Polypyrrole-Modified Nylon 6 Nanofibers as Adsorbent for the Extraction of Two β-Lactam Antibiotics in Water Followed by Determination with Capillary Electrophoresis
Abstract
:1. Introduction
2. Results
2.1. Characterization of PPy-PA6-NFsM
2.2. Optimization of the Conditions for Capillary Electrophoresis with a Diode Array Detector (CE-DAD) Analysis
2.3. Optimization of the Conditions for Solid Phase Membrane Extraction
2.3.1. Effect of the Amount of PPy-PA6-NFsM
2.3.2. Effect of Solution pH
2.3.3. Effect of Extraction Time
2.3.4. Optimization of Desorption Conditions
2.3.5. Extraction Volume
2.4. Reusability of PPy-PA6-NFsM
2.5. Analytical Performance
2.6. Comparison with Other Methods
2.7. Application to Real Samples
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Instrumentation
4.3. Preparation of PPy-PA6-NFsM
4.4. Solid Phase Membrane Extraction Procedure
4.5. CE-DAD Analysis
4.6. Sample Preparations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Z.; Zhang, X.; Huang, Y.; Wang, H. Comprehensive evaluation of pharmaceuticals and personal care products (PPCPs) in typical highly urbanized regions across China. Environ. Pollut. 2015, 204, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Wang, Y.; Tong, L.; Li, Y.; Deng, Y.; Guo, W.; Gan, Y. Seasonal variation of antibiotics concentration in the aquatic environment: a case study at Jianghan Plain, central China. Sci. Total Environ. 2015, 527–528, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Hernando, M.D.; Mezcua, M.; Fernández-Alba, A.R.; Barceló, D. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 2006, 69, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, T. Occurrence, abundance, and diversity of tetracycline resistance genes in 15 sewage treatment plants across China and other global locations. Environ. Sci. Technol. 2011, 45, 2598–2604. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.K.; Liu, F.; Tolan, S.; Sohn, M.; Kim, H.; Oturan, M.A. Oxidation of β-lactam antibiotics by ferrate(VI). Chem. Eng. J. 2013, 221, 446–451. [Google Scholar] [CrossRef]
- Kümmerer, K. Antibiotics in the aquatic environment-a review-Part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef] [PubMed]
- Rossmann, J.; Schubert, S.; Gurke, R.; Oertel, R.; Kirch, W. Simultaneous determination of most prescribed antibiotics in multiple urban wastewater by SPE-LC–MS/MS. J. Chromatogr. B 2014, 969, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, R.; Yunesian, M.; Nasseri, S.; Gholami, M.; Jalilzadeh, E.; Shoeibi, S.; Mesdaghinia, A. Occurrence and fate of most prescribed antibiotics in different water environments of Tehran, Iran. Sci. Total Environ. 2018, 619–620, 446–459. [Google Scholar] [CrossRef]
- Lian, D.; Zhao, S.; Li, J.; Li, B. Progress in stacking techniques based on field amplification of capillary electrophoresis. Anal. Bioanal. Chem. 2014, 406, 6129–6150. [Google Scholar] [CrossRef]
- He, Y.; Li, X.; Tong, P.; Lu, M.; Zhang, L.; Chen, G. An online field-amplification sample stacking method for the determination of β2-agonists in human urine by CE-ESI/MS. Talanta 2013, 104, 97–102. [Google Scholar] [CrossRef]
- Nguyen, T.T.T.N.; Petersen, N.J.; Rand, K.D. A simple sheathless CE-MS interface with a sub-micrometer electrical contact fracture for sensitive analysis of peptide and protein samples. Anal. Chim. Acta 2016, 936, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Szöko, É.; Tábi, T. Analysis of biological samples by capillary electrophoresis with laser induced fluorescence detection. J. Pharm. Biomed. Anal. 2010, 53, 1180–1192. [Google Scholar] [CrossRef] [PubMed]
- Ban, E.; Song, E. Recent developments and applications of capillary electrophoresis with laser-induced fluorescence detection in biological samples. J. Chromatogr. B 2013, 929, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, H.; Zhang, X.; Lei, H.; Bai, L.; Yang, G. On-line solid phase extraction using organic-inorganic hybrid monolithic columns for the determination of trace β-lactam antibiotics in milk and water samples. Talanta 2013, 104, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lin, L.; Zhang, X. A novel automated online SPE-coupled CE system for the analysis of sulfonamide antibiotics in wastewater. Chromatographia 2017, 80, 127–135. [Google Scholar] [CrossRef]
- Cámara, M.; Gallego-Picó, A.; Garcinuño, R.M.; Fernández-Hernando, P.; Durand-Alegría, J.S.; Sánchez, P.J. An HPLC-DAD method for the simultaneous determination of nine β-lactam antibiotics in ewe milk. Food Chem. 2013, 141, 829–834. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Szczepańska, N.; Guardia, M.; Namieśnik, J. Modern trends in solid phase extraction: new sorbent media. TRac-Trend Anal. Chem. 2016, 77, 23–43. [Google Scholar] [CrossRef]
- Jeong, G.; Oh, J.; Jang, J. Fabrication of N-doped multidimensional carbon nanofibers for highperformance cortisol biosensors. Biosens. Bioelectron. 2019, 131, 30–36. [Google Scholar] [CrossRef]
- Yun, S.I.; Kim, S.H.; Kim, D.W.; Kim, Y.A.; Kim, B. Facile preparation and capacitive properties of low-cost carbon nanofibers with ZnO derived from lignin and pitch as supercapacitor electrodes. Carbon 2019, 149, 637–645. [Google Scholar] [CrossRef]
- Batool, S.S.; Imran, Z.; Hassan, S.; Rasool, K.; Ahmad, M.; Rafiq, M.A. Enhanced adsorptive removal of toxic dyes using SiO2 nanofibers. Solid State Sci. 2016, 55, 13–20. [Google Scholar] [CrossRef]
- Min, L.; Yang, L.; Wu, R.; Zhong, L.; Yuan, Z.; Zheng, Y. Enhanced adsorption of arsenite from aqueous solution by an iron-doped electrospun chitosan nanofiber mat: Preparation, characterization and performance. J. Colloid Interf. Sci. 2018, 535, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Chigome, S.; Darko, G.; Buttner, U.; Torto, N. Semi-micro solid phase extraction with electrospun polystyrene fiber disks. Anal. Methods 2010, 2, 589–776. [Google Scholar] [CrossRef]
- Jian, N.; Qian, L.; Wang, C.; Li, R.; Xu, Q.; Li, J. Novel nanofibers mat as an efficient, fast and reusable adsorbent for solid phase extraction of non-steroidal anti-inflammatory drugs in environmental water. J. Hazard. Mater. 2019, 363, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kang, X.; Chen, L.; Pan, C.; Yao, Y.; Gu, Z. Fiber-packed SPE tips based on electrospun fibers. Anal. Bioanal. Chem. 2008, 391, 2189–2197. [Google Scholar] [CrossRef] [PubMed]
- Háková, M.; Raabová, H.; Havlíková, L.C.; Chocholouš, P.; Chvojka, J.; Šatínský, D. Testing of nylon 6 nanofibers with different surface densities as sorbents for solid phase extraction and their selectivity comparison with commercial sorbent. Talanta 2018, 181, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Wang, M.; Yu, S.; Tao, Q.; Tang, M. Trace analysis of diethylstilbestrol, dienestrol and hexestrol in environmental water by Nylon 6 nanofibers mat-based solid-phase extraction coupled with liquid chromatography-mass spectrometry. Analyst 2011, 136, 5030–5037. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, H.; Aghakhani, A. Polyaniline-nylon-6 electrospun nanofibers for headspace adsorptive microextraction. Anal. Chim. Acta 2012, 713, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Rekha, P.; Mohanty, P. Nanoporous hypercrosslinked polyaniline: An efficient adsorbent for the adsorptive removal of cationic and anionic dyes. J. Mol. Liq. 2016, 222, 1091–1110. [Google Scholar] [CrossRef]
- Chaves, A.R.; Júnior, G.C.; Queiroz, M.E.C. Solid-phase microextraction using poly(pyrrole) film and liquid chromatography with UV detection for analysis of antidepressants in plasma samples. J. Chromatogr. B 2009, 877, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Belabed, C.; Rekhila, G.; Doulache, M.; Zitouni, B.; Trari, M. Photo-electrochemical characterization of polypyrrol: Application to visible light induced hydrogen production. Sol. Energy Mater. Sol. Cells 2013, 114, 199–204. [Google Scholar] [CrossRef]
- Qi, F.; Li, X.; Yang, B.; Rong, F.; Xu, Q. Disks solid phase extraction based polypyrrole functionalized core-shell nanofibers mat. Talanta 2015, 114, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, H.; Mohammadi, A. Pyrrole-based conductive polymer as the solid-phase extraction medium for the preconcentration of environmental pollutants in water samples followed by gas chromatography with flame ionization and mass spectrometry detection. J. Chromatogr. A 2003, 1015, 23–30. [Google Scholar] [CrossRef]
- Buszewski, B.; Olszowy, P.; Szultka, M.; Jezewska, A. New approaches to extraction techniques in determination of 4,4-methylenebis(2-chloroaniline) in air and water solutions. Talanta 2012, 93, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Rohanifar, A.; Rodriguez, L.B.; Devasurendra, A.M.; Alipourasiabi, N.; Anderson, J.L.; Kirchhof, J.R. Solid-phase microextraction of heavy metals in natural water with a polypyrrole/carbon nanotube/1, 10-phenanthroline composite sorbent material. Talanta 2018, 188, 570–577. [Google Scholar] [CrossRef]
- Yang, B.; Cao, Y.; Qi, F.; Li, X.; Xu, Q. Atrazine adsorption removal with nylon6/polypyrrole core-shell nanofibers mat: possible mechanism and characteristics. Nanoscale Res. Lett. 2015, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Shen, K.; Ning, Y.; Wang, S.; Song, Y.; Liu, P.; Han, Q.; Wei, L.; Kang, X. Improved Sample Preparation Using Packed-Fiber Solid Phase Extraction in the Determination of Urinary P-Cresol. Nanosci. Nanotech. Lett. 2018, 10, 1469–1475. [Google Scholar] [CrossRef]
- Xie, L.; Huang, J.; Han, Q.; Song, Y.; Liu, P.; Kang, X. Solid phase extraction with Polypyrrole nanofibers for simultaneously determination of three water-soluble vitamins in urine. J. Chromatogr. A 2019, 1589, 30–38. [Google Scholar] [CrossRef]
- Szultka, M.; Kegler, R.; Fuchs, P.; Olszowy, P.; Miekisch, W.; Schubert, J.K.; Buszewski, B.; Mundkowski, R.G. Polypyrrole solid phase microextraction: a new approach to rapid sample preparation for the monitoring of antibiotic drugs. Anal. Chim. Acta 2010, 667, 77–82. [Google Scholar] [CrossRef]
- Hemmati, M.; Rajabi, M.; Asghari, A. Ultrasound-promoted dispersive micro solid-phase extraction of trace anti-hypertensive drugs from biological matrices using a sonochemically synthesized conductive polymer nanocomposite. Ultrason. Sonochem. 2017, 39, 12–24. [Google Scholar] [CrossRef]
- Olszowy, P.; Szultka, M.; Ligor, T.; Nowaczyk, J.; Buszewski, B. Fibers with polypyrrole and polythiophene phases for isolation and determination of adrenolytic drugs from human plasma by SPME-HPLC. J. Chromatogr. B 2010, 878, 2226–2234. [Google Scholar] [CrossRef]
- Granato, F.; Bianco, A.; Bertarelli, C.; Zerbi, G. Composite polyamide 6/polypyrrole conductive nanofibers. Macromol. Rapid Commun. 2009, 30, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Pan, K.; He, Q.; Cao, B. Polyacrylonitrile/polypyrrole core/shell nanofiber mat for the removal of hexavalent chromium from aqueous solution. J. Hazard. Mater. 2013, 244–245, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Kausaite-Minkstimiene, A.; Mazeiko, V.; Ramanaviciene, A.; Ramanavicius, A. Evaluation of chemical synthesis of polypyrrole particles. Colloids Surfaces A 2015, 483, 224–231. [Google Scholar] [CrossRef]
- Pozo, O.J.; Guerrero, C.; Sancho, J.V.; Ibáñez, M.; Pitarch, E.; Hogendoorn, E.; Hernández, F. Efficient approach for the reliable quantification and confirmation of antibiotics in water using on-line solid-phase extraction liquid chromatography/tandem mass spectrometry. J. Chromatogr. A 2006, 1103, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Benito-Peña, E.; Partal-Rodera, A.I.; León-González, M.E.; Moreno-Bondi, M.C. Evaluation of mixed mode solid phase extraction cartridges for the preconcentration of beta-lactam antibiotics in wastewater using liquid chromatography with UV-DAD detection. Anal. Chim. Acta 2006, 556, 415–422. [Google Scholar] [CrossRef]
- Cha, J.M.; Yang, S.; Carlson, K.H. Trace determination of β-lactam antibiotics in surface water and urban wastewater using liquid chromatography combined with electrospray tandem mass spectrometry. J. Chromatogr. A 2006, 1115, 46–57. [Google Scholar] [CrossRef]
- Bailón-Pérez, M.I.; García-Campaña, A.M.; Iruela, M.O.; Cruces-Blanco, C.; Gracia, L.G. Multiresidue determination of penicillins in environmental waters and chicken muscle samples by means of capillary electrophoresis-tandem mass spectrometry. Electrophoresis 2009, 30, 1708–1717. [Google Scholar] [CrossRef]
- Vork, F.T.A.; Janssen, L.J.J. Structural effects in polypyrrole synthesis. Electrochim. Acta 1988, 33, 1513–1517. [Google Scholar] [Green Version]
- Hong, S.; Cannon, F.S.; Hou, P.; Byrne, T.; Nieto-Delgado, C. Adsorptive removal of sulfate from acid mine drainage by polypyrrole modified activated carbons: effects of polypyrrole deposition protocols and activated carbon source. Chemosphere 2017, 184, 429–437. [Google Scholar] [CrossRef]
- Sessler, J.L.; Camiolo, S.; Gale, P.A. Pyrrolic and polypyrrolic anion binding agents. Coord. Chem. Rev. 2003, 240, 17–55. [Google Scholar] [CrossRef]
- Demiralay, E.Ç.; Üstün, Z.; Daldal, Y.D. Estimation of thermodynamic acidity constants of some penicillinase-resistant penicillins. J. Pharm. Biomed. Anal. 2014, 91, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Bai, R. Surface electric properties of polypyrrole in aqueous solutions. Langmuir 2003, 19, 10703–10709. [Google Scholar] [CrossRef]
- Feng, J.; Li, J.; Lv, W.; Xu, H.; Yang, H.; Yan, W. Synthesis of polypyrrole nano-fibers with hierarchical structure and its adsorption property of acid red G from aqueous solution. Synth. Met. 2014, 19, 66–73. [Google Scholar] [CrossRef]
Sample Availability: PA6-NFsM and PPy-PA6-NFsM are available from the authors. All other reagents and compounds are commercially available. |
Analyte | Linear Range (ng/mL) | Regression Equation | R2 | LOD (ng/mL) | LOQ (ng/mL) |
---|---|---|---|---|---|
CLOX | 5.0–250.0 | Y = 251.32X − 417.45 | 0.9973 | 2.0 | 5.0 |
OXA | 5.0–250.0 | Y = 312.26X − 906.2 | 0.9968 | 2.0 | 5.0 |
Method | Sample | LOD | Founded | Recovery (%) | Reference |
---|---|---|---|---|---|
C18 SPE- LC–MS/MS | surface water | 1.0–1.3 ng/L | n. d. a | 86–95 | [44] |
MAX SPE- HPLC-DAD | wastewater | 2.8–11.2 ng/mL | - b | 77–96 | [45] |
HLB SPE-HPLC/MS/MS | river, wastewater | 8 ng/L river 8–14 ng/L wastewater | OXA 10 ng/L, CLOX 15 ng/L in wastewater | 83.9–95.9 | [46] |
HLB SPE-CE-MS/MS | river | 0.26 ng/mL | - | 89–96 | [47] |
PPy-PA6-NFsM SPE-CE-DAD | urban river | 2.0 ng/mL | n. d. | 84.2–96.4 | This work |
Analyte | Added (ng/mL) | Sample 1 | Sample 2 | Sample 3 | Intra-day RSD (%, n = 5) | Inter-day RSD (%, n = 5) | |||
---|---|---|---|---|---|---|---|---|---|
Founded (ng/mL) | Recovery (%) | Founded (ng/mL) | Recovery (%) | Founded (ng/mL) | Recovery (%) | ||||
CLOX | - | n.d. a | - | n.d. | - | n.d. | - | - | - |
50.0 | 48.2 | 96.4 | 46.8 | 93.6 | 46.1 | 92.2 | 5.02 | 2.99 | |
100.0 | 87.1 | 87.1 | 89.1 | 89.1 | 84.9 | 84.9 | 5.29 | 4.77 | |
150.0 | 137.1 | 91.4 | 141.0 | 94.0 | 129.6 | 86.4 | 4.10 | 2.75 | |
OXA | - | n.d. | - | n.d. | - | n.d. | - | - | - |
50.0 | 46.5 | 93.0 | 46.2 | 92.4 | 47.6 | 95.2 | 3.05 | 3.10 | |
100.0 | 84.2 | 84.2 | 86.3 | 86.3 | 89.3 | 89.3 | 2.26 | 2.38 | |
150.0 | 128.8 | 85.9 | 133.8 | 89.2 | 130.8 | 87.2 | 4.11 | 7.02 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Miao, J.; Yin, Z.; Xu, X.; Shi, H. Polypyrrole-Modified Nylon 6 Nanofibers as Adsorbent for the Extraction of Two β-Lactam Antibiotics in Water Followed by Determination with Capillary Electrophoresis. Molecules 2019, 24, 2198. https://doi.org/10.3390/molecules24122198
Li X, Miao J, Yin Z, Xu X, Shi H. Polypyrrole-Modified Nylon 6 Nanofibers as Adsorbent for the Extraction of Two β-Lactam Antibiotics in Water Followed by Determination with Capillary Electrophoresis. Molecules. 2019; 24(12):2198. https://doi.org/10.3390/molecules24122198
Chicago/Turabian StyleLi, Xinghua, Junjie Miao, Zhendong Yin, Xiangdong Xu, and Hongmei Shi. 2019. "Polypyrrole-Modified Nylon 6 Nanofibers as Adsorbent for the Extraction of Two β-Lactam Antibiotics in Water Followed by Determination with Capillary Electrophoresis" Molecules 24, no. 12: 2198. https://doi.org/10.3390/molecules24122198
APA StyleLi, X., Miao, J., Yin, Z., Xu, X., & Shi, H. (2019). Polypyrrole-Modified Nylon 6 Nanofibers as Adsorbent for the Extraction of Two β-Lactam Antibiotics in Water Followed by Determination with Capillary Electrophoresis. Molecules, 24(12), 2198. https://doi.org/10.3390/molecules24122198