Maytenus macrocarpa (Ruiz & Pav.) Briq.: Phytochemistry and Pharmacological Activity
Abstract
1. Introduction
2. Geographical Distribution
3. Phytochemistry
4. Folk Medicine
5. Pharmacological Activities
5.1. Antibacterial and Antifungal Activity
5.2. Antiviral Activity
5.3. Antiparasitic Activity
5.4. Cytotoxic Activity
5.5. Anti-Inflammatory Activity
5.6. Other
5.7. Toxicity Studies
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liesner, R.L. Geography. In Catalogue of the vascular plants of Ecuador; Jørgensen, P.M., León-Yánez, S., Eds.; Missouri Botanical Garden Press: St. Louis, MO, USA, 1999; pp. 392–393. [Google Scholar]
- USDA, ARS, National Genetic Resources Program. Germplasm Resources Information Network-(GRIN). National Germplasm Resources Laboratory, Beltsville, Maryland. Available online: https://npgsweb.ars-grin.gov/gringlobal/taxonomydetail.aspx?413469 (accessed on 31 May 2019).
- Kvist, L.P.; Christensen, S.B.; Rasmussen, H.B.; Mejia, K.; Gonzalez, A. Identification and evaluation of Peruvian plants used to treat malaria and leishmaniasis. J. Ethnopharmacol. 2006, 106, 390–402. [Google Scholar] [CrossRef] [PubMed]
- Mejia, K.; Rengifo, E. Plantas medicinales de uso popular en la Amazonia peruana; Agencia Española de Cooperación Internacional: Lima, Peru, 1995; ISBN 9972-614.00.5. [Google Scholar]
- Sanz-Biset, J.; Campos-de-la-Cruz, J.; Epiquién-Rivera, M.A.; Cañigueral, S. A first survey on the medicinal plants of the Chazuta valley (Peruvian Amazon). J. Ethnopharmacol. 2009, 122, 333–362. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, J.A.; Groppo, M.; Biral, L. Celastraceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. Available online: http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB6746 (accessed on 31 May 2019).
- The Plant List. Available online: http://www.theplantlist.org/ (accessed on 31 May 2019).
- Alvarenga, N.; Ferro, E.A. Bioactive Triterpenes and Related Compounds from Celastraceae. Stud. Nat. Prod. Chem. 2005, 30, 635–702. [Google Scholar]
- Biral, L.; Simmons, M.P.; Smidt, E.C.; Tembrock, L.R.; Bolson, M.; Archer, R.H.; Lombardi, J.A. Systematics of New World Maytenus (Celastraceae) and a New Delimitation of the Genus. Syst. Bot. 2017, 42, 1–14. [Google Scholar] [CrossRef]
- Niero, R.; de Andrade, S.F.; Cechinel Filho, V. A review of the ethnopharmacology, phytochemistry and pharmacology of plants of the Maytenus genus. Curr. Pharm. Des. 2011, 17, 1851–1871. [Google Scholar] [CrossRef] [PubMed]
- Chávez, H.; Callo, N.; Estévez-Braun, A.; Ravelo, A.G.; González, A.G. Sesquiterpene polyol esters from the leaves of Maytenus macrocarpa. J. Nat. Prod. 1999, 62, 1576–1577. [Google Scholar] [CrossRef] [PubMed]
- Torpocco, V.; Chávez, H.; Estévez-Braun, A.; Ravelo, A.G. New dammarane triterpenes from Maytenus macrocarpa. Chem. Pharm. Bull. 2007, 55, 812–814. [Google Scholar] [CrossRef] [PubMed]
- Piacente, S.; Santos, L.C.D.; Mahmood, N.; Pizza, C. Triterpenes from Maytenus macrocarpa and Evaluation of Their Anti-HIV Activity. Nat. Prod. Comm. 2006, 1, 1934578X0600101201. [Google Scholar] [CrossRef]
- Betancor, C.; Freire, R.; Gonzalez, A.G.; Salazar, J.A.; Pascard, C.; Prange, T. Three triterpenes and other terpenoids from Catha cassinoides. Phytochemistry 1980, 19, 1989–1993. [Google Scholar] [CrossRef]
- Chávez, H.; Estévez-Braun, A.; Ravelo, Á.G.; González, A.G. First examples of dammarane triterpenes isolated from Celastraceae. Tetrahedron 1997, 53, 6465–6472. [Google Scholar] [CrossRef]
- Chávez, H.; Estévez-Braun, A.; Ravelo, A.G.; González, A.G. Friedelane triterpenoids from Maytenus macrocarpa. J. Nat. Prod. 1998, 61, 82–85. [Google Scholar] [CrossRef]
- Anjaneyulu, A.S.R.; Narayanarao, M. Elaeodendrol and elaeodendradiol, new nor-triterpenes from Elaeodendron glaucum. Phytochemistry 1980, 19, 1163–1169. [Google Scholar] [CrossRef]
- González, A.G.; Alvarenga, N.L.; Ravelo, A.G.; Bazzocchi, I.L.; Ferro, E.A.; Navarro, A.G.; Moujir, L.M. Scutione, a new bioactive norquinonemethide triterpene from Maytenus scutioides (Celastraceae). Bioorg. Med. Chem. 1996, 4, 815–820. [Google Scholar] [CrossRef]
- Da Costa, P.M.; Ferreira, P.M.P.; da Silva Bolzani, V.; Furlan, M.; de Freitas Formenton Macedo Dos Santos, V.A.; Corsino, J.; de Moraes, M.O.; Costa-Lotufo, L.V.; Montenegro, R.C.; Pessoa, C. Antiproliferative activity of pristimerin isolated from Maytenus ilicifolia (Celastraceae) in human HL-60 cells. Toxicol In Vitro 2008, 22, 854–863. [Google Scholar] [CrossRef]
- Itoh, T.; Tamura, T.; Matsumoto, T. Triterpene alcohols in the seeds of solanaceae. Phytochemistry 1977, 16, 1723–1726. [Google Scholar] [CrossRef]
- Duan, H.; Takaishi, Y.; Momota, H.; Ohmoto, Y.; Taki, T.; Jia, Y.; Li, D. Triterpenoids from Tripterygium wilfordii. Phytochemistry 2000, 53, 805–810. [Google Scholar] [CrossRef]
- Itokawa, H.; Shirota, O.; Ikuta, H.; Morita, H.; Takeya, K.; Iitaka, Y. Triterpenes fromMaytenus ilicifolia. Phytochemistry 1991, 30, 3713–3716. [Google Scholar] [CrossRef]
- Liang, G.-Y.; Gray, A.L.; Waterman, P.G. Tirucallane and oleanane triterpenes from the resin of Aucoumea klaineana. Phytochemistry 1988, 27, 2283–2286. [Google Scholar] [CrossRef]
- Chávez, H.; Rodríguez, G.; Estévez-Braun, A.; Ravelo, A.G.; Estévez-Reyes, R.; González, A.G.; Fdez-Puente, J.L.; García-Grávalos, D. Macrocarpins A-D, new cytotoxic nor-triterpenes from Maytenus macrocarpa. Bioorg. Med. Chem. Lett. 2000, 10, 759–762. [Google Scholar] [CrossRef]
- Ruiz, L.; Ruiz, L.; Maco, M.; Cobos, M.; Gutierrez-Choquevilca, A.-L.; Roumy, V. Plants used by native Amazonian groups from the Nanay River (Peru) for the treatment of malaria. J. Ethnopharmacol. 2011, 133, 917–921. [Google Scholar] [CrossRef]
- Kvist, L.P.; Andersen, M.K.; Stagegaard, J.; Hesselsøe, M.; Llapapasca, C. Extraction from woody forest plants in flood plain communities in Amazonian Peru: Use, choice, evaluation and conservation status of resources. Forest Ecol. Manag. 2001, 150, 147–174. [Google Scholar] [CrossRef]
- Graham, J.G.; Quinn, M.L.; Fabricant, D.S.; Farnsworth, N.R. Plants used against cancer - an extension of the work of Jonathan Hartwell. J. Ethnopharmacol. 2000, 73, 347–377. [Google Scholar] [CrossRef]
- Sanz-Biset, J.; Cañigueral, S. Plant use in the medicinal practices known as “strict diets” in Chazuta valley (Peruvian Amazon). J. Ethnopharmacol. 2011, 137, 271–288. [Google Scholar] [CrossRef] [PubMed]
- Cos, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-infective potential of natural products: How to develop a stronger in vitro “proof-of-concept”. J. Ethnopharmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef] [PubMed]
- Kloucek, P.; Svobodova, B.; Polesny, Z.; Langrova, I.; Smrcek, S.; Kokoska, L. Antimicrobial activity of some medicinal barks used in Peruvian Amazon. J. Ethnopharmacol. 2007, 111, 427–429. [Google Scholar] [CrossRef] [PubMed]
- Kloucek, P.; Polesny, Z.; Svobodova, B.; Vlkova, E.; Kokoska, L. Antibacterial screening of some Peruvian medicinal plants used in Callería District. J. Ethnopharmacol. 2005, 99, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Mutai, C.; Bii, C.; Vagias, C.; Abatis, D.; Roussis, V. Antimicrobial activity of Acacia mellifera extracts and lupane triterpenes. J. Ethnopharmacol. 2009, 123, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Orabi, K.Y.; Al-Qasoumi, S.I.; El-Olemy, M.M.; Mossa, J.S.; Muhammad, I. Dihydroagarofuran alkaloid and triterpenes from Maytenus heterophylla and Maytenus arbutifolia. Phytochemistry 2001, 58, 475–480. [Google Scholar] [CrossRef]
- Christopher, R.; Nyandoro, S.S.; Chacha, M.; de Koning, C.B. A new cinnamoylglycoflavonoid, antimycobacterial and antioxidant constituents from Heritiera littoralis leaf extracts. Nat. Prod. Res. 2014, 28, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, C.T.; Pavan, F.R.; Leite, C.Q.F.; Sannomiya, M.; Vilegas, W.; de Andrade Leite, S.R.; Sacramento, L.V.S.; Sato, D.N. Triterpenes and antitubercular activity of Byrsonima crassa. Química Nova 2008, 31, 1719–1721. [Google Scholar] [CrossRef]
- Lannang, A.M.; Noudou, B.S.; Sewald, N. Ovalifolone A and B: New friedelane derivatives from Garcinia ovalifolia. Phytochem. Lett. 2013, 6, 157–161. [Google Scholar] [CrossRef]
- Mokoka, T.A.; McGaw, L.J.; Mdee, L.K.; Bagla, V.P.; Iwalewa, E.O.; Eloff, J.N. Antimicrobial activity and cytotoxicity of triterpenes isolated from leaves of Maytenus undata (Celastraceae). BMC Complement Altern. Med. 2013, 13, 111. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, P.R.; Ferraz, C.G.; Guedes, M.L.S.; Martins, D.; Cruz, F.G. A new biphenyl and antimicrobial activity of extracts and compounds from Clusia burlemarxii. Fitoterapia 2011, 82, 1237–1240. [Google Scholar] [CrossRef] [PubMed]
- Tamokou, J.D.D.; Tala, M.F.; Wabo, H.K.; Kuiate, J.R.; Tane, P. Antimicrobial activities of methanol extract and compounds from stem bark of Vismia rubescens. J. Ethnopharmacol. 2009, 124, 571–575. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-M.; Wang, H.-X.; Wei, S.-L.; Gao, K. Oleanane-Type Triterpenes from the Flowers and Roots of Saussurea muliensis. J. Nat. Prod. 2008, 71, 789–792. [Google Scholar] [CrossRef]
- Madureira, A.M.; Ascenso, J.R.; Valdeira, L.; Duarte, A.; Frade, J.P.; Freitas, G.; Ferreira, M.J.U. Evaluation of the antiviral and antimicrobial activities of triterpenes isolated from Euphorbia segetalis. Nat. Prod. Res. 2003, 17, 375–380. [Google Scholar] [CrossRef]
- Viswanathan, M.B.G.; Jeya Ananthi, J.D.; Sathish Kumar, P. Antimicrobial activity of bioactive compounds and leaf extracts in Jatropha tanjorensis. Fitoterapia 2012, 83, 1153–1159. [Google Scholar] [CrossRef]
- Ragasa, C.Y.; Espineli, D.L.; Mandia, E.H.; Raga, D.D.; Don, M.-J.; Shen, C.-C. A New Triterpene from Atalantia retusa Merr. Z. Naturforsch. B 2014, 67, 426–432. [Google Scholar] [CrossRef]
- Jain, S.C.; Singh, B.; Jain, R. Antimicrobial activity of triterpenoids from Heliotropium ellipticum. Fitoterapia 2001, 72, 666–668. [Google Scholar] [CrossRef]
- Singh, B.; Dubey, M.M. Estimation of triterpenoids from Heliotropium marifolium Koen. ex Retz. in vivo and in vitro. I. Antimicrobial screening. Phytother. Res. 2001, 15, 231–234. [Google Scholar] [CrossRef]
- Kuete, V.; Komguem, J.; Beng, V.P.; Meli, A.L.; Tangmouo, J.G.; Etoa, F.-X.; Lontsi, D. Antimicrobial components of the methanolic extract from the stem bark of Garcinia smeathmannii Oliver (Clusiaceae). S. Afr. J. Bot. 2007, 73, 347–354. [Google Scholar] [CrossRef]
- Kuete, V.; Nguemeving, J.R.; Beng, V.P.; Azebaze, A.G.B.; Etoa, F.-X.; Meyer, M.; Bodo, B.; Nkengfack, A.E. Antimicrobial activity of the methanolic extracts and compounds from Vismia laurentii De Wild (Guttiferae). J. Ethnopharmacol. 2007, 109, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Shaiq Ali, M.; Mahmud, S.; Perveen, S.; Rizwani, G.H.; Ahmad, V.U. Screening for the Antimicrobial Properties of the Leaves of Calophyllum inophyllum Linn. (Guttiferae). J. Chem. Soc. Pak. 1999, 21, 174–178. [Google Scholar]
- Chiozem, D.D.; Trinh-Van-Dufat, H.; Wansi, J.D.; Mbazoa Djama, C.; Fannang, V.S.; Seguin, E.; Tillequin, F.; Wandji, J. New friedelane triterpenoids with antimicrobial activity from the stems of Drypetes paxii. Chem. Pharm. Bull. 2009, 57, 1119–1122. [Google Scholar] [CrossRef] [PubMed]
- Gerrish, D.; Kim, I.C.; Kumar, D.V.; Austin, H.; Garrus, J.E.; Baichwal, V.; Saunders, M.; McKinnon, R.S.; Anderson, M.B.; Carlson, R.; et al. Triterpene based compounds with potent anti-maturation activity against HIV-1. Bioorg. Med. Chem. Lett. 2008, 18, 6377–6380. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, M.; Arshad, M.; Ahmad, M.; Pomerantz, R.J.; Wigdahl, B.; Parveen, Z. Antiviral potentials of medicinal plants. Virus Res. 2008, 131, 111–120. [Google Scholar] [CrossRef]
- Aiken, C.; Chen, C.H. Betulinic acid derivatives as HIV-1 antivirals. Trends Mol. Med. 2005, 11, 31–36. [Google Scholar] [CrossRef]
- Ng, T.B.; Huang, B.; Fong, W.P.; Yeung, H.W. Anti-human immunodeficiency virus (anti-HIV) natural products with special emphasis on HIV reverse transcriptase inhibitors. Life Sci. 1997, 61, 933–949. [Google Scholar] [CrossRef]
- Wu, P.-L.; Lin, F.-W.; Wu, T.-S.; Kuoh, C.-S.; Lee, K.-H.; Lee, S.-J. Cytotoxic and anti-HIV principles from the rhizomes of Begonia nantoensis. Chem. Pharm. Bull. 2004, 52, 345–349. [Google Scholar] [CrossRef]
- Callies, O.; Bedoya, L.M.; Beltrán, M.; Muñoz, A.; Calderón, P.O.; Osorio, A.A.; Jiménez, I.A.; Alcamí, J.; Bazzocchi, I.L. Isolation, Structural Modification, and HIV Inhibition of Pentacyclic Lupane-Type Triterpenoids from Cassine xylocarpa and Maytenus cuzcoina. J. Nat. Prod. 2015, 78, 1045–1055. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.H.; Kuo, L.M. Antitumour and anti-AIDS triterpenes from Celastrus hindsii. Phytochemistry 1997, 44, 1275–1281. [Google Scholar]
- Ren, H.-C.; Qin, R.-D.; Wang, Q.; Cheng, W.; Zhang, Q.-Y.; Liang, H. A new triterpenoid and a new glycoside from Pilea cavaleriei. J. Asian Nat. Prod. Res. 2012, 14, 1032–1038. [Google Scholar] [CrossRef] [PubMed]
- Dat, N.T.; Bae, K.; Wamiru, A.; McMahon, J.B.; Le Grice, S.F.J.; Bona, M.; Beutler, J.A.; Kim, Y.H. A dimeric lactone from Ardisia japonica with inhibitory activity for HIV-1 and HIV-2 ribonuclease H. J. Nat. Prod. 2007, 70, 839–841. [Google Scholar] [CrossRef] [PubMed]
- Reutrakul, V.; Chanakul, W.; Pohmakotr, M.; Jaipetch, T.; Yoosook, C.; Kasisit, J.; Napaswat, C.; Santisuk, T.; Prabpai, S.; Kongsaeree, P.; et al. Anti-HIV-1 constituents from leaves and twigs of Cratoxylum arborescens. Planta Med. 2006, 72, 1433–1435. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Reyes, M.; Basualdo, M.D.C.; Abe, F.; Jimenez-Estrada, M.; Soler, C.; Reyes-Chilpa, R. HIV-1 inhibitory compounds from Calophyllum brasiliense leaves. Biol. Pharm. Bull. 2004, 27, 1471–1475. [Google Scholar] [CrossRef]
- Jiang, R.-W.; Ma, S.-C.; He, Z.-D.; Huang, X.-S.; But, P.P.-H.; Wang, H.; Chan, S.-P.; Ooi, V.E.-C.; Xu, H.-X.; Mak, T.C.W. Molecular structures and antiviral activities of naturally occurring and modified cassane furanoditerpenoids and friedelane triterpenoids from Caesalpinia minax. Bioorg. Med. Chem. 2002, 10, 2161–2170. [Google Scholar] [CrossRef]
- Vásquez-Ocmín, P.; Cojean, S.; Rengifo, E.; Suyyagh-Albouz, S.; Amasifuen Guerra, C.A.; Pomel, S.; Cabanillas, B.; Mejía, K.; Loiseau, P.M.; Figadère, B.; et al. Antiprotozoal activity of medicinal plants used by Iquitos-Nauta road communities in Loreto (Peru). J. Ethnopharmacol. 2018, 210, 372–385. [Google Scholar] [CrossRef]
- Figueiredo, J.N.; Räz, B.; Séquin, U. Novel quinone methides from Salacia kraussii with in vitro antimalarial activity. J. Nat. Prod. 1998, 61, 718–723. [Google Scholar] [CrossRef]
- Lomchid, P.; Nasomjai, P.; Kanokmedhakul, S.; Boonmak, J.; Youngme, S.; Kanokmedhakul, K. Bioactive Lupane and Hopane Triterpenes from Lepisanthes senegalensis. Planta Med. 2017, 83, 334–340. [Google Scholar] [CrossRef]
- Mutai, C.; Rukunga, G.; Vagias, C.; Roussis, V. In vivo screening of antimalarial activity of Acacia mellifera (Benth) (Leguminosae) on Plasmodium berghei in mice. Afr J Tradit Complement Altern. Med. 2007, 5, 46–50. [Google Scholar] [CrossRef][Green Version]
- Ngouamegne, E.T.; Fongang, R.S.; Ngouela, S.; Boyom, F.F.; Rohmer, M.; Tsamo, E.; Gut, J.; Rosenthal, P.J. Endodesmiadiol, a friedelane triterpenoid, and other antiplasmodial compounds from Endodesmia calophylloides. Chem. Pharm. Bull. 2008, 56, 374–377. [Google Scholar] [CrossRef] [PubMed]
- Mitaine-Offer, A.-C.; Sauvain, M.; Deharo, E.; Muñoz, V.; Zèches-Hanrot, M. A new diterpene from Tanaecium jaroba. Planta Med. 2002, 68, 568–569. [Google Scholar] [CrossRef] [PubMed]
- Ogungbe, I.V.; Setzer, W.N. In-silico Leishmania target selectivity of antiparasitic terpenoids. Molecules 2013, 18, 7761–7847. [Google Scholar] [CrossRef] [PubMed]
- Torres-Santos, E.C.; Lopes, D.; Oliveira, R.R.; Carauta, J.P.P.; Falcao, C.A.B.; Kaplan, M. a. C.; Rossi-Bergmann, B. Antileishmanial activity of isolated triterpenoids from Pourouma guianensis. Phytomedicine 2004, 11, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Camacho, M.R.; Mata, R.; Castaneda, P.; Kirby, G.C.; Warhurst, D.C.; Croft, S.L.; Phillipson, J.D. Bioactive compounds from Celaenodendron mexicanum. Planta Med. 2000, 66, 463–468. [Google Scholar] [CrossRef]
- Takahashi, M.; Fuchino, H.; Sekita, S.; Satake, M. In vitro leishmanicidal activity of some scarce natural products. Phytother. Res. 2004, 18, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Selva, F.; Jiménez, I.A.; Munoz-Martínez, F.; Campillo, M.; Bazzocchi, I.L.; Pardo, L.; Ravelo, A.G.; Castanys, S.; Gamarro, F. Dihydro-beta-agarofuran sesquiterpenes: A new class of reversal agents of the multidrug resistance phenotype mediated by P-glycoprotein in the protozoan parasite Leishmania. Curr. Pharm. Des. 2005, 11, 3125–3139. [Google Scholar] [CrossRef]
- Pérez-Victoria, J.M.; Tincusi, B.M.; Jiménez, I.A.; Bazzocchi, I.L.; Gupta, M.P.; Castanys, S.; Gamarro, F.; Ravelo, A.G. New natural sesquiterpenes as modulators of daunomycin resistance in a multidrug-resistant Leishmania tropica line. J. Med. Chem. 1999, 42, 4388–4393. [Google Scholar] [CrossRef]
- Setzer, W.N.; Ogungbe, I.V. In-silico Investigation of Antitrypanosomal Phytochemicals from Nigerian Medicinal Plants. PLOS Negl. Trop. Dis. 2012, 6, e1727. [Google Scholar] [CrossRef]
- Abe, F.; Nagafuji, S.; Okabe, H.; Akahane, H.; Estrada-Muñiz, E.; Huerta-Reyes, M.; Reyes-Chilpa, R. Trypanocidal constituents in plants 3. Leaves of Garcinia intermedia and heartwood of Calophyllum brasiliense. Biol. Pharm. Bull. 2004, 27, 141–143. [Google Scholar] [CrossRef]
- Biavatti, M.W.; Vieira, P.C.; da Silva, M.F.G.F.; Fernandes, J.B.; Albuquerque, S.; Magalhães, C.M.; Pagnocca, F.C. Chemistry and bioactivity of Raulinoa echinata Cowan, an endemic Brazilian Rutaceae species. Phytomedicine 2001, 8, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Oramas-Royo, S.M.; Chávez, H.; Martín-Rodíguez, P.; Fernández-Pérez, L.; Ravelo, A.G.; Estévez-Braun, A. Cytotoxic triterpenoids from Maytenus retusa. J. Nat. Prod. 2010, 73, 2029–2034. [Google Scholar] [CrossRef] [PubMed]
- Espindola, L.S.; Dusi, R.G.; Demarque, D.P.; Braz-Filho, R.; Yan, P.; Bokesch, H.R.; Gustafson, K.R.; Beutler, J.A. Cytotoxic Triterpenes from Salacia crassifolia and Metabolite Profiling of Celastraceae Species. Molecules 2018, 23. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, M.T.R.; Ríos-Luci, C.; Padrón, J.M.; Palermo, J.A. Antiproliferative terpenoids and alkaloids from the roots of Maytenus vitis-idaea and Maytenus spinosa. Phytochemistry 2010, 71, 1741–1748. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-R.; Dai, Y.; Zhao, J.; Lin, L.; Wang, Y.; Wang, Y. A Mechanistic Overview of Triptolide and Celastrol, Natural Products from Tripterygium wilfordii Hook F. Front Pharmacol. 2018, 9, 104. [Google Scholar] [CrossRef]
- Gao, H.; Wu, L.; Kuroyanagi, M.; Harada, K.; Kawahara, N.; Nakane, T.; Umehara, K.; Hirasawa, A.; Nakamura, Y. Antitumor-promoting constituents from Chaenomeles sinensis KOEHNE and their activities in JB6 mouse epidermal cells. Chem. Pharm. Bull. 2003, 51, 1318–1321. [Google Scholar] [CrossRef]
- Kim, C.S.; Subedi, L.; Oh, J.; Kim, S.Y.; Choi, S.U.; Lee, K.R. Bioactive Triterpenoids from the Twigs of Chaenomeles sinensis. J. Nat. Prod. 2017, 80, 1134–1140. [Google Scholar] [CrossRef]
- Ohsaki, A.; Imai, Y.; Naruse, M.; Ayabe, S.-I.; Komiyama, K.; Takashima, J. Four new triterpenoids from Maytenus ilicifolia. J. Nat. Prod. 2004, 67, 469–471. [Google Scholar] [CrossRef]
- Hwang, B.Y.; Chai, H.-B.; Kardono, L.B.S.; Riswan, S.; Farnsworth, N.R.; Cordell, G.A.; Pezzuto, J.M.; Kinghorn, A.D. Cytotoxic triterpenes from the twigs of Celtis philippinensis. Phytochemistry 2003, 62, 197–201. [Google Scholar] [CrossRef]
- Thao, N.T.P.; Hung, T.M.; Lee, M.K.; Kim, J.C.; Min, B.S.; Bae, K. Triterpenoids from Camellia japonica and their cytotoxic activity. Chem. Pharm. Bull. 2010, 58, 121–124. [Google Scholar] [CrossRef]
- Mandal, A.; Ghosh, S.; Bothra, A.K.; Nanda, A.K.; Ghosh, P. Synthesis of friedelan triterpenoid analogs with DNA topoisomerase IIα inhibitory activity and their molecular docking studies. Eur. J. Med. Chem. 2012, 54, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Liu, L.; Zhen, X.; Wu, X.; Zhang, Y. Anti-tumor activity of triterpenoid-rich extract from bamboo shavings (Caulis bamfusae in Taeniam). Afr. J. Biotechnol. 2010, 9, 6430–6436. [Google Scholar]
- Tanaka, R.; Nakata, T.; Yamaguchi, C.; Wada, S.-I.; Yamada, T.; Tokuda, H. Potential anti-tumor-promoting activity of 3alpha-hydroxy-D:A-friedooleanan-2-one from the stem bark of Mallotus philippensis. Planta Med. 2008, 74, 413–416. [Google Scholar] [CrossRef]
- Yasukawa, K.; Takido, M.; Matsumoto, T.; Takeuchi, M.; Nakagawa, S. Sterol and triterpene derivatives from plants inhibit the effects of a tumor promoter, and sitosterol and betulinic acid inhibit tumor formation in mouse skin two-stage carcinogenesis. Oncology 1991, 48, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett. 2009, 285, 109–115. [Google Scholar] [CrossRef]
- Takaishi, Y.; Wariishi, N.; Tateishi, H.; Kawazoe, K.; Nakano, K.; Ono, Y.; Tokuda, H.; Nishino, H.; Iwashima, A. Triterpenoid inhibitors of interleukin-1 secretion and tumour-promotion from Tripterygium wilfordii var. regelii. Phytochemistry 1997, 45, 969–974. [Google Scholar] [CrossRef]
- Cascão, R.; Vidal, B.; Raquel, H.; Neves-Costa, A.; Figueiredo, N.; Gupta, V.; Fonseca, J.E.; Moita, L.F. Effective treatment of rat adjuvant-induced arthritis by celastrol. Autoimmun. Rev. 2012, 11, 856–862. [Google Scholar] [CrossRef]
- Reyes, C.P.; Núñez, M.J.; Jiménez, I.A.; Busserolles, J.; Alcaraz, M.J.; Bazzocchi, I.L. Activity of lupane triterpenoids from Maytenus species as inhibitors of nitric oxide and prostaglandin E2. Bioorg. Med. Chem. 2006, 14, 1573–1579. [Google Scholar] [CrossRef]
- Huang, S.-S.; Jian, K.-L.; Li, R.-J.; Kong, L.-Y.; Yang, M.-H. Phytosteroids and triterpenoids with potent cytotoxicities from the leaves of Chisocheton cumingianus. RSC Adv. 2016, 6, 6320–6328. [Google Scholar] [CrossRef]
- Wal, P.; Wal, A.; Sharma, G.; Rai, A. Biological Activities of Lupeol. Systematic Reviews in Pharmacy 2011, 2. [Google Scholar] [CrossRef]
- Siddique, H.R.; Saleem, M. Beneficial health effects of lupeol triterpene: A review of preclinical studies. Life Sci. 2011, 88, 285–293. [Google Scholar] [CrossRef]
- Oliveira-Junior, M.S.; Pereira, E.P.; de Amorim, V.C.M.; Reis, L.T.C.; do Nascimento, R.P.; da Silva, V.D.A.; Costa, S.L. Lupeol inhibits LPS-induced neuroinflammation in cerebellar cultures and induces neuroprotection associated to the modulation of astrocyte response and expression of neurotrophic and inflammatory factors. Int. Immunopharmacol. 2019, 70, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Ignoato, M.C.; Fabrão, R.M.; Schuquel, I.T.A.; Botelho, M.F.P.; Bannwart, G.; Pomini, A.M.; Arruda, L.L.M.; Bersani-Amado, C.A.; Santin, S.M.O. Chemical constituents of Machaerium hirtum Vell. (Fabaceae) leaves and branches and its anti-inflammatory activity evaluation. Nat. Prod. Res. 2013, 27, 1556–1561. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.; Meyyappan, A.; Selvamani, P.; Mukherjee, J.; Jaisankar, P. Lipoxygenase inhibitory activity of crude bark extracts and isolated compounds from Commiphora berryi. J. Ethnopharmacol. 2011, 138, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Antonisamy, P.; Duraipandiyan, V.; Ignacimuthu, S. Anti-inflammatory, analgesic and antipyretic effects of friedelin isolated from Azima tetracantha Lam. in mouse and rat models. J. Pharm. Pharmacol. 2011, 63, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Ming Shan ZHENG, J.H.Y.; Son, J.-K. Anti-Inflammatory Activity of Constituents Isolated from Ulmus davidiana var. japonica. Biomol. Ther. 2010, 18, 321–328. [Google Scholar] [CrossRef][Green Version]
- Fan, X.; Zi, J.; Zhu, C.; Xu, W.; Cheng, W.; Yang, S.; Guo, Y.; Shi, J. Chemical Constituents of Heteroplexis micocephala. J. Nat. Prod. 2009, 72, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, M.; Tomoo, T. Anti-inflammatory constituents of topically applied crude drugs. V. Constituents and anti-inflammatory effect of Aoki, Aucuba japonica Thunb. Biol. Pharm. Bull. 1994, 17, 665–667. [Google Scholar] [CrossRef] [PubMed]
- Queiroga, C.L.; Silva, G.F.; Dias, P.C.; Possenti, A.; de Carvalho, J.E. Evaluation of the antiulcerogenic activity of friedelan-3beta-ol and friedelin isolated from Maytenus ilicifolia (Celastraceae). J. Ethnopharmacol. 2000, 72, 465–468. [Google Scholar] [CrossRef]
- Tewtrakul, S.; Tansakul, P.; Daengrot, C.; Ponglimanont, C.; Karalai, C. Anti-inflammatory principles from Heritiera littoralis bark. Phytomedicine 2010, 17, 851–855. [Google Scholar] [CrossRef]
- Tsao, C.-C.; Shen, Y.-C.; Su, C.-R.; Li, C.-Y.; Liou, M.-J.; Dung, N.-X.; Wu, T.-S. New diterpenoids and the bioactivity of Erythrophleum fordii. Bioorg. Med. Chem. 2008, 16, 9867–9870. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Liang, C.; Kim, J.H.; Lee, Y.-M.; Hyun, J.-H.; Kang, H.-K.; Kim, J.-A.; Min, B.S.; Kim, Y.H. Triterpene compounds isolated from Acer mandshuricum and their anti-inflammatory activity. Bioorg. Med. Chem. Lett. 2010, 20, 1528–1531. [Google Scholar] [CrossRef] [PubMed]
- Mitaine-Offer, A.-C.; Hornebeck, W.; Sauvain, M.; Zèches-Hanrot, M. Triterpenes and phytosterols as human leucocyte elastase inhibitors. Planta Med. 2002, 68, 930–932. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, H.; Takaishi, Y.; Fujimoto, Y.; Duque, C.; Garzon, C.; Sato, M.; Okamoto, M.; Oshikawa, T.; Ahmed, S.U. Chemical Constituents from the Colombian Medicinal Plant Maytenus laevis. J. Nat. Prod. 2004, 67, 1919–1924. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.-C.; Chen, C.-K.; Tsai, S.-F.; Lee, S.-S. Triterpenes as α-glucosidase inhibitors from Fagus hayatae. Phytochemistry 2012, 74, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Sasikumar, P.; Sharathna, P.; Prabha, B.; Sunil, S.; Anil Kumar, N.; Sivan, V.V.; Sherin, D.R.; Suresh, E.; Manojkumar, T.K.; Radhakrishnan, K.V. Dihydro-β-agarofuran sesquiterpenoids from the seeds of Celastrus paniculatus Willd. and their α-glucosidase inhibitory activity. Phytochem. Lett. 2018, 26, 1–8. [Google Scholar]
- Giacoman-Martínez, A.; Alarcón-Aguilar, F.J.; Zamilpa, A.; Hidalgo-Figueroa, S.; Navarrete-Vázquez, G.; García-Macedo, R.; Román-Ramos, R.; Almanza-Pérez, J.C. Triterpenoids from Hibiscus sabdariffa L. with PPARδ/γ Dual Agonist Action: In Vivo, In Vitro and In Silico Studies. Planta Med. 2019, 85, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Ming, Q.; Hao, J.; Huang, Y.; Chen, H.; Wang, Q.; Yang, X.; Zhao, P. Anti-diabetic activity of canophyllol from Cratoxylum cochinchinense (Lour.) Blume in type 2 diabetic mice by activation of AMP-activated kinase and regulation of PPARγ. Food Funct. 2019, 10, 964–977. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, T.; Kishi, A.; Pongpiriyadacha, Y.; Matsuda, H.; Yoshikawa, M. Structures of new friedelane-type triterpenes and eudesmane-type sesquiterpene and aldose reductase inhibitors from Salacia chinensis. J. Nat. Prod. 2003, 66, 1191–1196. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Shimoda, H.; Nishida, N.; Takada, M.; Matsuda, H. Salacia reticulata and its polyphenolic constituents with lipase inhibitory and lipolytic activities have mild antiobesity effects in rats. J. Nutr. 2002, 132, 1819–1824. [Google Scholar] [CrossRef]
- Lan, G.; Zhang, J.; Ye, W.; Yang, F.; Li, A.; He, W.; Zhang, W.-D. Celastrol as a tool for the study of the biological events of metabolic diseases. Sci. China Chem. 2019, 62, 409–416. [Google Scholar] [CrossRef]
- Huaccho Rojas, J.J.; Cavero Aguilar, E.S.; Quezada Rojas, M.A.; Lara Paredes, A.M.; Lluen Escobar, S.E.; Paragulla Bocángel, A.A.; Rojas Villacorta, F.J.; Loja Herrera, B.; Alvarado Yarasca, Á.; Mujica Calderón, J.; et al. Efectos sobre la temperatura, frecuencia respiratoria, frecuencia cardiaca y electrocardiograma de Maytenus macrocarpa (Ruiz & Pav.) Briq. (chuchuhuasi). [Effects of Maytenus macrocarpa (Ruiz & Pav.) Briq. (chuchuhuasi) in temperature, respiratory rate, heart rate, and electrocardiogram]. Rev. Cuba. de Plantas Med. 2012, 17, 233–243. [Google Scholar]
Class | Name of Compound | Structure | Plant Part | Reference | |||
---|---|---|---|---|---|---|---|
Dihydro-β-agarofurane sesquiterpene | 6β,8β,15-triacetoxy-1α,9α-dibenzoyloxy-4β-hydroxy-β-dihydroagarofuran (1) 1α,6β,8β,15-tetraacetoxy-9α-(benzoyloxy)-4β-hydroxy-β-dihydroagarofuran (2) (1S,4S,6R,7S,8S,9R)-1,6,15,triacetoxy-8α,9β-dibenzoyloxy)-4β-hydroxy-β-dihydroagarofuran (3) | Leaves | [11] | ||||
Dammarane triterpenes | |||||||
R | R1 | ||||||
24-(E)-3-oxo-dammara-20,24-dien-26-al (4) 24-(Z)-3-oxo-dammara-20,24-dien-26-al (5) | H | Stem bark exudate | [11,12] | ||||
24-(E)-3-oxo-dammara-20,24-dien-26-ol (6) | H | ||||||
24-(E)-3-oxo-dammara-23α-hydroxy-20,24-dien-26-al (7) 24-(E)-3-oxo-dammara-23β-hydroxy-20,24-dien-26-al (8) | H | ||||||
24-(E)-3-oxo-dammara-6β-hydroxy-20,24-dien-26-al (9) | OH | ||||||
24-(E)-3-oxo-dammara-6β-hydroxy-20,24-dien-26-ol (10) | OH | ||||||
23-(Z)-3,25-dioxo-25-nor-dammara-20,24-dien (11) | H | ||||||
24-(E)-3-oxo-22-hydroxy-23-methylene-dammara-20,24-dien-26-oic acid (12) | H | ||||||
24-(Z)-3-oxo-dammara-20(21),24-dien-27-oic acid (13) | H | ||||||
Lupane triterpenes | |||||||
R | R1 | R2 | Bark | ||||
3-(E)-caffeoylbetulin (14) | 3-(E)-caffeoyl | H | OH | [13] | |||
3-(Z)-p-coumaroylbetulin (15) | 3-(Z)-p-coumaroyl | H | OH | ||||
3-(E)-p-coumaroylbetulin (16) | 3-(E)-p-coumaroyl | H | OH | ||||
nepeticin (17) | OH | OH | H | ||||
lupeol (18) | OH | H | H | [11] | |||
Pentacyclic triterpenes | |||||||
R | R1 | R2 | R3 | ||||
friedelin (19) | CH3 | CH3 | H | CH3 | Stem bark exudate, leaves | [12,14,15,16] | |
canophyllol (20) | CH2OH | CH3 | H | H | Stem bark exudate | [16,17] | |
3-oxofriedelan-25-al (21) | CH3 | CHO | H | H | [12,16,17] | ||
28-hydroxyfriedelane-1,3-dione (22) | CH2OH | CH3 | =O | H | [12,16] | ||
3-oxo-29-hydroxyfriedelane (23) | CH3 | CH3 | H | CH2OH | [12,14,15,16] | ||
Pentacyclic triterpenes | |||||||
R | R1 | R2 | R3 | ||||
scutione (24) | H | =O | H | CH3 | Stem bark exudate | [15,18] | |
netzahualcoyene (syn. vitideasin) (25) | H | H | COOCH3 | CH3 | [12,15] | ||
Pentacyclic triterpenes | |||||||
R | R1 | ||||||
pristimerin (26) | H | COOCH3 | Stem bark exudate | [12,15,19] | |||
tingenone (27) | =O | H | [15,20] | ||||
celastrol (28) | H | COOH | [12,15,21] | ||||
epifriedelinol (syn. epifriedelanol) (29) | Leaves | [14,15] | |||||
ilicifoline (D:A-friedoolean-1-en-29-ol-3-one) (30) | Stem bark exudates | [12,22] | |||||
According to Torpocco (2007), it was isolated as olean-12-ene-3β,6β-diol. Considering given references, it was isolated as olean-12-ene-3β,16β-diol (syn. maniladiol, daturadiol) (31) | Stem bark exudates | [12,23] | |||||
macrocarpine A (32) | Root | [24] | |||||
macrocarpine B (33) macrocarpine C (34) | Root | [24] | |||||
macrocarpine D (35) | Root | [24] | |||||
R1 | R2 | R3 | R4 | ||||
macrocarpoic acid A (3β, 22α-dihydroxy-olean-12-en-30-oic acid) (36) | β-OH | CH3 | COOH | α-OH | Stem bark exudates | [13] | |
macrocarpoic acid B (22α-hydroxy-olean-12-en-3-oxo-30-oic acid) (37) | =O | CH3 | COOH | α-OH | Stem bark exudates | [13] | |
maytenfolic acid (triptotriterpenic acid A, 3β,20α,22α-dihydroxy-olean-12-en-29-oic acid) (38) | β-OH | COOH | CH3 | α-OH | Stem bark exudates | [13] | |
triptotriterpenonic acid A (39) | =O | COOH | CH3 | α-OH | Stem bark exudates | [13] | |
22-epi-maytenfolic acid (triptotriterpenic acid B, 3β,22α-dihydroxy-olean-12-en-29-oic acid) (40) | β-OH | COOH | CH3 | β-OH | Stem bark exudates | [13] | |
22-epi-triptotriterpenonic acid A (41) | =O | COOH | CH3 | β-OH | Stem bark exudates | [13] | |
orthosphenic acid (42) | Stem bark extract | [13] | |||||
3-(E)-coumaroyluvaol (macrocarpol A) (43) 3-(E)-caffeoyluvaol (44) | Stem bark extract | [13] | |||||
octa-nor-13-hydroxydammara-1-en-3,17-dione (45) | Stem bark extract | [12] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malaník, M.; Treml, J.; Rjašková, V.; Tížková, K.; Kaucká, P.; Kokoška, L.; Kubatka, P.; Šmejkal, K. Maytenus macrocarpa (Ruiz & Pav.) Briq.: Phytochemistry and Pharmacological Activity. Molecules 2019, 24, 2288. https://doi.org/10.3390/molecules24122288
Malaník M, Treml J, Rjašková V, Tížková K, Kaucká P, Kokoška L, Kubatka P, Šmejkal K. Maytenus macrocarpa (Ruiz & Pav.) Briq.: Phytochemistry and Pharmacological Activity. Molecules. 2019; 24(12):2288. https://doi.org/10.3390/molecules24122288
Chicago/Turabian StyleMalaník, Milan, Jakub Treml, Veronika Rjašková, Karolina Tížková, Petra Kaucká, Ladislav Kokoška, Peter Kubatka, and Karel Šmejkal. 2019. "Maytenus macrocarpa (Ruiz & Pav.) Briq.: Phytochemistry and Pharmacological Activity" Molecules 24, no. 12: 2288. https://doi.org/10.3390/molecules24122288
APA StyleMalaník, M., Treml, J., Rjašková, V., Tížková, K., Kaucká, P., Kokoška, L., Kubatka, P., & Šmejkal, K. (2019). Maytenus macrocarpa (Ruiz & Pav.) Briq.: Phytochemistry and Pharmacological Activity. Molecules, 24(12), 2288. https://doi.org/10.3390/molecules24122288