Potential of a Small Molecule Carvacrol in Management of Vegetable Diseases
Abstract
1. Carvacrol
2. Antimicrobial Activity of Carvacrol and Associated Mechanisms
3. Studies on Plant Pathogens and Research Findings Against Vegetable Diseases Involving Carvacrol
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marchese, A.; Arciola, C.R.; Coppo, E.; Barbieri, R.; Barreca, D.; Chebaibi, S.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M.; Daglia, M. The natural plant compound carvacrol as an antimicrobial and anti-biofilm agent: Mechanisms, synergies, and bio-inspired anti-infective materials. Biofouling 2018, 34, 630–656. [Google Scholar] [CrossRef] [PubMed]
- Nostro, A.; Papalia, T. Antimicrobial activity of carvacrol: Current progress and future prospectives. Recent Pat. Antiinfect. Drug Discov. 2012, 7, 28–35. [Google Scholar] [CrossRef]
- Kalemba, D.; Kunicka, A. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 2003, 10, 813–829. [Google Scholar] [CrossRef]
- Rappoport, Z. The chemistry of phenols. 2 Volume Set; John Wiley & Sons: Chichester, UK, 2004. [Google Scholar]
- Arfa, A.B.; Combes, S.; Preziosi-Belloy, L.; Gontard, N.; Chalier, P. Antimicrobial activity of carvacrol related to its chemical structure. Lett. Appl. Microbiol. 2006, 43, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Fortunati, E.; Mazzaglia, A.; Balestra, G. Sustainable control strategies for plant protection and food packing sectors by natural substances and novel nanotechnological approaches. J. Sci. Food Agric. 2019, 99, 986–1000. [Google Scholar] [CrossRef]
- Ozogul, Y.; Kuley, E.; Ucar, Y.; Ozogul, F. Antimicrobial impacts of essential oils on food-borne pathogens. Recent Pat. Food Nutr. Agric. 2015, 7, 53–61. [Google Scholar] [CrossRef]
- Gilling, D.H.; Kitajima, M.; Torrey, J.R.; Bright, K.R. Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus. J. Appl. Microbiol. 2014, 116, 1149–1163. [Google Scholar] [CrossRef]
- Toujani, M.M.; Rittà, M.; Civra, A.; Genovese, S.; Epifano, F.; Ghram, A.; Lembo, D.; Donalisio, M. Inhibition of HSV-2 infection by pure compounds from Thymus capitatus extract in vitro. Phytother. Res. 2018, 32, 1555–1563. [Google Scholar] [CrossRef]
- Cetin, H.; Erier, F.; Yanikoglu, A. A comparative evaluation of Origanum onites essential oil and its four major components as larvicides against the pine processionary moth, Thaumetopoea wilkinsoni Tams. Pest. Manag. Sci. 2007, 63, 830–833. [Google Scholar] [CrossRef]
- Sedy, K.A.; Koschier, E.H. Bioactivity of carvacrol and thymol against Frankliniella occidentalis and Thrips tabaci. J. Appl. Entomol. 2003, 127, 313–316. [Google Scholar] [CrossRef]
- Traboulsi, A.F.; Taoubi, K.; EI-Hai, S.; Bessiere, J.M.; Rammal, S. Insecticidal properties of essential plant oils against the mosquito Culex pipens molestus (Diptera:Culicidae). Pest. Manag. Sci. 2002, 58, 491–495. [Google Scholar] [CrossRef]
- Burt, S.A.; Adolfse, S.J.M.; Ahed, D.S.A.; Monique, H.G.; Zijderveld, T.; Jongerius-Gortemaker, B.G.M.; Post, J.A.; Brüggemann, H.; Santos, R.R. Cinnamaldehyde, carvacrol and organic acids affect gene expression of selected oxidative stress and inflammation markers in IPEC-J3 cells exposed to Salmonella typhimurium. Phytother. Res. 2016, 30, 1988–2000. [Google Scholar] [CrossRef]
- Siroli, L.; Braschi, G.; de Jong, A.; Kok, J.; Patrignani, F.; Lanciotti, R. Transcriptomic approach and membrane fatty acid analysis to study the response mechanisms of Escherichia coli to thyme essential oil, carvacrol, 2-(E)-hexanal and citral exposure. J. Appl. Microbiol. 2018, 125, 1308–1320. [Google Scholar] [CrossRef]
- Ghafari, O.; Sharifi, A.; Ahmadi, A.; Fasaei, B.N. Antibacterial and anti-PmrA activity of plant essential oils against fluoroquinolone resistant Streptococcus pneumoniae clinical isolates. Lett. Appl. Microbiol. 2018, 67, 564–569. [Google Scholar] [CrossRef]
- Jabeur, M.B.; Somai-Jemmali, L.; Hamada, W. Thyme essential oil as alternative mechanism: Biofungicide-causing sensitivity of Mycosphaerella graminicola. J. Appl. Microbiol. 2017, 122, 932–939. [Google Scholar] [CrossRef]
- Sharifi, A.; Mohammadzadeh, A.; Salehi, T.Z.; Mahmoodi, P. Antibacterial, antibiofilm and antiquorum sensing effects of Thymus daenensis and Satureja hortensis essential oils against Staphylococcus aureus isolates. J. Appl. Microbiol. 2017, 124, 379–388. [Google Scholar] [CrossRef]
- Donnarumma, L.; Milano, F.; Trotta, S.; Annesi, T. Use of essential oils in control strategies against zucchini powdery mildew. J. Phytopathol. 2015, 163, 877–885. [Google Scholar] [CrossRef]
- Giovanale, G.; Fortunati, E.; Mazzaglia, A.; Balestra, G.M. Possibilities of copper reduction in control of tomato bacterial disease. J. Plant. Pathol. 2017, 99, S27. [Google Scholar]
- Bi, Y.; Jiang, H.; Hausbeck, M.K.; Hao, J. Inhibitory effects of essential oils for controlling Phytophthora capsici. Plant Dis. 2012, 96, 797–803. [Google Scholar] [CrossRef]
- Gwinn, K.D.; Ownley, B.H.; Greene, S.E.; Clark, M.M.; Taylor, C.L.; Springfield, T.N.; Trently, D.J.; Green, J.F.; Reed, A.; Hamilton, S.L. Role of essential oils in control of Rhizoctonia damping-off in tomato with bioactive Monarda herbage. Phytopathology 2010, 100, 493–501. [Google Scholar] [CrossRef]
- Soylu, S.; Yigitbas, H.; Soylu, E.M.; Kurt, S. Antifungal effects of essential oils from oregano and fennel on Sclerotinia sclerotiorum. J. Appl. Microbiol. 2007, 103, 1021–1030. [Google Scholar] [CrossRef] [PubMed]
- Pradhanang, P.M.; Momol, M.T.; Olson, S.M.; Jones, J.B. Effects of plant essential oils on Ralstonia solanacearum population density and bacterial wilt incidence in tomato. Plant Dis. 2003, 87, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Pérez, E.E.; Lewis, E.E. Use of entomopathogenic nematodes and thyme oil to suppress plant-parasitic nematodes on English boxwood. Plant Dis. 2006, 90, 471–475. [Google Scholar] [CrossRef]
- Oka, Y.; Nacar, S.; Putievsky, E.; Ravid, U.; Yaniv, Z.; Spiegel, Y. Nematicidal activity of essential oils and their components against the root-knot nematode. Phytopathology 2000, 90, 710–715. [Google Scholar] [CrossRef]
- Laquale, S.; Candido, V.; Avato, P.; Argentieri, M.P.; D’Addabbo, T. Essential oils as soil biofumigants for the control of the root-knot nematode Meloidogyne incognita on tomato. Ann. Appl. Biol. 2015, 167, 217–224. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, Z.; Li, M.; Xing, M.; Xian, T.; Tu, K. Carvacrol and eugenol effectively inhibit Rhizopus stolonifera and control postharvest soft rot decay in peaches. J. Appl. Microbiol. 2018, 124, 166–178. [Google Scholar] [CrossRef] [PubMed]
- Neri, F.; Mari, M.; Brigati, S. Control of Penicillium expansum by plant volatile compounds. Plant Pathol. 2006, 55, 100–105. [Google Scholar] [CrossRef]
- Scora, K.M.; Scora, R.W. Effect of volatiles on mycelium growth of Penicillium digitatum, P. italicum, and P. ulaiense. J. Basic Microb. 1998, 38, 405–413. [Google Scholar] [CrossRef]
- Sun, X.; Narciso, J.; Wang, Z.; Ference, C.; Bai, J.; Zhou, K. Effects of chitosan-essential oils coatings on safety and quality of fresh blueberries. J. Food Sci. 2014, 79, M955–M960. [Google Scholar] [CrossRef]
- Hassani, A.; Fathi, Z.; Ghosta, Y.; Abdollahi, A.; Meshkatalsadat, M.H.; Marandi, R.J. Evaluation of plant essential oils for control of postharvest brown and gray mold rots on apricot. J. Food Safety 2012, 32, 94–101. [Google Scholar] [CrossRef]
- Mayaud, L.; Carricajo, A.; Zhiri, A.; Aubert, G. Comparison of bacteriostatic and bactericidal activity of 13 essential oils against strains with varying sensitivity to antibiotics. Lett. Appl. Microbiol. 2008, 47, 167–173. [Google Scholar] [CrossRef]
- Ultee, A.; Gorris, L.G.M.; Smid, E.J. Bactericidal activity of carvacrol towards the food-borne pathogen Bacillus cereus. J. Appl. Microbiol. 1998, 85, 211–218. [Google Scholar] [CrossRef]
- Denton, J.J.; Ravishankar, S.; Friedman, M.; Jaroni, D. Efficacy of plant-derived compounds against Escherichia coli O157:H7 during flume-washing and storage of organic leafy greens. J. Food Process. Pres. 2015, 39, 2728–2737. [Google Scholar] [CrossRef]
- Chai, C.; Lee, S.; Kim, J.; Oh, S. Synergistic antimicrobial effects of organic acids in combination with carvacrol against Shigellasonnei. J. Food Safety 2016, 36, 360–366. [Google Scholar] [CrossRef]
- Pol, I.E.; Smid, E.J. Combined action of nisin and carvacrol on Bacillus cereus and Listeria monocytogenes. Lett. Appl. Microbiol. 1999, 29, 166–170. [Google Scholar] [CrossRef]
- Conte, R.; Marturano, V.; Peluso, G.; Calarco, A.; Cerruti, P. Recent advances in nanoparticle-mediated delivery of anti-inflammatory phytocompounds. Int. J. Mol. Sci. 2017, 18, 709. [Google Scholar] [CrossRef]
- Correa-Pacheco, Z.N.; Bautista-Banos, S.; Valle-Marguina, M.Á.; Hernández-López, M. The effect of nanostructured chitosan and chitosan-thyme essential oil coatings on Colletotrichum gloeosporioides growth in vitro and on cv Hass avocado and fruit quality. J. Phytopathol. 2017, 165, 297–305. [Google Scholar] [CrossRef]
- Moreira, A.C.G.; Martins, I.M.; Fernandes, I.; Barreiro, M.F.; Rodrigues, A.E. Microencapsulation of red white thyme oil in poly (lactic-co-glycolic) acid: Assessment of encapsulation efficiency and antimicrobial capacity of the produced microsapsules. Can. J. Chem. Eng. 2016, 94, 469–475. [Google Scholar] [CrossRef]
- Bernardos, A.; Marina, T.; Žáček, P.; Pérez-Esteve, É.; Martínez-Manez, R.; Lhotka, M.; Kouřimská, L.; Pulkrábek, J.; Klouček, P. Antifungal effect of essential oil components against Aspegillus niger when loaded into silica mesoporous supports. J. Sci. Food Agric. 2014, 95, 2824–2831. [Google Scholar] [CrossRef] [PubMed]
- Londoño, A.; Capobianco, H.; Zhang, S.; Polston, J.E. First record of tomato chlorotic spot virus in the USA. Trop. Plant Path. 2012, 37, 333–337. [Google Scholar] [CrossRef]
- Poudel, B.; Abdalla, O.; Liu, Q.; Wang, Q.; McAvoy, E.; Seal, D.; Ling, K.; McGrath, M.; Zhang, S. Field distribution and disease incidence of tomato chlorotic spot virus, an emerging virus threatening tomato production in south Florida. Trop. Plant. Pathol. 2019, in press. [Google Scholar]
Sample Availability: Samples of the compound carvacrol are available from the authors and was purchased from Sigma Aldrich. |
Pathogen | Crop/Disease | Application Method | Studies Conducted | Reference |
---|---|---|---|---|
Podosphaera xanthii fungus | Zucchini/powdery mildew | Foliar spray | In vivo | Donnarumma et al., 2015 [18] |
Xanthomonas spp.; Pseudomonas syringae pv. tomato bacterium | Tomato/bacterial spot; bacterial speck | Foliar spray | In vivo | Giovanale et al., 2017 [19] |
Phytophthora capsici oomycete | Zucchini/crown rot | Amended in soil | In vitro and in vivo | Bi et al., 2012 [20] |
Rhizoctonia solani fungus | Tomato/damping-off | Amended in soil | In vivo | Gwinn et al., 2010 [21] |
Sclerotiniasclerotiorum fungus | Tomato | Amended in soil | In vitro and in vivo | Soylu et al., 2007 [22] |
Ralstonia solanacearum bacterium | Tomato/bacterial wilt | Amended in soil | In vivo | Pradhanang et al., 2003 [23] |
Various plant-parasitic nematodes | English boxwood | Amended in soil | In vivo | Pérez and Lewis, 2006) [24] |
Meloidogyne javanica nematode | Cucumber/root-knot nematode | Amended in soil | In vitro and in vivo | Oka et al., 2000 [25] |
Meloidogyne incognita nematode | Tomato/root knot nematode | Amended in soil | In vivo | Laquale et al., 2015 [26] |
Rhizopus stolonifera zygomycota | Peach fruit/soft rot decay | Fumigation | In vitro and in vivo | Zhou et al., 2018 [27] |
Penicillium expansum fungus | Pear fruit/blue mold | Fumigation | In vitro and in vivo | Neri et al., 2006 [28] |
Penicillium spp. fungus | NA | Agar diffusion | In vitro | Scora and Scora, 1998 [29] |
Escherichia coli/P. digitatum bacterium/fungus | Blueberry fruit | Coated onto fruit | In vitro and in vivo | Sun et al., 2014 [30] |
Monilinia fructicola, Botrytis cinereal fungus | Apricot fruit/brown and gray mold rot | Sprayed onto fruit | In vivo | Hassani et al., 2012 [31] |
Carvacrol Concentration (mM) | Mycelial Growth Rate on Media (mm/day) z | Xanthomonas Perforans Concentration after Incubation in Nutrient Broth (CFU/mL) y | |||
---|---|---|---|---|---|
Fusarium Spp. | Rhozoctonia Solani | 30 min | 1 h | 2 h | |
0 | 3.5 a | 10.6 a | 2.9 × 106 | 5.2 × 106 | 4.4 × 106 |
0.25 | 2.3 b | 0.9 b | 2.1 × 106 | 3.3 × 106 | 3.9 × 106 |
0.5 | 0 | 0 | 6.5 × 105 | 1.2 × 106 | 3.5 × 105 |
0.75 | 0 | 0 | 1.6 × 102 | 15 | 0 |
1.0 | 0 | 0 | 0 | 0 | 0 |
Treatment | Timing of Application z | Disease Severity (%) y | |
---|---|---|---|
2 h before Inoculation | 24 h after Inoculation | ||
Untreated control | NO | NO | 64 a |
Carvacrol at 0.1 mM | YES | NO | 59.0 a,b |
YES | YES | 49.0 c | |
Carvacrol at 0.5 mM | YES | NO | 61.5 a,b |
YES | YES | 36.5 d | |
Carvacrol at 1.0 mM | YES | NO | 58.0 a,b |
YES | YES | 40.5 d | |
Carvacrol at 5.0 mM | YES | NO | 56.0 b |
YES | YES | 37.0 d |
Treatment | Early Blight (%) zw | Bacterial Spot (%) zw | Vigor yw | Yield of Extra and Large Fruit (kg/plant) xw | Yield of Total Fruit (kg/plant) xw |
---|---|---|---|---|---|
Untreated control | 38.1 a | 6.9 a | 3.2 b | 0.67 b | 1.65 b |
Carvacrol @ 0.5 mM | 32.0 b | 2.4 b | 4.3 a | 1.23 a | 2.13 a |
Carvacrol @ 1.0 mM | 30.6 b | 3.5 b | 4.5 a | 1.27 a | 2.22 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Qiao, K.; Zhang, S. Potential of a Small Molecule Carvacrol in Management of Vegetable Diseases. Molecules 2019, 24, 1932. https://doi.org/10.3390/molecules24101932
Liu Q, Qiao K, Zhang S. Potential of a Small Molecule Carvacrol in Management of Vegetable Diseases. Molecules. 2019; 24(10):1932. https://doi.org/10.3390/molecules24101932
Chicago/Turabian StyleLiu, Qingchun, Kang Qiao, and Shouan Zhang. 2019. "Potential of a Small Molecule Carvacrol in Management of Vegetable Diseases" Molecules 24, no. 10: 1932. https://doi.org/10.3390/molecules24101932
APA StyleLiu, Q., Qiao, K., & Zhang, S. (2019). Potential of a Small Molecule Carvacrol in Management of Vegetable Diseases. Molecules, 24(10), 1932. https://doi.org/10.3390/molecules24101932