Muhamad, H.; Tan, C.P. Factors impacting the formation of 3-MCPD esters and glycidyl esters during deep fat frying of chicken breast meat. J. Am. Oil Chem. Soc. 2017, 94, 759–765. [Google Scholar] [CrossRef]
- Arisseto, A.P.; Marcolino, P.F.C.; Augusti, A.C.; Scaranelo, G.R.; Berbari, S.A.G.; Miguel, A.M.R.O.; Vicente, E. Contamination of fried foods by 3-monochloropropane-1,2-diol fatty acid esters during frying. J. Am. Oil Chem. Soc. 2017, 94, 449–455. [Google Scholar] [CrossRef]
- Hammouda, I.B.; Zribi, A.; Ben Mansour, A.; Matthäus, B.; Bouaziz, M. Effect of deep-frying on 3-MCPD esters and glycidyl esters contents and quality control of refined olive pomace oil blended with refined palm oil. Eur. Food Res. Technol. 2017, 243, 1219–1227. [Google Scholar] [CrossRef]
- Belkova, B.; Hradecky, J.; Hurkova, K.; Forstova, V.; Vaclavik, L.; Hajslova, J. Impact of vacuum frying on quality of potato crisps and frying oil. Food Chem. 2018, 241, 51–59. [Google Scholar] [CrossRef]
- Merke, S.; Ostermeyer, U.; Rohn, S.; Karl, H.; Fritsche, J. Mitigation strategies for ester bound 2-/3-MCPD and esterified glycidyl in pre-fried breaded and frozen fish products. Food Chem. 2018, 245, 196–204. [Google Scholar] [CrossRef]
- Yıldırım, A.; Yorulmaz, A. The effect of rosemary extract on 3-MCPD and glycidyl esters during frying. Grasas Y Aceites 2018, 69, e273. [Google Scholar] [CrossRef]
- Wong, Y.H.; Goh, K.M.; Nyam, K.L.; Nehdi, I.A.; Sbihi, H.M.; Tan, C.P. Effects of natural and synthetic antioxidants on changes in 3-MCPD esters and glycidyl ester in palm olein during deep-fat frying. Food Contr. 2019, 96, 488–493. [Google Scholar] [CrossRef]
- Wong, Y.H.; Goh, K.M.; Abas, F.; Maulidiani, M.; Nyam, K.L.; Nehdi, I.A.; Sbihi, H.M.; Gewik, M.M.; Tan, C.P. Rapid quantification of 3-monochloropropane-1,2-diol in deep-fat frying using palm olein: Using ATR-FTIR and chemometrics. LWT Food Sci Technol. 2019, 100, 404–408. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Risks for human health related to the presence of 3- and 2-monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. EFSA Panel on Contaminants in the Food Chain (CONTAM). EFSA J. 2016, 14, 1–159. [Google Scholar]
- Commission Regulation (EU) 2018/290 of 26 February 2018 amending Regulation (EC) No 1881/2006 as regards maximum levels of glycidyl ester fatty acid esters in vegetable oils and fats, infant formula, follow-on formula and foods for special medical purposes intended for infants and young children. Off. J. Eur. Union 2018, 55, 27–29.
- Dueik, V.; Bouchon, P. Vacuum frying as a route to produce novel snacks with desired quality attributes according to new health trends. J. Food Sci. 2011, 76, E188–E195. [Google Scholar] [CrossRef]
- AOCS. Official Methods and Recommended Practices of the American Oil Chemists’ Society; AOCS Press: Champaign, IL, USA, 2013. [Google Scholar]
- ASTM D4929-04. Standard Test Methods for Determination of Organic Chloride Content in Crude Oil; ASTM International: West Conshohocken, PA, USA, 2004. [Google Scholar]
- Dobarganes, M.C.; Velasco, J.; Dieffenbacher, A. Determination of polar compounds, polymerized and oxidized triacylglycerols, and diacylglycerols in oils and fats: Results of collaborative studies and the standardized method (Technical report). Pure Appl. Chem. 2000, 72, 1563–1575. [Google Scholar] [CrossRef]
- Ahmad Tarmizi, A.H.; Hishamuddin, E.; Abd Razak, R.A. Impartial assessment of oil degradation through partitioning of polar compounds in vegetable oils under simulated frying practice of fast food restaurants. Food Contr. 2019, 96, 445–455. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Hamlet, C.G.; Asuncion, L.; Velíšek, J.; Doležal, M.; Zelinková, Z.; Crews, C. Formation and occurrence of esters of 3-chloropropane-1,2-diol (3-CPD) in foods: What we know and what we assume. Eur. J. Lipid Sci. Technol. 2011, 113, 273–303. [Google Scholar] [CrossRef]
- Velisik, J.; Calta, P.; Crews, C.; Hasnip, S.; Marek, D. 3-chloropropane-1,2-diol in models simulating processed food: Precursors and agents causing its decomposition. Czech J. Food Sci. 2003, 21, 153–161. [Google Scholar] [CrossRef]
- Destaillats, F.; Craft, B.D.; Dubois, M.; Nagy, K. Glycidyl esters in refined palm (Elaeis guineensis) oil and related fraction. Part I: Formation mechanism. Food Chem. 2012, 146, 1391–1398. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Cai, W.; Liu, Y. Comparison of different polar compounds-induced cytotoxicity in human hepatocellular carcinoma HepG2 cells. Lipids Health Dis. 2016, 15, 30–35. [Google Scholar] [CrossRef]
- Sharayei, P.; Farhoosh, R. Improved frying stability of canola oil blended with palm olein and virgin olive oils as affected by bene kernel oil and its unsaponifiable matter. Eur. J. Lipid Sci. Technol. 2016, 118, 1495–1506. [Google Scholar] [CrossRef]
- Al-Khusaibi, M.K.; Niranjan, K. The impact of blanching and high-pressure pretreatments on oil uptake of fried potato slices. Food Bioproc. Technol. 2012, 5, 2392–2400. [Google Scholar] [CrossRef]
- Inturrisi, L. Regulatory and Food Safety Requirements for Frying Oil Quality. In Proceedings of the AAOCS Biennial Meeting—Deep Frying Workshop, Newcastle, Australia, 6 November 2013. [Google Scholar]
- Matthäus, B. Utilization of high-oleic rapeseed oil for deep-fat frying of French fries compared to other commonly used edible oils. Eur. J. Lipid Sci. Technol. 2016, 108, 200–211. [Google Scholar] [CrossRef]
- Casal, S.; Malheiro, R.; Sendas, A.; Oliveira, B.P.P.; Pereira, J.A. Olive oil stability under deep-frying conditions. Food Chem. Toxicol. 2010, 48, 2972–2979. [Google Scholar] [CrossRef]
- Zribi, A.; Jabeur, H.; Aladedunye, F.; Rebai, A.; Matthäus, B.; Bouaziz, M. Monitoring of quality stability characteristics and fatty acid compositions of refined olive and seed oils during repeated pan- and deep-frying using GC, FT-NIRS, and chemometrics. J. Agric. Food Chem. 2014, 62, 10357–10367. [Google Scholar] [CrossRef]
- Brühl, L.; Unbehend, G. Preparation of doughnuts using partially hydrogenated peanut oil and alternative products with reduced content of trans-fatty acids. J. Consum. Protect. Food Saf. 2013, 8, 155–163. [Google Scholar] [CrossRef]
- Gupta, M.K. Frying Oils. In Bailey’s Industrial Oil and Fat Products; Shahidi, F., Ed.; A John Wiley and Sons Inc.: Hoboken, NJ, USA, 2005; pp. 1–32. [Google Scholar]
- Giua, L.; Blasi, F.; Simonetti, M.S.; Cossignani, L. Oxidative modifications of conjugated and unconjugated linoleic acid during heating. Food Chem. 2013, 140, 680–685. [Google Scholar] [CrossRef]
- Cossignani, L.; Giua, L.; Simonetti, M.S.; Blasi, F. Volatile compounds as indicators of conjugated and conjugated linoleic acid thermal oxidation. Eur. J. Lipid Sci. Technol. 2014, 116, 407–412. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Parameters | Treatments | Frying Time (Day) | |||||
---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | ||
TPC (%) | POo | 7.09 ± 0.47 a,A | 14.46 ± 0.69 a,B | 22.75 ± 0.04 a,C | 27.84 ± 0.54 a,D | 31.32 ± 0.02 a,E | 31.76 ± 0.27 a,F |
POo + 0.1% PGE | 6.98 ± 0.88 a,b,A | 15.13 ± 0.22 a,B | 23.04 ± 0.28 a,C | 28.13 ± 1.10 a,b,D | 31.73 ± 0.54 a,b,E | 33.41 ± 0.29 b,F | |
POo + 0.2% PGE | 8.03 ± 0.35 b,A | 16.26 ± 0.67 b,B | 23.50 ± 0.11 b,C | 28.03 ± 0.46 a,D | 32.06 ± 0.22 b,E | 34.15 ± 0.08 c,F | |
POo + 0.3% PGE | 7.18 ± 0.34 a,A | 15.39 ± 0.10 a,B | 23.69 ± 0.33 b,C | 29.31 ± 0.11 b,D | 31.95 ± 0.39 a,b,E | 34.79 ± 0.21 d,F | |
POo + 0.4% PGE | 7.83 ± 0.78 a,b,A | 16.64 ± 1.12 b,B | 23.49 ± 0.04 b,C | 29.32 ± 1.03 a,b,D | 32.24 ± 0.93 a,b,E | 34.47 ± 1.04 b,c,d,F | |
DAG (%) | POo | 6.18 ± 0.32 a,A | 7.92 ± 0.43 a,B | 8.22 ± 0.07 a,B | 8.28 ± 0.52 a,B,C | 8.40 ± 0.05 a,B | 8.62 ± 0.11 a,C |
POo + 0.1% PGE | 6.30 ± 0.52 a,b,A | 7.84 ± 0.21 a,B | 8.01 ± 0.06 b,B | 7.96 ± 0.27 a,B,C | 8.32 ± 0.13 a,b,C,D | 8.53 ± 0.14 a,D | |
POo + 0.2% PGE | 7.03 ± 0.25 b,A | 8.22 ± 0.28 a,B | 7.82 ± 0.06 c,C | 8.33 ± 0.13 a,B | 8.19 ± 0.07 b,B | 8.83 ± 0.23 a,D | |
POo + 0.3% PGE | 6.50 ± 0.38 a,b,A | 8.44 ± 0.45 a,B,C | 8.16 ± 0.06 a,B | 8.53 ± 0.53 a,B,C | 8.35 ± 0.14 a,b,B | 9.01 ± 0.33 a,C | |
POo + 0.4% PGE | 6.73 ± 0.58 a,b,A | 8.05 ± 0.55 a,B,C | 7.90 ± 0.08 b,c,B | 8.01 ± 0.68 a,B,C | 8.25 ± 0.17 a,b,C | 8.87 ± 0.50 a,C | |
OxTAG (%) | POo | 0.67 ± 0.18 a,A | 3.79 ± 0.01 a,B | 7.95 ± 0.04 a,C | 10.42 ± 0.49 a,D | 11.31 ± 0.09 a,E | 10.14 ± 0.61 a,D |
POo + 0.1% PGE | 0.51 ± 0.13 a,b,A | 4.03 ± 0.38 a,b,B | 8.07 ± 0.38 a,d,C | 10.70 ± 1.49 a,b,D | 11.57 ± 0.51 a,b,D | 10.81 ± 0.61 a,b,D | |
POo + 0.2% PGE | 0.56 ± 0.05 a,A | 4.48 ± 0.09 b,c,B | 8.71 ± 0.06 b,C | 10.34 ± 0.52 a,D,E | 11.92 ± 0.18 b,D | 10.53 ± 0.30 a,E | |
POo + 0.3% PGE | 0.35 ± 0.04 b,A | 3.83 ± 0.30 a,B | 8.39 ± 0.20 d,C | 10.00 ± 0.59 a,D | 11.69 ± 0.10 b,E | 11.30 ± 0.08 b,F | |
POo + 0.4% PGE | 0.90 ± 0.39 a,A | 5.05 ± 0.61 c,B | 8.55 ± 0.18 d,C | 11.83 ± 0.43 b,D | 11.94 ± 0.30 b,D | 11.80 ± 0.67 b,D | |
PTAG (%) | POo | 0.10 ± 0.01 a,A | 2.61 ± 0.20 a,B | 6.52 ± 0.06 a,C | 8.56 ± 0.17 a,D | 11.53 ± 0.10 a,E | 12.60 ± 0.49 a,F |
POo + 0.1% PGE | 0.04 ± 0.01 b,A | 3.10 ± 0.27 b,B | 6.89 ± 0.13 b,d,C | 9.38 ± 0.37 b,D | 11.78 ± 0.08 b,c,E | 13.55 ± 0.46 a,b,F | |
POo + 0.2% PGE | 0.22 ± 0.02 c,A | 3.27 ± 0.31 b,B | 6.89 ± 0.08 b,d,C | 9.30 ± 0.16 b,D | 11.88 ± 0.08 b,E | 13.98 ± 0.03 b,F | |
POo + 0.3% PGE | 0.18 ± 0.03 c,A | 2.95 ± 0.06 b,B | 7.10 ± 0.04 c,C | 9.16 ± 0.05 b,D | 11.84 ± 0.13 b,c,E | 14.44 ± 0.16 c,E | |
POo + 0.4% PGE | 0.12 ± 0.09 a,c,A | 3.02 ± 0.25 a,b,B | 7.01 ± 0.07 c,d,C | 9.29 ± 0.57 a,b,D | 12.00 ± 0.30 c,E | 14.21 ± 0.30 b,c F |
Parameters | Treatments | Frying Time (Day) | |||||
---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | ||
FFA (%) | POo | 0.10 ± 0.01 a,A | 0.29 ± 0.06 a,B | 0.48 ± 0.08 a,C | 0.66 ± 0.11 a,C | 0.84 ± 0.04 a,D | 0.95 ± 0.12 a,D |
POo + 0.1% PGE | 0.10 ± 0.02 a,A | 0.26 ± 0.06 a,B | 0.42 ± 0.09 a,C | 0.58 ± 0.11 a,C,D | 0.73 ± 0.09 a,D | 0.87 ± 0.04 a,E | |
POo + 0.2% PGE | 0.13 ± 0.05 a,A | 0.29 ± 0.07 a,B | 0.45 ± 0.07 a,C | 0.60 ± 0.09 a,C,D | 0.75 ± 0.09 a,D,E | 0.89 ± 0.08 a,E | |
POo + 0.3% PGE | 0.09 ± 0.01 a,A | 0.25 ± 0.09 a,B | 0.43 ± 0.02 a,C | 0.59 ± 0.06 a,D | 0.76 ± 0.08 a,D | 0.91 ± 0.09 a,E | |
POo + 0.4% PGE | 0.09 ± 0.01 a,A | 0.29 ± 0.07 a,B | 0.47 ± 0.10 a,C | 0.65 ± 0.02 a,D | 0.83 ± 0.05 a,E | 0.98 ± 0.06 a,F | |
AnV (unit) | POo | 1.67 ± 0.22 a,A | 51.56 ± 6.41 a,B | 61.23 ± 7.86 a,B | 61.23 ± 6.86 a,B | 62.06 ± 5.15 a,B | 68.71 ± 4.97 a,C |
POo + 0.1% PGE | 1.40 ± 0.10 a,A | 59.25 ± 2.25 a,B | 63.69 ± 1.64 a,C | 66.91 ± 5.72 a,B,C | 69.28 ± 5.39 a,C | 68.62 ± 4.96 a,C | |
POo + 0.2% PGE | 2.23 ± 0.22 b,A | 52.59 ± 7.84 a,B | 59.62 ± 6.26 a,B | 59.88 ± 7.91 a,B | 58.33 ± 6.36 a,B | 63.65 ± 5.73 a,B | |
POo + 0.3% PGE | 1.71 ± 0.32 a,b,A | 52.20 ± 7.22 a,B | 62.59 ± 6.92 a,B | 62.36 ± 5.17 a,B | 61.23 ± 5.99 a,B | 64.93 ± 7.73 a,B | |
POo + 0.4% PGE | 1.40 ± 0.22 a,A | 57.02 ± 2.26 a,B | 64.64 ± 5.10 a,B,C | 64.60 ± 3.60 a,C | 68.28 ± 5.17 a,C | 67.71 ± 4.39 a,C | |
Chloride content (mg kg−1) | POo | 2.37 ± 0.09 a,c,A,B | 2.14 ± 0.20 a,A | 2.36 ± 0.00 a,A | 2.46 ± 0.05 a,B | 2.52 ±0.07 a,B | 2.50 ± 0.15 a,A,B |
POo + 0.1% PGE | 2.41 ± 0.13 a,c,A,B | 2.31 ± 0.09 a,A | 2.32 ± 0.12 a,A,B | 2.38 ± 0.04 a,A | 2.38 ± 0.03 b,A | 2.58 ± 0.12 a,B | |
POo + 0.2% PGE | 2.18 ± 0.15 a,A | 1.77 ± 0.09 b,B | 1.94 ± 0.08 b,A | 2.02 ± 0.20 b,A,B | 2.01 ± 0.19 c,A,B | 2.02 ± 0.15 b,A,B | |
POo + 0.3% PGE | 2.68 ± 0.02 b,A | 2.71 ± 0.20 c,A,B | 2.75 ± 0.03 c,A,B | 2.79 ± 0.18 c,A,B,C | 2.90 ±0.17 d,B,C | 3.09 ± 0.12 c,C | |
POo + 0.4% PGE | 2.58 ± 0.11 b,c,A | 2.70 ± 0.01 c,A | 2.79 ± 0.04 c,A | 2.93 ± 0.03 c,B | 2.97 ± 0.04 d,B | 3.16 ± 0.01 c,C |
Treatments | Frying Time (Day) | FAC (%) | |||||
---|---|---|---|---|---|---|---|
C16:0 | C18:0 | C18:1 | C18:2 | C18:3 | C18:2/C16:0 | ||
POo | 0 | 35.25 ± 0.05 a | 3.31 ± 0.02 a | 46.65 ± 0.04 a | 12.38 ± 0.03 a,d | 0.34 ± 0.01 a | 0.35 |
5 | 39.83 ± 0.03 b | 3.74 ± 0.01 b | 45.92 ± 0.04 b | 7.90 ± 0.00 b | 0.25 ± 0.08 a,b,d | 0.20 | |
POo + 0.1% PGE | 0 | 35.06 ± 0.05 c | 3.33 ± 0.01 a | 46.81 ± 0.03 c | 12.38 ± 0.02 a | 0.30 ± 0.01 b | 0.35 |
5 | 39.79 ± 0.17 d | 3.76 ± 0.01 b,c | 46.27 ± 0.20 d | 7.68 ± 0.03 c | 0.12 ± 0.01 c | 0.19 | |
POo + 0.2% PGE | 0 | 35.21 ± 0.06 a | 3.33 ± 0.02 a | 46.64 ± 0.06 a,e | 12.36 ± 0.02 a,d | 0.34 ± 0.02 a | 0.35 |
5 | 39.93 ± 0.08 d,e | 3.76 ± 0.01 bc | 45.86 ± 0.08 b,f | 7.86 ± 0.04 b | 0.21 ± 0.12 a,d | 0.20 | |
POo + 0.3% PGE | 0 | 35.34 ± 0.09 a,f | 3.33 ± 0.01 a | 46.51 ± 0.06 e | 12.34 ± 0.05 a,d | 0.36 ± 0.03 a | 0.35 |
5 | 40.09 ± 0.08 e | 3.78 ± 0.01 c | 45.73 ± 0.05 f | 7.76 ± 0.02 e | 0.19 ± 0.01 d | 0.19 | |
POo + 0.4% PGE | 0 | 35.35 ± 0.04 f | 3.34 ± 0.01 a | 46.37 ± 0.03 g | 12.34 ± 0.01 d | 0.38 ± 0.03 a | 0.35 |
5 | 39.83 ± 0.10 d | 3.76 ± 0.01 b,c | 45.73 ± 0.09 f | 8.02 ± 0.04 f | 0.25 ± 0.10 a,b,d | 0.20 |
Parameters | Significant Correlation Coefficients | |
---|---|---|
3-MCPD Esters | Glycidyl Esters | |
TPC | −0.87 | −0.80 |
DAG | −0.88 | −0.70 |
OxTAG | −0.89 | −0.80 |
PTAG | −0.82 | −0.83 |
FFA | −0.80 | −0.86 |
AnV | −0.96 | −0.72 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad Tarmizi, A.H.; Abd Razak, R.A.; Abdul Hammid, A.N.; Kuntom, A. Effect of Anti-Clouding Agent on the Fate of 3-Monochloropropane-1,2-Diol Esters and Glycidyl Esters in Palm Olein during Repeated Frying. Molecules 2019, 24, 2332. https://doi.org/10.3390/molecules24122332
Ahmad Tarmizi AH, Abd Razak RA, Abdul Hammid AN, Kuntom A. Effect of Anti-Clouding Agent on the Fate of 3-Monochloropropane-1,2-Diol Esters and Glycidyl Esters in Palm Olein during Repeated Frying. Molecules. 2019; 24(12):2332. https://doi.org/10.3390/molecules24122332
Chicago/Turabian StyleAhmad Tarmizi, Azmil Haizam, Raznim Arni Abd Razak, Abdul Niefaizal Abdul Hammid, and Ainie Kuntom. 2019. "Effect of Anti-Clouding Agent on the Fate of 3-Monochloropropane-1,2-Diol Esters and Glycidyl Esters in Palm Olein during Repeated Frying" Molecules 24, no. 12: 2332. https://doi.org/10.3390/molecules24122332
APA StyleAhmad Tarmizi, A. H., Abd Razak, R. A., Abdul Hammid, A. N., & Kuntom, A. (2019). Effect of Anti-Clouding Agent on the Fate of 3-Monochloropropane-1,2-Diol Esters and Glycidyl Esters in Palm Olein during Repeated Frying. Molecules, 24(12), 2332. https://doi.org/10.3390/molecules24122332