The Role of Heavy Metals in Plant Response to Biotic Stress
Abstract
:1. Introduction
2. Hormesis as A Biological Phenomenon in the Context of Organisms’ Defence against Heavy Metals
3. Influence of Heavy Metals in the Response of Plants to Biotic Stressors and Cross-Talk between Heavy Metals and Biotic Stressors
4. Effects of Heavy Metals on Insects Including Aphids
5. Effects of Heavy Metals on Fungi
6. Effects of Heavy Metals Deposition in the Environment on the Formation of Ecological Communities of Aphids under Natural Conditions
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Straalen, N.; Donker, M. Heavy metals adaptation in terrestial arthropods—Physiological and genetic aspects. Proc. Exp. Appl. Entomol. Neth. Entomol. Soc. 1994, 5, 3–17. [Google Scholar]
- Wang, S.; Li, R.; Zhang, Z.; Feng, J.; Shen, F. Assessment of the heavy metal pollution and potential ecological hazardous in agricultural soils and crops of Tongguan, Shaanxi Province. J. Environ. Sci. China 2014, 34, 2313–2320. [Google Scholar]
- Yadav, S.K. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S. Afr. J. Bot. 2010, 76, 167–179. [Google Scholar] [CrossRef]
- Wierzbicka, A.; Bohgard, M.; Pagels, J.H.; Dahl, A.; Löndahl, J.; Hussein, T.; Swietlicki, E.; Gudmundsson, A. Quantification of differences between occupancy and total monitoring periods for better assessment of exposure to particles in indoor environments. Atmos. Environ. 2015, 106, 419–428. [Google Scholar] [CrossRef]
- Bell, J.N.B.; Treshow, M. Air Pollution and Plant Life; John Wiley & Sons: Hoboken, NJ, USA, 2002; ISBN 978-0-471-49091-3. [Google Scholar]
- Mleczek, M.; Goliński, P.; Krzesłowska, M.; Gąsecka, M.; Magdziak, Z.; Rutkowski, P.; Budzyńska, S.; Waliszewska, B.; Kozubik, T.; Karolewski, Z.; et al. Phytoextraction of potentially toxic elements by six tree species growing on hazardous mining sludge. Environ. Sci. Pollut. Res. 2017, 24, 22183–22195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chmielowska-Bąk, J.; Izbiańska, K.; Ekner-Grzyb, A.; Bayar, M.; Deckert, J. Cadmium stress leads to rapid increase in RNA oxidative modifications in soybean seedlings. Front. Plant Sci. 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Pastor, V.; Luna, E.; Mauch-Mani, B.; Ton, J.; Flors, V. Primed plants do not forget. Environ. Exp. Bot. 2013, 94, 46–56. [Google Scholar] [CrossRef]
- Chen, K.; Arora, R. Priming memory invokes seed stress-tolerance. Environ. Exp. Bot. 2013, 94, 33–45. [Google Scholar] [CrossRef]
- Borges, A.A.; Jiménez-Arias, D.; Expósito-Rodríguez, M.; Sandalio, L.M.; Pérez, J.A. Priming crops against biotic and abiotic stresses: MSB as a tool for studying mechanisms. Front. Plant Sci. 2014, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruce, T.J.A.; Matthes, M.C.; Napier, J.A.; Pickett, J.A. Stressful “memories” of plants: Evidence and possible mechanisms. Plant Sci. 2007, 173, 603–608. [Google Scholar] [CrossRef]
- Ahmad, S.; Gordon-Weeks, R.; Pickett, J.; Ton, J. Natural variation in priming of basal resistance: From evolutionary origin to agricultural exploitation: Natural variation in priming of basal resistance. Mol. Plant Pathol. 2010, 11, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Fujita, M.; Fujita, Y.; Noutoshi, Y.; Takahashi, F.; Narusaka, Y.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Crosstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks. Curr. Opin. Plant Biol. 2006, 9, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Poschenrieder, C.; Tolrà, R.; Barceló, J. Can metals defend plants against biotic stress? Trends Plant Sci. 2006, 11, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Poschenrieder, C.; Tolrà, R.; Barceló, J. Interactions between metal ion toxicity and defences against biotic stress: Glucosinolates and benzoxazinoids as case studies. For. Snow Landsc. Res. 2006, 80, 149–160. [Google Scholar]
- Holleman, N.; Wiberg, E. Lehrbuch der Anorganischen Chemie; Walter de Gruyter: Berlin, German, 1985. [Google Scholar]
- Sebastiani, L.; Scebba, F.; Tognetti, R. Heavy metal accumulation and growth responses in poplar clones Eridano (Populus deltoides × maximowiczii) and I-214 (P. × euramericana) exposed to industrial waste. Environ. Exp. Bot. 2004, 52, 79–88. [Google Scholar] [CrossRef]
- Rai, V.; Khatoon, S.; Bisht, S.S.; Mehrotra, S. Effect of cadmium on growth, ultramorphology of leaf and secondary metabolites of Phyllanthus amarus Schum. and Thonn. Chemosphere 2005, 61, 1644–1650. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Kuek, C.; Chaudhry, T.; Khoo, C.; Hayes, W. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 2000, 41, 197–207. [Google Scholar] [CrossRef]
- Clemens, S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta 2001, 212, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.Y.; Yu, H.Y.; Chen, J.J.; Li, F.B.; Zhang, H.H.; Liu, C.P. Accumulation of heavy metals in leaf vegetables from agricultural soils and associated potential health risks in the Pearl River Delta, South China. Environ. Monit. Assess. 2014, 186, 1547–1560. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Prasad, S.M. Remediation of heavy metal contaminated ecosystem: An overview on technology advancement. Int. J. Environ. Sci. Technol. 2015, 12, 353–366. [Google Scholar] [CrossRef]
- Farouk, S.; Mosa, A.A.; Taha, A.A.; Ibrahim, H.M.; El-Gahmery, A.M. Protective effect of humic acid and chitosan on radish (Raphanus sativus, L. var. sativus) plants subjected to cadmium stress. J. Stress Physiol. Biochem. 2011, 7, 99–116. [Google Scholar]
- Swartjes, F.A.; Breemen, E.M.D.; Otte, P.F.; Beelen, P.V.; Rikken, M.G.J.; Tuinstra, J. Human health risks due to consumption of vegetables from contaminated sites. RIVM Rep. 2007, 711701040, 2007. [Google Scholar]
- Badawy, S.H.; Helal, M.I.; Chaudri, A.M.; Lawlor, K.; McGrath, S.P. Soli solid-phase controls lead activity in soil solution. J. Environ. Qual. 2002, 31, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Zornoza, P.; Vázquez, S.; Esteban, E.; Fernández-Pascual, M.; Carpena, R. Cadmium-stress in nodulated white lupin: Strategies to avoid toxicity. Plant Physiol. Biochem. 2002, 40, 1003–1009. [Google Scholar] [CrossRef]
- Tomaszewska, B.; Tukendorf, A.; Barałkiewicz, D. The synthesis of phytochelatins in lupin roots treated with lead ions. Sci. Legumes 1996, 3, 206–217. [Google Scholar]
- Małecka, A.; Jarmuszkiewicz, W.; Tomaszewska, B. Antioxidative defense to lead stress in sub cellular compartments of pea root cells. Acta Biochim. Pol. 2001, 48, 687–698. [Google Scholar] [PubMed]
- Małecka, A.; Piechalak, A.; Morkunas, I.; Tomaszewska, B. Accumulation of lead in root cells of Pisum sativum. Acta Physiol. Plant. 2008, 30, 629–637. [Google Scholar] [CrossRef]
- Rucinska, R.; Gwozdz, E.A. Influence of lead on membrane permeability and lipoxygenase activity in lupine roots. Biol. Plant. 2005, 49, 617–619. [Google Scholar] [CrossRef]
- Pawlak-Sprada, S.; Arasimowicz-Jelonek, M.; Podgórska, M.; Deckert, J. Activation of phenylpropanoid pathway in legume plants exposed to heavy metals. Part I. Effects of cadmium and lead on phenylalanine ammonia-lyase gene expression, enzyme activity and lignin content. Acta Biochim. Pol. 2011, 58, 6. [Google Scholar]
- Rucińska-Sobkowiak, R. Water relations in plants subjected to heavy metal stresses. Acta Physiol. Plant. 2016, 38. [Google Scholar] [CrossRef] [Green Version]
- Krzesłowska, M.; Woźny, A. Lead uptake, localization and changes in cell ultrastructure of Funaria hygrometrica protonemata. Biol. Plant. 1996, 38, 253–259. [Google Scholar] [CrossRef]
- Krzesłowska, M.; Lenartowska, M.; Samardakiewicz, S.; Bilski, H.; Woźny, A. Lead deposited in the cell wall of Funaria hygrometrica protonemata is not stable—A remobilization can occur. Environ. Pollut. 2010, 158, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, A.; Drzewiecka, K.; Kęsy, J.; Marczak, Ł.; Narożna, D.; Grobela, M.; Motała, R.; Bocianowski, J.; Morkunas, I. The influence of lead on generation of signalling molecules and accumulation of flavonoids in pea seedlings in response to pea aphid infestation. Molecules 2017, 22, 1404. [Google Scholar] [CrossRef] [PubMed]
- Drzewiecka, K.; Gąsecka, M.; Rutkowski, P.; Magdziak, Z.; Goliński, P.; Mleczek, M. Arsenic forms and their combinations induce differences in phenolic accumulation in Ulmus laevis Pall. J. Plant. Physiol. 2018, 220, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Małecka, A.; Derba-Maceluch, M.; Kaczorowska, K.; Piechalak, A.; Tomaszewska, B. Reactive oxygen species production and antioxidative defense system in pea root tissues treated with lead ions: Mitochondrial and peroxisomal level. Acta Physiol. Plant. 2009, 31, 1065–1075. [Google Scholar] [CrossRef]
- Calabrese, E. Hormesis: A fundamental concept in biology. Microb. Cell. 2014, 1, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, J. Sipping from a poisoned chalice. Science 2003, 302, 376–379. [Google Scholar] [CrossRef] [PubMed]
- Rucińska, R.; Waplak, S.; Gwóźdź, E. Free radical formation and activity of antioxidantenzymes in lupin root exposed to lead. Plant Physiol. Biochem. 1999, 37, 187–194. [Google Scholar] [CrossRef]
- Sandalio, L.M.; Dalurzo, H.C.; Gómez, M.; Romero-Puertas, M.C.; del Río, L.A. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 2001, 52, 2115–2126. [Google Scholar] [CrossRef] [PubMed]
- Sobkowiak, R.; Deckert, J. Cadmium-induced changes in growth and cell cycle gene expression in suspension-culture cells of soybean. Plant Physiol. Biochem. 2003, 41, 767–772. [Google Scholar] [CrossRef]
- Chibuike, G.U.; Obiora, S.C. Heavy metal polluted soils: Effect on plants and bioremediation methods. Appl. Environ. Soil Sci. 2014, 2014, 1–12. [Google Scholar] [CrossRef]
- Moreno-Alvarado, M.; García-Morales, S.; Trejo-Téllez, L.I.; Hidalgo-Contreras, J.V.; Gómez-Merino, F.C. Aluminum enhances growth and sugar concentration, alters macronutrient status and regulates the expression of NAC transcription factors in rice. Front. Plant Sci. 2017, 8, 73. [Google Scholar] [CrossRef] [PubMed]
- Stebbing, A.R.D. Hormesis—The stimulation of growth by low levels of inhibitors. Sci. Total Environ. 1982, 22, 213–234. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Baldwin, L.A. Can the concept of hormesis be generalized to carcinogenesis? Regul. Toxicol. Pharmacol. 1998, 28, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Schulz, H. Uber Hefegifte. Pflugers Arch. Gesmate Physiol. Menschen Tiere 1888, 42, 517–541. [Google Scholar] [CrossRef]
- Damelin, L.H.; Vokes, S.; Whitcutt, J.M.; Damelin, S.B.; Alexander, J.J. Hormesis: A stress response in cells exposed to low levels of heavy metals. Hum. Exp. Toxicol. 2000, 19, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, E.; Blain, R. The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: An overview. Toxicol. Appl. Pharmacol. 2005, 202, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, E.J.; Blain, R.B. Hormesis and plant biology. Environ. Pollut. 2009, 157, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Hajiboland, R.; Bahrami Rad, S.; Barceló, J.; Poschenrieder, C. Mechanisms of aluminum-induced growth stimulation in tea (Camellia sinensis). J. Plant Nutr. Soil Sci. 2013, 176, 616–625. [Google Scholar] [CrossRef]
- da Silva de Jesus, D.; Machado Martins, F.; Dias de Azevedo Neto, A. Structural changes in leaves and roots are anatomical markers of aluminum sensitivity in sunflower. Pesqui. Agropecu. Trop. 2016, 46, 383–390. [Google Scholar] [CrossRef]
- Ghanati, F.; Morita, A.; Yokota, H. Effects of aluminum on the growth of tea plant and activation of antioxidant system. Plant Soil 2005, 276, 133–141. [Google Scholar] [CrossRef]
- Watanabe, T.; Jansen, S.; Osaki, M. The beneficial effect of aluminium and the role of citrate in Al accumulation in Melastoma malabathricum. New Phytol. 2004, 165, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Nian, H.; Zhang, Z.; Yang, C. Effects of aluminum on superoxide dismutase and peroxidase activities, and lipid peroxidation in the roots and calluses of soybeans differing in aluminum tolerance. Acta Physiol. Plant. 2010, 32, 883–890. [Google Scholar] [CrossRef]
- Wang, L.; Fan, X.-W.; Pan, J.-L.; Huang, Z.-B.; Li, Y.-Z. Physiological characterization of maize tolerance to low dose of aluminum, highlighted by promoted leaf growth. Planta 2015, 242, 1391–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.E.; Long, X.X.; Ye, H.B.; He, Z.L.; Calvert, D.V.; Stoffella, P.J. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 2004, 259, 181–189. [Google Scholar] [CrossRef]
- Liu, W. Viola baoshanensis, a plant that hyperaccumulates cadmium. Chin. Sci. Bull. 2004, 49, 29. [Google Scholar] [CrossRef]
- Jia, L.; Liu, Z.; Chen, W.; Ye, Y.; Yu, S.; He, X. Hormesis effects induced by cadmium on growth and photosynthetic performance in a hyperaccumulator, Lonicera japonica Thunb. J. Plant Growth Regul. 2015, 34, 13–21. [Google Scholar] [CrossRef]
- Muszyńska, E.; Hanus-Fajerska, E.; Ciarkowska, K. Studies on lead and cadmium toxicity in Dianthus carthusianorum calamine ecotype cultivated in vitro. Plant Biol. 2018, 20, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Siddhu, G.; Sirohi, D.S.; Kashyap, K.; Khan, I.A.; Khan, M.A.A. Toxicity of cadmium on the growth and yield of Solanum melongena L. J. Environ. Biol. 2008, 29, 853–857. [Google Scholar]
- Qiu, R.-L.; Zhao, X.; Tang, Y.-T.; Yu, F.-M.; Hu, P.-J. Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. Chemosphere 2008, 74, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Seth, C.S.; Kumar Chaturvedi, P.; Misra, V. The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Ecotoxicol. Environ. Saf. 2008, 71, 76–85. [Google Scholar] [CrossRef] [PubMed]
- de la Rosa, G.; Peralta-Videa, J.R.; Montes, M.; Parsons, J.G.; Cano-Aguilera, I.; Gardea-Torresdey, J.L. Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere 2004, 55, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Seth, C.S.; Chaturvedi, P.K.; Misra, V. Toxic effect of arsenate and cadmium alone and in combination on giant duckweed (Spirodela polyrrhiza L.) in response to its accumulation. Environ. Toxicol. 2007, 22, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.-T.; Qiu, R.-L.; Zeng, X.-W.; Ying, R.-R.; Yu, F.-M.; Zhou, X.-Y. Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environ. Exp. Bot. 2009, 66, 126–134. [Google Scholar] [CrossRef]
- González, C.I.; Maine, M.A.; Cazenave, J.; Sanchez, G.C.; Benavides, M.P. Physiological and biochemical responses of Eichhornia crassipes exposed to Cr (III). Environ. Sci. Pollut. Res. 2015, 22, 3739–3747. [Google Scholar] [CrossRef] [PubMed]
- Gardea-Torresdey, J.L.; de la Rosa, G.; Peralta-Videa, J.R.; Montes, M.; Cruz-Jimenez, G.; Cano-Aguilera, I. Differential uptake and transport of trivalent and hexavalent chromium by tumbleweed (Salsola kali). Arch. Environ. Contam. Toxicol. 2005, 48, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Paisio, C.E.; Fernandez, M.; González, P.S.; Talano, M.A.; Medina, M.I.; Agostini, E. Simultaneous phytoremediation of chromium and phenol by Lemna minuta Kunth: A promising biotechnological tool. Int. J. Environ. Sci. Technol. 2018, 15, 37–48. [Google Scholar] [CrossRef]
- Patnaik, A.R.; Achary, V.M.M.; Panda, B.B. Chromium (VI)-induced hormesis and genotoxicity are mediated through oxidative stress in root cells of Allium cepa L. Plant Growth Regul. 2013, 71, 157–170. [Google Scholar] [CrossRef]
- García-Jiménez, A.; Gómez-Merino, F.C.; Tejeda-Sartorius, O.; Trejo-Téllez, L.I. Lanthanum affects bell pepper seedling quality depending on the genotype and time of exposure by differentially modifying plant height, stem diameter and concentrations of chlorophylls, sugars, amino Acids, and proteins. Front. Plant Sci. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.F.; Yu, S.F.; Huang, X.H. Effect of La (III) on some physiological index and ultrastructure of honeysuckle (Lonicera japonica Thunb.). Adv. Mater. Res. 2013, 864–867, 295–298. [Google Scholar] [CrossRef]
- Liu, D.; Wang, X.; Zhang, X.; Gao, Z. Effects of lanthanum on growth and accumulation in roots of rice seedlings. Plant Soil Environ. 2013, 59, 196–200. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Z.-T. Lead uptake and effects on seed germination and plant growth in a Pb hyperaccumulator Brassica pekinensis Rupr. Bull. Environ. Contam. Toxicol. 1998, 60, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Piwowarczyk, B.; Tokarz, K.; Muszyńska, E.; Makowski, W.; Jędrzejczyk, R.; Gajewski, Z.; Hanus-Fajerska, E. The acclimatization strategies of kidney vetch (Anthyllis vulneraria L.) to Pb toxicity. Environ. Sci. Pollut. Res. 2018, 25, 19739–19752. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Yang, B.; Kou, Y.; Zeng, J.; Wang, R.; Xiao, Y.; Li, F.; Lu, Y.; Mu, Y.; Zhao, C. Assessing the difference of tolerance and phytoremediation potential in mercury contaminated soil of a non-food energy crop, Helianthus tuberosus L. (Jerusalem artichoke). PeerJ 2018, 6, e4325. [Google Scholar] [CrossRef] [PubMed]
- Ronchini, M.; Cherchi, L.; Cantamessa, S.; Lanfranchi, M.; Vianelli, A.; Gerola, P.; Berta, G.; Fumagalli, A. Palladium uptake by Pisum sativum: Partitioning and effects on growth and reproduction. Environ. Sci. Pollut. Res. 2015, 22, 7600–7611. [Google Scholar] [CrossRef] [PubMed]
- Gawrońska, H.; Przybysz, A.; Szalacha, E.; Pawlak, K.; Brama, K.; Miszczak, A.; Stankiewicz-Kosyl, M.; Gawroński, S.W. Platinum uptake, distribution and toxicity in Arabidopsis thaliana L. plants. Ecotoxicol. Environ. Saf. 2018, 147, 982–989. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.C.; McLendon, T.; Price, D. Evidence of depleted uranium-induced hormesis and differential plant response in three grasses. J. Plant Nutr. 1998, 21, 2475–2484. [Google Scholar] [CrossRef]
- Küpper, H.; Zhao, F.J.; McGrath, S.P. Cellular compartmentation of Zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 1999, 119, 305–312. [Google Scholar] [CrossRef]
- Nascarella, M.A.; Stoffolano, J.G.; Stanek, E.J.; Kostecki, P.T.; Calabrese, E.J. Hormesis and stage specific toxicity induced by cadmium in an insect model, the queen blowfly, Phormia regina Meig. Environ. Pollut. 2003, 124, 257–262. [Google Scholar] [CrossRef]
- Ardestani, M.M.; van Gestel, C.A.M. Toxicodynamics of copper and cadmium in Folsomia candida exposed to simulated soil solutions: Copper and cadmium toxicodynamics in springtails. Environ. Toxicol. Chem. 2013, 32, 2746–2754. [Google Scholar] [CrossRef] [PubMed]
- Giovanetti, A.; Fesenko, S.; Cozzella, M.L.; Asencio, L.D.; Sansone, U. Bioaccumulation and biological effects in the earthworm Eisenia fetida exposed to natural and depleted uranium. J. Environ. Radioac. 2010, 101, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Helmcke, K.J.; Aschner, M. Hormetic effect of methylmercury on Caen orhabditis elegans. Toxicol. Appl. Pharmacol. 2010, 248, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Helmcke, K.J.; Syversen, T.; Miller, D.M.; Aschner, M. Characterization of the effects of methylmercury on Caenorhabditis elegans. Toxicol. Appl. Pharmacol. 2009, 240, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Lin, S.; Zhao, J.; Zhang, W.; Lin, K.; Lu, Q.; Zhou, B. Toxic responses of microorganisms to nickel exposure in farmland soil in the presence of earthworm (Eisenia fetida). Chemosphere 2018, 192, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Ayyanath, M.-M.; Cutler, G.C.; Scott-Dupree, C.D.; Sibley, P.K. Transgenerational shifts in reproduction hormesis in green peach aphid exposed to low concentrations of imidacloprid. PLoS ONE 2013, 8, e74532. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, M.Z.; Shen, H.; Zhu, S.; Yu, C.; Shen, C. Growth, bioluminescence and shoal behavior hormetic responses to inorganic and/or organic chemicals: A review. Environ. Int. 2014, 64, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, E.J.; Baldwin, L.A. Chemical hormesis:its historical foundations as a biological hypothesis. Toxicol. Pathol. 1999, 27, 195–216. [Google Scholar] [CrossRef] [PubMed]
- Raulin, J. Etudied chimiques sur la vegetation. Ann. Sci. Nat. Bot. 1869, 93–299. [Google Scholar]
- Stevens, F.L. The effect of aqueous solutions upon the germination of fungus spores. Bot. Gaz. 1898, 377–406. [Google Scholar] [CrossRef]
- Clark, J.F. Electrolytic dissociation and toxic effect. J. Phys. Chem. 1899, 263–316. [Google Scholar] [CrossRef]
- Clark, J.F. On the toxic properties of some copper compounds with special reference to Bordeaux mixture. Bot. Gaz. 1902, 26–48. [Google Scholar] [CrossRef]
- Clark, J.F. On the toxic effect of deleterious agents on the germination and development of certain filamentous fungi. Bot. Gaz. 1899, 28, 378–404. [Google Scholar] [CrossRef]
- Duggar, B.M. Physiological studies with reference to the germination of certain Funous spores. Bot. Gaz. 1901, 38–66. [Google Scholar] [CrossRef]
- Collin-Hansen, C.; Andersen, R.A.; Steinnes, E. Damage to DNA and lipids in Boletus edulis exposed to heavy metals. Mycol. Res. 2005, 109, 1386–1396. [Google Scholar] [CrossRef] [PubMed]
- Lefcort, H.; Freedman, Z.; House, S.; Pendleton, M. Hormetic effects of heavy metals in aquatic snails: Is a little bit of pollution good? EcoHealth 2008, 5, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Becher, M.; Talke, I.N.; Krall, L.; Krämer, U. Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J. 2004, 37, 251–268. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.L.; Williams, L.E. Transition metal transporters in plants. J. Exp. Bot. 2003, 54, 2601–2613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schat, H.; van Hoof, N.A.L.M.; Tervahauta, A.; Hakvoort, H.W.J.; Chardonnens, A.N.; Koevoets, P.L.M.; Verkleij, J.A.C.; Ernst, W.H.O. Evolutionary responses to zinc and copper stress in Bladder Campion, Silene vulgaris (Moench) Garcke. In Plant Tolerance to Abiotic Stresses: Role of Genetic Engineering; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 343–360. [Google Scholar]
- Zhao, F.J.; Wang, J.R.; Barker, J.H.A.; Schat, H.; Bleeker, P.M.; McGrath, S.P. The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol. 2003, 159, 403–410. [Google Scholar] [CrossRef]
- van Hoof, N.A.; Hassinen, V.H.; Hakvoort, H.W.; Ballintijn, K.F.; Schat, H.; Verkleij, J.A.; Ernst, W.H.; Karenlampi, S.O.; Tervahauta, A.I. Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. Plant Physiol. 2001, 126, 1519–1526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahanger, M.A.; Akram, N.A.; Ashraf, M.; Alyemeni, M.N.; Wijaya, L.; Ahmad, P. Plant responses to environmental stresses—From gene to biotechnology. AoB Plants 2017, 9. [Google Scholar] [CrossRef] [PubMed]
- Cramer, G.R.; Urano, K.; Delrot, S.; Pezzotti, M.; Shinozaki, K. Effects of abiotic stress on plants: A systems biology perspective. BMC Plant. Biol. 2011, 11, 163. [Google Scholar] [CrossRef] [PubMed]
- Dinneny, J.R.; Long, T.A.; Wang, J.Y.; Jung, J.W.; Mace, D.; Pointer, S.; Barron, C.; Brady, S.M.; Schiefelbein, J.; Benfey, P.N. Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 2008, 320, 942–945. [Google Scholar] [CrossRef] [PubMed]
- Arasimowicz-Jelonek, M.; Floryszak-Wieczorek, J.; Drzewiecka, K.; Chmielowska-Bąk, J.; Abramowski, D.; Izbiańska, K. Aluminum induces cross-resistance of potato to Phytophthora infestans. Planta 2014, 239, 679–694. [Google Scholar] [CrossRef] [PubMed]
- Chmielowska, J.; Veloso, J.; Gutiérrez, J.; Silvar, C.; Díaz, J. Cross-protection of pepper plants stressed by copper against a vascular pathogen is accompanied by the induction of a defence response. Plant. Sci. 2010, 178, 176–182. [Google Scholar] [CrossRef]
- Barcelo, J.; Poschenrieder, C. Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: A review. Environ. Exp. Bot. 2002, 48, 75–92. [Google Scholar] [CrossRef]
- Steinberg, C.E.W. Stress Ecology: Environmental Stress as Ecological Driving Force and Key Player in Evolution; Springer: London, UK, 2012; ISBN 978-94-007-2071-8. [Google Scholar]
- Pollard, A.J.; Baker, A.J.M. Deterrence of herbivory by zinc hyperaccumulation in Thlaspi caerulescens (Brassicae). New Phytol. 1997, 135, 655–658. [Google Scholar] [CrossRef]
- Jonak, C.; Nakagami, H.; Hirt, H. Heavy Metal Stress. Activation of Distinct Mitogen-Activated Protein Kinase Pathways by Copper and Cadmium. Plant Physiol. 2004, 136, 3276–3283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagami, H.; Pitzschke, A.; Hirt, H. Emerging MAP kinase pathways in plant stress signalling. Trends Plant. Sci. 2005, 10, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Boyd, R.S.; Martens, S.N. The raison d’etre for metal hyperaccumulation by plants. In The Vegetation of Ultramafic (Serpentine) Soils; Intercept: Andover, MA, USA, 1992; pp. 279–289. [Google Scholar]
- Tolrà, R.P.; Poschenrieder, C.; Alonso, R.; Barceló, D.; Barceló, J. Influence of zinc hyperaccumulation on glucosinolates in Thlaspi caerulescens. New Phytol. 2001, 151, 621–626. [Google Scholar] [CrossRef] [Green Version]
- Rout, G.R.; Panigrahi, J. Analysis of Signaling Pathways during Heavy Metal Toxicity: A Functional Genomics Perspective. In Elucidation of Abiotic Stress Signaling in Plants; Springer: New York, NY, USA, 2015; pp. 295–322. ISBN 978-1-4939-2539-1. [Google Scholar]
- Tiwari, S.; Lata, C. Heavy Metal Stress, Signaling, and Tolerance Due to Plant-Associated Microbes: An Overview. Front. Plant. Sci. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vollenweider, P.; Günthardt-Goerg, M.S. Diagnosis of abiotic and biotic stress factors using the visible symptoms in foliage. Environ. Pollut. 2005, 137, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Llugany, M.; Martin, S.R.; Barceló, J.; Poschenrieder, C. Endogenous jasmonic and salicylic acids levels in the Cd-hyperaccumulator Noccaea (Thlaspi) praecox exposed to fungal infection and/or mechanical stress. Plant. Cell. Rep. 2013, 32, 1243–1249. [Google Scholar] [CrossRef] [PubMed]
- Fones, H.N.; Eyles, C.J.; Bennett, M.H.; Smith, J.A.C.; Preston, G.M. Uncoupling of reactive oxygen species accumulation and defence signalling in the metal hyperaccumulator plant Noccaea caerulescens. New Phytol. 2013, 199, 916–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivaguru, M.; Ezaki, B.; He, Z.-H.; Tong, H.; Osawa, H.; Baluška, F.; Volkmann, D.; Matsumoto, H. Aluminum-Induced Gene Expression and Protein Localization of a Cell Wall-Associated Receptor Kinase in Arabidopsis. Plant Physiol. 2003, 132, 2256–2266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, N.; Koizumi, N.; Sano, H. Screening of cadmium-responsive genes in Arabidopsis thaliana. Plant Cell Environ. 2001, 24, 1177–1188. [Google Scholar] [CrossRef]
- Maksymiec, W.; Wianowska, D.; Dawidowicz, A.L.; Radkiewicz, S.; Mardarowicz, M.; Krupa, Z. The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. J. Plant Physiol. 2005, 162, 1338–1346. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.L.; Garcia, D.; Kim, D.; Hopf, A.; Salt, D.E. Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol. 2005, 137, 1082–1091. [Google Scholar] [CrossRef] [PubMed]
- Peleg, Z.; Blumwald, E. Hormone balance and abiotic stress tolerance in crop plants. Curr. Opin. Plant Biol. 2011, 14, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Hörger, A.C.; Fones, H.N.; Preston, G.M. The current status of the elemental defense hypothesis in relation to pathogens. Front. Plant Sci. 2013, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rascio, N.; Navari-Izzo, F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 2011, 180, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Jhee, E.M.; Boyd, R.S.; Eubanks, M.D. Nickel hyperaccumulation as an elemental defense of Streptanthus polygaloides (Brassicaceae): Influence of herbivore feeding mode. New Phytol. 2005, 168, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Martens, S.N.; Boyd, R.S. The ecological significance of nickel hyperaccumulation: A plant chemical defense. Oecologia 1994, 98, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Boyd, R.S. The defense hypothesis of elemental hyperaccumulation: Status, challenges and new directions. Plant Soil 2007, 293, 153–176. [Google Scholar] [CrossRef]
- Jiang, R.F.; Ma, D.Y.; Zhao, F.J.; McGrath, S.P. Cadmium hyperaccumulation protects Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis). New Phytol. 2005, 167, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Behmer, S.T.; Lloyd, C.M.; Raubenheimer, D.; Stewart-Clark, J.; Knight, J.; Leighton, R.S.; Harper, F.A.; Smith, J.A.C. Metal hyperaccumulation in plants: Mechanisms of defence against insect herbivores. Funct. Ecol. 2005, 19, 55–66. [Google Scholar] [CrossRef]
- Rathinasabapathi, B.; Rangasamy, M.; Froeba, J.; Cherry, R.H.; McAuslane, H.J.; Capinera, J.L.; Srivastava, M.; Ma, L.Q. Arsenic hyperaccumulation in the Chinese brake fern (Pteris vittata) deters grasshopper (Schistocerca americana) herbivory. New Phytol. 2007, 175, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Galeas, M.L.; Klamper, E.M.; Bennett, L.E.; Freeman, J.L.; Kondratieff, B.C.; Quinn, C.F.; Pilon-Smits, E.A.H. Selenium hyperaccumulation reduces plant arthropod loads in the field. New Phytol. 2008, 177, 715–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martens, S.N.; Boyd, R.S. The defensive role of Ni hyperaccumulation by plants: A field experiment. Am. J. Bot. 2002, 89, 998–1003. [Google Scholar] [CrossRef] [PubMed]
- Boyd, R.S. High-nickel insects and nickel hyperaccumulator plants: A review. Insect Sci. 2009, 16, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Wall, M.A.; Boyd, R.S.; Cook, J. Melanotrichus boydi (hemiptera: Miridae) is a specialist on the nickel hyperaccumulator streptanthus polygaloides (brassicaceae). Southwest. Nat. 2006, 51, 481–489. [Google Scholar] [CrossRef]
- Boyd, R.S. Plant defense using toxic inorganic ions: Conceptual models of the defensive enhancement and joint effects hypotheses. Plant Sci. 2012, 195, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Boyd, R.S.; Moar, W.J. The defensive function of Ni in plants: Response of the polyphagous herbivore Spodoptera exigua (Lepidoptera: Noctuidae) to hyperaccumulator and accumulator species of Streptanthus (Brassicaceae). Oecologia 1999, 118, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Cheruiyot, D.J.; Boyd, R.S.; Coudron, T.A.; Cobine, P.A. Biotransfer, bioaccumulation and effects of herbivore dietary Co, Cu, Ni, and Zn on growth and development of the insect predator Podisus maculiventris (Say). J. Chem. Ecol. 2013, 39, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Noret, N.; Meerts, P.; Tolrà, R.; Poschenrieder, C.; Barceló, J.; Escarre, J. Palatability of Thlaspi caerulescens for snails: Influence of zinc and glucosinolates. New Phytol. 2005, 165, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Winter, T.R.; Borkowski, L.; Zeier, J.; Rostás, M. Heavy metal stress can prime for herbivore-induced plant volatile emission: Copper primes VOCs. Plant Cell Environ. 2012, 35, 1287–1298. [Google Scholar] [CrossRef] [PubMed]
- Wise, M.J.; Kieffer, D.L.; Abrahamson, W.G. Costs and benefits of gregarious feeding in the meadow spittlebug, Philaenus spumarius. Ecol. Entomol. 2006, 31, 548–555. [Google Scholar] [CrossRef]
- Baghban, A.; Sendi, J.J.; Zibaee, A.; Khosravi, R. Effect of heavy metals (Cd, Cu and Zn) on feeding indices and energy reserves of the cotton boll worm Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). J. Plant Protec. Res. 2014, 54, 367–373. [Google Scholar] [CrossRef]
- Trumble, J.T.; Jensen, P.D. Ovipositional response, developmental effects and toxicity of hexavalent chromium to Megaselia scalaris, a terrestrial detritivore. Arch. Environ. Contam. Toxicol. 2004, 46, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Emre, I.; Kayis, T.; Coskun, M.; Dursun, O.; Cogun, H.Y. Changes in antioxidative enzyme activity, glycogen, lipid, protein, and malondialdehyde content in cadmium-treated Galleria mellonella larvae. Ann. Entomol. Soc. Am. 2013, 106, 371–377. [Google Scholar] [CrossRef]
- Sun, H.-X.; Dang, Z.; Xia, Q.; Tang, W.-C.; Zhang, G.-R. The effect of dietary nickel on the immune responses of Spodoptera litura Fabricius larvae. J. Insect Physiol. 2011, 57, 954–961. [Google Scholar] [CrossRef] [PubMed]
- Satapathy, P.; Achary, V.M.M.; Panda, B.B. Aluminum-induced abiotic stress counteracts Fusarium infection in Cajanus cajan (L.) Millsp. J. Plant. Interact. 2012, 7, 121–128. [Google Scholar] [CrossRef]
- Mittra, B.; Ghosh, P.; Henry, S.L.; Mishra, J.; Das, T.K.; Ghosh, S.; Babu, C.R.; Mohanty, P. Novel mode of resistance to Fusarium infection by a mild dose pre-exposure of cadmium in wheat. Plant Physiol. Biochem. 2004, 42, 781–787. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, S.; Mittra, B. Protein glutathionylation protects wheat (Triticum aestivum Var. Sonalika) against Fusarium induced oxidative stress. Plant Physiol. Biochem. 2016, 109, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Cabot, C.; Gallego, B.; Martos, S.; Barceló, J.; Poschenrieder, C. Signal cross talk in Arabidopsis exposed to cadmium, silicon, and Botrytis cinerea. Planta 2013, 237, 337–349. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.A.; Wang, J.; Ma, X.; Lutts, S.; Sun, C.; Ma, J.; Yang, Y.; Achal, V.; Xu, G. Proteomic analysis of Mn-induced resistance to powdery mildew in grapevine. J. Exp. Bot. 2012, 63, 5155–5170. [Google Scholar] [CrossRef] [PubMed]
- Ghaderian, Y.S.M.; Lyon, A.J.E.; Baker, A.J.M. Seedling mortality of metal hyperaccumulator plants resulting from damping off by Pythium spp.: Research seedling mortality of hyperaccumulator plants. New Phytol. 2000, 146, 219–224. [Google Scholar] [CrossRef]
- Hanson, B. Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection. New Phytol. 2003, 159, 461–469. [Google Scholar] [CrossRef]
- Hanson, B.; Lindblom, S.D.; Loeffler, M.L.; Pilon-Smits, E.A.H. Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity. New Phytol. 2004, 162, 655–662. [Google Scholar] [CrossRef] [Green Version]
- Nummelin, M.; Lodenius, M.; Tulisalo, E.; Hirvonen, H.; Alanko, T. Predatory insects as bioindicators of heavy metal pollution. Environ. Pollut. 2007, 145, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, P.; Zou, H.; Shu, W. Biotransfer of heavy metals along a soil-plant-insect-chicken food chain: Field study. J. Environ. Sci. 2009, 21, 849–853. [Google Scholar] [CrossRef]
- Leita, L.; Enne, G.; De Nobili, M.; Baldini, M.; Sequi, P. Heavy metal bioaccumulation in lamb and sheep bred in smelting and mining areas of S.W. sardinia (Italy). Bull. Environ. Contam. Toxicol. 1991, 46, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Goodyear, K.; McNeill, S. Bioaccumulation of heavy metals by aquatic macro-invertebrates of different feeding guilds: A review. Sci. Total Environ. 1999, 229, 1–19. [Google Scholar] [CrossRef]
- Zhang, Z.-S.; Lu, X.-G.; Wang, Q.-C.; Zheng, D.-M. Mercury, cadmium and lead biogeochemistry in the soil–plant–insect system in Huludao City. Bull. Environ. Contam. Toxicol. 2009, 83, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Wan, T.-L.; Liu, S.; Tang, Q.-Y.; Cheng, J.-A. Heavy Metal Bioaccumulation and Mobility from Rice Plants to Nilaparvata lugens (Homoptera: Delphacidae) in China. Environ. Entomol. 2014, 43, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Warrington, S. Relationship between SO2 dose and growth of the pea aphid, Acyrthosiphon pisum, on peas. Environ. Pollut. 1987, 43, 155–162. [Google Scholar] [CrossRef]
- van Ooik, T.; Rantala, M.J.; Saloniemi, I. Diet-mediated effects of heavy metal pollution on growth and immune response in the geometrid moth Epirrita autumnata. Environ. Pollut. 2007, 145, 348–354. [Google Scholar] [CrossRef] [PubMed]
- van Ooik, T. Effects of Heavy Metal Pollution and Host Plant Leaf Chemistry on the Immune Defense and Life History Traits of An Insect Herbivore; Painosalama Oy: Turku, Finland, 2008. [Google Scholar]
- El-Sheikh, E.-S.A.; Kamita, S.G.; Vu, K.; Hammock, B.D. Improved insecticidal efficacy of a recombinant baculovirus expressing mutated JH esterase from Manduca sexta. Biol. Control 2011, 58, 354–361. [Google Scholar] [CrossRef]
- Mitterboeck, F.; Fuehrer, E. Effects of fluoride-polluted spruce leaves on nun moth caterpillars (Lymantria monacha). J. Appl. Entomol. 1988, 105, 19–27. [Google Scholar]
- Zhang, Y.; Lambiase, S.; Fasola, M.; Gandini, C.; Grigolo, A.; Laudani, U. Mortality and tissue damage by heavy metal contamination in the German cockroach, Blattella germanica (Blattaria, Blattellidae). Ital. J. Zool. 2001, 68, 137–145. [Google Scholar] [CrossRef]
- Rayms-Keller, A.; Olson, K.E.; McGaw, M.; Oray, C.; Carlson, J.O.; Beaty, B.J. Effect of heavy metals on Aedes aegypti (Diptera:Culicidae) larvae. Ecotoxicol. Environ. Saf. 1998, 39, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Dom, N.C.; Ahmad, P.; Mokhtar, M.A.M.; Rajan, S. Assessment of heavy metal concentration on Aedes mosquito breeding sites in urban area, Malaysia. Int. J. Mosq. Res. 2017, 4, 12–19. [Google Scholar]
- Fountain, M.T.; Hopkin, S.P. Continuous monitoring of Folsomia candida (Insecta: Collembola) in a metal exposure test. Ecotoxicol. Environ. Saf. 2001, 48, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Ilijin, L.; Periać-Mataruga, V.; Radojičić, R.; Lazarević, J.; Nenadović, V.; Vlahović, M.; Mrdaković, M. Effects of cadmium on protocerebral neurosecretory neurons and fitness components in Lymantria dispar L. Folia Biol. 2009, 58, 91–99. [Google Scholar] [CrossRef]
- Mogren, C.L.; Trumble, J.T. The impacts of metals and metalloids on insect behavior. Entomol. Exp. Appl. 2010, 135, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Posthuma, L.; Van Straalen, N.M. Heavy-metal adaptation in terrestrial invertebrates: A review of occurrence, genetics, physiology and ecological consequences. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 1993, 106, 11–38. [Google Scholar] [CrossRef]
- Xie, L.; Klerks, P.L. Fitness cost of resistance to cadmium in the least killifish (Heterandria formosa). Environ. Toxicol. Chem. 2004, 23, 1499–1503. [Google Scholar] [CrossRef] [PubMed]
- Bahrndorff, S.; Holmstrup, M.; Petersen, H.; Loeschcke, V. Geographic variation for climatic stress resistance traits in the springtail Orchesella cincta. J. Insect Physiol. 2006, 52, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Wilczek, G.; Kramarz, P.; Babczyńska, A. Activity of carboxylesterase and glutathione S-transferase in different life-stages of carabid beetle (Poecilus cupreus) exposed to toxic metal concentrations. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2003, 134, 501–512. [Google Scholar] [CrossRef]
- Morgan, A.J.; Kille, P.; Stürzenbaum, S.R. Microevolution and ecotoxicology of metals in invertebrates. Environ. Sci. Technol. 2007, 41, 1085–1096. [Google Scholar] [CrossRef] [PubMed]
- van Ooik, T.; Rantala, M.J. Local adaptation of an insect herbivore to a heavy metal contaminated environment. Ann. Zool. Fennici 2010, 47, 215–222. [Google Scholar] [CrossRef]
- Ben-Shahar, Y. The impact of environmental Mn exposure on insect biology. Front. Genet. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Sovik, E.; Perry, C.J.; LaMora, A.; Barron, A.B.; Ben-Shahar, Y. Negative impact of manganese on honeybee foraging. Biol. Lett. 2015, 11, 20140989. [Google Scholar] [CrossRef] [PubMed]
- Kafel, A.; Rozpędek, K.; Szulińska, E.; Zawisza-Raszka, A.; Migula, P. The effects of cadmium or zinc multigenerational exposure on metal tolerance of Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Sci. Pollut. Res. 2014, 21, 4705–4715. [Google Scholar] [CrossRef] [PubMed]
- Mirčić, D.; Blagojević, D.; Perić-Mataruga, V.; Ilijin, L.; Mrdaković, M.; Vlahović, M.; Lazarević, J. Cadmium effects on the fitness-related traits and antioxidative defense of Lymantria dispar L. larvae. Environ. Sci. Pollut. Res. 2013, 20, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.-X.; Ye, G.-Y.; Hu, C.; Cheng, J.-A. Accumulation of cadmium and its effects on growth, development and hemolymph biochemical compositions in Boettcherisca peregrina larvae (Diptera: Sarcophagidae). Insect Sci. 2006, 13, 31–39. [Google Scholar] [CrossRef]
- Suganya, M.; Karthi, S.; Subramanian Shivakumar, M. Effect of cadmium and lead exposure on tissue specific antioxidant response in Spodoptera litura. Free Radic. Antioxid. 2016, 6, 90–100. [Google Scholar] [CrossRef]
- Al-Momani, F.A.; Massadeh, A.M. Effect of different heavy-metal concentrations on Drosophila melanogaster larval growth and development. Biol. Trace Elem. Res. 2005, 108, 271–277. [Google Scholar] [CrossRef]
- Shulman, M.V.; Pakhomov, O.Y.; Brygadyrenko, V.V. Effect of lead and cadmium ions upon the pupariation and morphological changes in Calliphora vicina (Diptera, Calliphoridae). Folia Oecol. 2017, 44, 28–37. [Google Scholar] [CrossRef]
- Safaee, S.; Feridoni, M.; Mahadavi-Ahdavi, N.; Haddad, F.; Mirshamsi, O. Effects of lead on the development of Drosophila melanogaster. Period. Biol. 2014, 116, 259–265. [Google Scholar]
- Haq, R. Adverse effect of lead acetate on Drosophila melanogaster. J. Basic Appl. Sci. 2011, 157–163. [Google Scholar] [CrossRef]
- Fouda, M.; Hassan, M.I.; El-Sheikh, T.; Abd-Elgaphar, A.; Hasaballah, A. Histopathological effect of certain heavy metals on the mosquito vector Culex pipiens (Diptera:Culcidae). Al-Azhar Bull. Sci. 2011, 22, 69–83. [Google Scholar]
- Zaman, K.; MacGill, R.S.; Johnson, J.E.; Ahmad, S.; Pardini, R.S. An insect model for assessing mercury toxicity: Effect of mercury on antioxidant enzyme activities of the housefly (Musca domestica) and the cabbage looper moth (Trichoplusia ni). Arch. Environ. Contam. Toxicol. 1994, 26, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Flippin, J.L.; Deighton, N.; Funk, D.H.; Dickey, D.A.; Buchwalter, D.B. Mercury(II) bioaccumulation and antioxidant physiology in four aquatic insects. Environ. Sci. Technol. 2009, 43, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Kafel, A.; Nadgórska-Socha, A.; Gospodarek, J.; Babczyńska, A.; Skowronek, M.; Kandziora, M.; Rozpędek, K. The effects of Aphis fabae infestation on the antioxidant response and heavy metal content in field grown Philadelphus coronarius plants. Sci. Total Environ. 2010, 408, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Borowska, J.; Pyza, E. Effects of heavy metals on insect immunocompetent cells. J. Insect Physiol. 2011, 57, 760–770. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Shen, G.; Zhu, H.; Lu, Y. Imidacloprid-induced hormesis on the fecundity and juvenile hormone levels of the green peach aphid Myzus persicae (Sulzer). Pest. Biochem. Physiol. 2010, 98, 238–242. [Google Scholar] [CrossRef]
- Yusmalinar, S.; Anggraeni, T.; Kustiati, K.; Wibowo, I.; Eka Putra, R.; Ahmad, I. Reproductive ability enhancement of housefly (Musca domestica Linn) (Diptera: Muscidae) through hormesis by application of sublethal doses of imidacloprid and permethrin. J. Entomol. 2017, 14, 199–207. [Google Scholar] [CrossRef]
- Rabhi, K.K.; Esancy, K.; Voisin, A.; Crespin, L.; Le Corre, J.; Tricoire-Leignel, H.; Anton, S.; Gadenne, C. Unexpected effects of low doses of a neonicotinoid insecticide on behavioral responses to sex pheromone in a pest insect. PLoS ONE 2014, 9, e114411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sashindran Nair, K.; Vijayan, V.A.; Nair, J.S.; Trivedy, K.; Chinya, P.K. Hormetic influence on silkworm, Bombyx mori L., of the phytojuvenoid ω-formyl longifolene oxime propargyl ether. Int. J. Trop. Insect Sci. 2002, 22, 145–150. [Google Scholar] [CrossRef]
- Morse, J.G. Agricultural implications of pesticide- induced hormesis of insects and mites. Hum. Exp. Toxicol. 1998, 17, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Xu, B.; Zhang, Y.; Gao, X.; Wu, Q. Demonstration of an adaptive response to preconditioning Frankliniella occidentalis (Pergande) to sublethal doses of spinosad: A hormetic-dose response. Ecotoxicology 2015, 24, 1141–1151. [Google Scholar] [CrossRef] [PubMed]
- Cutler, G.C. Insects, insecticides and hormesis: Evidence and considerations for study. Dose-Response 2013, 11. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.D.; Seo, M.; Stelinski, L.L. Behavioral and hormetic effects of the butenolide insecticide, flupyradifurone, on Asian citrus psyllid, Diaphorina citri. Crop Protec. 2017, 98, 102–107. [Google Scholar] [CrossRef]
- Ayyanath, M.-M.; Cutler, G.C.; Scott-Dupree, C.D.; Prithiviraj, B.; Kandasamy, S.; Prithiviraj, K. Gene expression during imidacloprid-induced hormesis in green peach aphid. Dose-Response 2014, 12. [Google Scholar] [CrossRef] [PubMed]
- Ayyanath, M.-M.; Scott-Dupree, C.D.; Cutler, G.C. Effect of low doses of precocene on reproduction and gene expression in green peach aphid. Chemosphere 2015, 128, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Guedes, R.N.C.; Cutler, G.C. Insecticide-induced hormesis and arthropod pest management: Insecticide-induced hormesis. Pest Manag. Sci. 2014, 70, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Merrington, G.; Miller, D.; McLaughlin, M.J.; Keller, M.A. Trophic barriers to fertilizer Cd bioaccumulation through the food chain: A case study using a plant--insect predator pathway. Arch. Environ. Contam. Toxicol. 2001, 41, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Görür, G. Developmental instability in cabbage aphid (Brevicoryne brassicae) populations exposed to heavy metal accumulated host plants. Ecol. Indic. 2006, 6, 743–748. [Google Scholar] [CrossRef]
- Görür, G. Zinc and cadmium accumulation in cabbage aphid (Brevicoryne brassicae) host plants and developmental instability. Insect Sci. 2009, 16, 65–71. [Google Scholar] [CrossRef]
- Maryański, M.; Kramarz, P.; Laskowski, R.; Nikilińska, M. Decreased energetic reserves, morphological changes and accumulation of metals in carabid beetles (Poecilus cupreus L.) exposed to zinc- or cadmium-contaminated food. Ecotoxicology 2001, 11, 127–139. [Google Scholar]
- Ernst, W.H.O. Effects of heavy metals in plants at the cellulr and organismic level. In Bioaccumulation and Biological Effects of Chemicals; John Wiley & Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- Görür, G. Effects of host plant contaminated with heavy metals on the life history traits of aphids (Breyicoryne brassicae L.). Pol. J. Ecol. 2007, 55, 113–120. [Google Scholar]
- Culliney, T.W.; Pimentel, D. Ecological effects of organic agricultural practices on insect populations. Agric. Ecosyst. Environ. 1986, 15, 253–266. [Google Scholar] [CrossRef]
- Jaworska, M.; Gospodarek, J. Changes in population of pests and beneficial insects caused by soil contamination with heavy metals. Chemia i Inżynieria Ekologiczna 2000, 7, 1143–1151. [Google Scholar]
- Jaworska, M.; Gospodarek, J. Aphid (Aphis fabae Scop.) occurence on broan beans (Vicia faba L. ssp Maior) depending on liming and magnesium treatment of soil contaminated with heavy metals. Acta Agrophys. 2003, 1, 647–652. [Google Scholar]
- Stolpe, C.; Giehren, F.; Krämer, U.; Müller, C. Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant. Phytochemistry 2017, 139, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Crawford, L.A.; Lepp, N.W.; Hodkinson, I.D. Accumulation and egestion of dietary copper and cadmium by the grasshopper Locusta mihratoria R&F (Orthoptera:Arcididae). Environ. Pollut. 1996, 92, 241–246. [Google Scholar] [PubMed]
- Boyd, R.S.; Martens, S.N. Aphids are unaffected by the elemental defence of the nickel hyperaccumulator Streptanthus polygaloides (Brassicaceae). Chemoecology 1999, 9, 1–7. [Google Scholar] [CrossRef]
- Cuero, R.; Ouellet, T.; Yu, J.; Mogongwa, N. Metal ion enhancement of fungal growth, gene expression and aflatoxin synthesis in Aspergillus flavus: RT-PCR characterization: Metal ions on gungal grwoth, gene expression and aflatoxin synthesis. J. Appl. Microbiol. 2003, 94, 953–961. [Google Scholar] [CrossRef] [PubMed]
- Englander, C.M.; Corden, M.E. Stimulation of mycelial growth of Endothia parasitica by heavy metals. Appl. Microbiol. 1971, 22, 1012–1016. [Google Scholar] [PubMed]
- Golubovic Curguz, V.; Raicevic, V.; Tabakovic Tosic, M.; Veselinovic, M.; Jovanovic, L.J. Same physiological characteristics of three ectomycorrhizal fungi from Suillus genus. Miner. Biotecnol. 2010, 22, 1–7. [Google Scholar]
- Hartikainen, E.S.; Lankinen, P.; Rajasärkkä, J.; Koponen, H.; Virta, M.; Hatakka, A.; Kähkönen, M.A. Impact of copper and zinc on the growth of saprotrophic fungi and the production of extracellular enzymes. Boreal Environ. Res. 2012, 17, 210–218. [Google Scholar]
- Hartikainen, E.S.; Hatakka, A.; Kahkonen, M.A. Impact of cadmium, chromium, cobalt, lithium and manganese to the growth of fungi and production of enzymes. Expert Opin. Environ. Biol. 2013, 2. [Google Scholar] [CrossRef]
- Abu-Mejdad, N.M.J.A. Response of some fungal species to the effect of copper, magnesium and zinc under the laboratory condition. Eur. J. Exp. Biol. 2013, 3, 535–540. [Google Scholar]
- Binsadiq, A.; Al-Rahmah, A. Growth of Podaxis pistilaria collected from Saudi Arabia at different concentrations of cadmium and lead. J. King Saudi Univ. Sci. 1993, 5, 127–135. [Google Scholar]
- Anahid, S.; Yaghmaei, S.; Ghobadinejad, Z. Heavy metal tolerance of fungi. Sci. Iran. 2011, 18, 502–508. [Google Scholar] [CrossRef]
- Whipps, J.M. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 2001, 52, 487–511. [Google Scholar] [CrossRef] [PubMed]
- Rudawska, M.; Kieliszewska-Rokicka, B.; Leski, T. Effect of aluminium on Pinus sylvestris seedlings mycorrhizal with aluminium-tolerant and aluminium-sensitive strains of Suillus luteus. Dendrobiology 2000, 45, 89–96. [Google Scholar]
- Carter, M.R. Seedling growth and mineral nutrition of Scots pine under acidic to calcareous soil condition. Soil Sci. 1987, 144, 175–180. [Google Scholar] [CrossRef]
- Puhe, J. Growth and development of the root system of Norway spruce (Picea abies) in forest stands—A review. For. Ecol. Manag. 2003, 175, 253–273. [Google Scholar] [CrossRef]
- Kieliszewska-Rokicka, B.; Kurczyńska, E.U.; Leski, T. Physiological activity of ectomycorrhizas in a moderately polluted forest (Ratanica catchment, southern Poland). Dendrobiology 2000, 45, 47–59. [Google Scholar]
- Agrios, G.N. Plant Pathology, 5th ed.; Academic Press: San Diego, CA, USA, 1997. [Google Scholar]
- van West, A.; Appiah, A.A.; Gow, N.A.R. Advances in research on oomycete root pathogens. Physiol. Mol. Plant Pathol. 2003, 62, 99–113. [Google Scholar] [CrossRef]
- Stroiński, A.; Floryszak-Wieczorek, J. Effect of cadmium on the host—Pathogen system. III. Influence of cadmium and Phytophthora infestans on membrane permeability of potato leaves. Biochem. Physiol. Pflanz. 1990, 186, 417–421. [Google Scholar] [CrossRef]
- Stroiński, A.; Floryszak-Wieczorek, J. Effects of cadmium on the host-pathogen system. IV. Influence of cadmium and Phytophthora infestans on membrane permeability of potato tuber. J. Plant Physiol. 1993, 142, 575–578. [Google Scholar] [CrossRef]
- Zhang, Q.; Zeng, G.; Chen, G.; Yan, M.; Chen, A.; Du, J.; Huang, J.; Yi, B.; Zhou, Y.; He, X.; et al. The effect of heavy metal-induced oxidative stress on the enzymes in white rot fungus Phanerochaete chrysosporium. Appl. Biochem. Biotechnol. 2015, 175, 1281–1293. [Google Scholar] [CrossRef] [PubMed]
- Gadd, G.M. Interactions of fungi with toxic metals. In The Genus Aspergillus; Federation of European Microbiological Societies Symposium Series; Springer: Boston, MA, USA, 1994; pp. 361–374. ISBN 978-1-4899-0983-1. [Google Scholar]
- Hasanzadeh, M.; Mohammadifar, M.; Norabadi, M.T.; Dashtipoor, S.; Sahebani, N.; Etebarian, H.R. The effect of different salts (heavy metals) on the mycelium growth of Nematophagus fungi. Arch. Phytopathol. Plant Prot. 2012, 45, 2087–2094. [Google Scholar] [CrossRef]
- Gąsecka, M.; Rzymski, P.; Mleczek, M.; Siwulski, M.; Budzyńska, S.; Magdziak, Z.; Niedzielski, P.; Sobieralski, K. The relationship between metal composition, phenolic acid and flavonoid content in Imleria badia from non-polluted and polluted areas. J. Environ. Sci. Health B 2017, 52, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Southam, C.M.; Ehrlich, J. Effects of extracts of western red-cedar heartwood on certain wood-decaying fungi in culture. Phytopathology 1943, 33, 517–524. [Google Scholar]
- Hessayon, D.G. Double-action of trichothecin and its production in soil. Nature 1953, 167, 998–999. [Google Scholar] [CrossRef]
- Garzón, C.D.; Molineros, J.E.; Yánez, J.M.; Flores, F.J.; del Mar Jiménez-Gasco, M.; Moorman, G.W. Sublethal doses of mefenoxam enhance Pythium damping-off of Geranium. Plant Dis. 2011, 95, 1233–1238. [Google Scholar] [CrossRef]
- Baraldi, E.; Mari, M.; Chierici, E.; Pondrelli, M.; Bertolini, P.; Pratella, G.C. Studies on thiabendazole resistance of Penicillium expansum of pears: Pathogenic fitness and genetic characterization. Plant Pathol. 2003, 52, 362–370. [Google Scholar] [CrossRef]
- Landry, J.; Martinez, C.; Rochefort, L. The use of fungicide Nova to mitigate infection of Sphagnum by parasitic fungi in the greenhouse. Botany 2011, 89, 655–661. [Google Scholar] [CrossRef]
- Moorman, G.W.; Kim, S.H. Species of Pythium from greenhouses in Pennsylvania exhibit resistance to propamocarb and mefenoxam. Plant Dis. 2004, 88, 630–632. [Google Scholar] [CrossRef]
- Zhang, S.; Panaccione, D.G.; Gallegly, M.E. Metalaxyl stimulation of growth of isolates of Phytophthora infestans. Mycologia 1997, 89, 289–292. [Google Scholar] [CrossRef]
- Zhou, F.; Liang, H.-J.; Di, Y.-L.; You, H.; Zhu, F.-X. Stimulatory effects of sublethal doses of dimethachlon on Sclerotinia sclerotiorum. Plant Dis. 2014, 98, 1364–1370. [Google Scholar] [CrossRef]
- Dixon, A.F.G. Aphid Ecology; Chapman & Hall: London, UK, 1998. [Google Scholar]
- Czylok, A.; Gorczyca, J.; Hałaj, R.; Klimaszewski, S.M.; Wojciechowski, W. Fauna mszyc (Homoptera, Aphidodea) zwałowisk odpadów węglowych i cynkowych województwa katowickiego. Acta Biol. Siles 1991, 18, 108–117. [Google Scholar]
- Baker, A.J.M.; Ernst, W.H.O.; van der Ent, A.; Malaisse, F.; Ginocchio, R. Metallophytes: The unique biological resource, its ecology and conservational status in Europe, central Africa and Latin America. In Ecology of Industrial Pollution; Batty, L.C., Hallberg, K.B., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 7–40. ISBN 978-0-511-80556-1. [Google Scholar]
- Wierzbicka, M.; Rostański, A. Microevolutionary changes in ecotypes of calamine waste heap vegetation near Olkusz, Poland: A review. Acta Biol. Cracoviensia Ser. Bot. 2002, 44, 7–19. [Google Scholar]
- Osiadacz, B.; Hałaj, R. Aphids under stress. Species groups and ecological functional groups of aphids define heavy metal grasslands of Central Europe. Redia 2016, 35–51. [Google Scholar] [CrossRef]
- Mackoś-Iwaszko, E. Arthropods settling Crataegus xmedia Bechst. in the landscape of Lublin City (South-Eastern Poland). Aphids Other Hemipterous Insects 2012, 18, 71–82. [Google Scholar]
- Mackoś-Iwaszko, E.; Lubiarz, M.; Karczmarz, K. The impact of urban conditions on the occurance of aphids on Acer platanoides L. Acta Sci. Pol. Hortorum Cultus 2015, 14, 189–207. [Google Scholar]
- Bahadorani, S.; Hilliker, A.J. Biological and behavioral effects of heavy metals in Drosophila melanogaster adults and larvae. J. Insect Behav. 2009, 22, 399–411. [Google Scholar] [CrossRef]
- Clements, W.H. Metal tolerance and predator–prey interactions in benthic macroinvertebrate stream communities. Ecol. Appl. 1999, 9, 1073–1084. [Google Scholar] [CrossRef]
Metal | Concentration | Fungus/Insect | Plant | Increase of Parameter in Plant | Decrease of Parameter in Plant | References |
---|---|---|---|---|---|---|
Al | 50 µM AlCl3 | Fusarium incarnatum-equiset | Cajanus cajan L. | catalase (CAT), glutathione peroxidase (GPX) | H2O2, superoxide anion, cell death, superoxide dismutase (SOD), ascorbate peroxidase (APX) | [147] |
Al | 250 μM AlCl3 | Phytophthora infestans (Mont.) | Solanum tuberosum L. | gene expression of: pathogenesis-related (PR) protein 1, PR-2, PR-3, phenylalanine ammonia lyase (PAL), β-1,3 glucanase activity, chitinase activity, H2O2 salicylic acid (SA), Salicylic acid beta-glucoside (SAG), S-Nitrosothiols (SNOs), fluorescence intensity of nitric oxide (FLNO)—in leaves | SA, SAG, SNOs, FLNO—in roots | [106] |
Cd | 50 CdCl2 | Fusarium oxysporum | Triticum aestivum | Cd2+-stress associated protein, free protein thiol content, total protein thiols, glutaredoxin (Grx) acivity | hydrogen peroxide, carbonyl, cysteine content, glutathione (GSH), thiol disulfides, | [148,149] |
Cd | 1, 10 μM CdCl2 | Botrytis cinerea | Arabidopsis thaliana | plant defensin (PDF) 1.2 expression | none | [150] |
Cd | 250, 500, 750, 1000 mg Cd kg−1 | Frankliniella occidentalis | Thlaspi caerulescens | none | leaf feeding damage index (LFDI), number of thrips (Frankliniella occidentalis) per plant | [130] |
Cu | 50 µM CuSO4 | Verticillium dahliae Kleb. | Capsicum annuum L. | prolinę oxidase (POX), phenolic compound peroxidase gene (CAPO1), a sesquiterpene cyclase gene (CASC1), a PR1 gene (CABPR1) and a β-1,3-glucanase (CABGLU) | chitinase activity | [107] |
Mn | 350.0 mg·kg−1, MnSO4·H2O | Uncinula necator (Schw.) Burr | Vitis vinifera | salicylic acid, abscisic acid (ABA), peroxidase (POD), phenylalanine ammonia lyase (PAL), pathogenesis-related (PR-like) protein, a nucleotide binding site-leucine-rich repeat (NBS-LRR) analogue and a Josephin-like (JOSL) protein | malondialdehyde (MDA), polyphenol oxidase (PPO), SOD, CAT | [151] |
Ni | 20, 1500 mg·kg−1 NiCl2 | Spodoptera exigua | Streptanthus polygaloides | larval death | none | [138] |
Ni | 1820–7960 μg·g−1 dry mass | Melanoplus femurrubrum, Evergestis rimosalis, Delia radicum, Philaenus spumarius, Lipaphis erysimi, Trialeurodes vaporariorum, Lygus lineolaris, Tetranychus urticae | Streptanthus polygaloides | none | survival | [127] |
Ni | 200 µM Ni(NO3)2 | Erysiphe cruciferarum | Thlaspi goesingense | SA metabolites phenylalanine, cinnamic acid, salicylyl-glucose and catechol | none | [123] |
Ni | 25, 50, 75 or 100 mg·mL−1 Ni | Pythium mamillatum and P. ultimum | Alyssum serpyllifolium ssp. lusitanicum and A. murale | none | none | [152] |
Se | 20 μM sodium selenate | Pieris rapae, Alternaria, Brassicicola, Fusarium sp. | Brassica juncea | none | feeding rate | [153] |
Se | 10, 20, 40 μM sodium selenate | Myzus persicae | Brassica juncea | none | aphids per plant | [154] |
Zn | 0·5–5 mg·g−1 ZnSO4 | Schistocerca gregaria(Forskål) | Thlaspi caerulescens J. & C. | none | time feeding, growth rate, amount eaten | [131] |
Zn | 10 mg·L−1 ZnSO4·7 H2O | Schistocerca gregaria, Deroceras caruanae, Pieris brassicae | Thlaspi caerulescens J. & C. | none | preferences | [110] |
Metal | Concentration | Invertebrata | Hormetic/Toxic Effect | Increase of Parameter in Invertebrata | Decrease of Parameter in Invertebrata | References |
---|---|---|---|---|---|---|
Cd | 0.0002, 0.00022, 0.0004, 0.0022, 0.0202, 0.2002 ppm CdCl2 | Phormia regina Meig. (Class: Insecta) | hormetic effect | mean percent pupation, stage specific death | mean % emergence, pupae death | [81] |
2.0002, 20.0002, 200.0002 ppm CdCl2 | toxic effect | pupae death, stage specific death | mean % pupation, mean % emergence, | |||
Cd | 10.53, 7.01, 5.84, 5.25, ng·cm−2 Cd2+ | Eisenia fetida (Class: Clitellata) | hormetic effect | catalase (CAT), sodium dismutase (SOD) | none | [159] |
0.33, 0.66 and 1.32 ng·m−2 Cd2+ | toxic effect | none | CAT, SOD | |||
Cu | 0.04 mM, 0.16 mM, 0.63 mM, 2.5 mM, 10 mM, 40 mM and 160 mM, Cu(NO3)2·3 H2O | Folsomia candida (Class: Entognatha) | hormetic effect | survival | none | [82] |
MeHg | 0,2 mM, 0,4 mM MeHgCl | Caenorhabditis elegans (Class: Chromadorea) | hormetic effect | expression of glutathione S-transferases (gst-4): GFP (green fluorescence protein) | heat shock proteins (hsp-4):GFP, metallothioneins (mtl-1):GFP and mtl-2:GFP | [84] |
Ni | 50 and 100 mg·kg−1 [Ni(NO3)2 6H2O] | Eisenia fetida (Class: Clitellata) | hormetic effect | microbial biomass carbon, soil basal respiration | dehydrogenase activities | [86] |
300, 500, 800 mg·kg−1 [Ni(NO3)2 6H2O] | toxic effect | none | urease (UA) and dehydrogenase activities | |||
U | 1.86, 5.0, 9.3 mg·kg−1 depleted uranium (DU) | Eisenia fetida (Class: Clitellata) | hormetic effect | natural red retention time, DNA breaks | toxicity factor | [83] |
18.6, 50, 93, 150, 186, 300 and 600 mg·kg−1 DU | toxic effect | DNA breaks | toxicity factor |
Metal | Concentration | Plant Species | Hormetic/Toxic Effect | Increase of Parameter in Fungi | Decrease of Parameter in Fungi | References |
---|---|---|---|---|---|---|
Cd | 5 mg·L−1 | Aspergillus flavus | hormetic effect | total RNA, aflatoxin, O-methylsterigmatocystin | none | [216] |
Cr | 20–100 mg·kg−1 KCr(SO4)2·12 H2O | Agrocybe praecox | hormesis effect | none | Enzyme production | [220] |
Cr | 20–100 mg·kg−1 KCr(SO4)2 ·12 H2O | Pleurotus pulmonarius, Phlebia radiata, Physisporinus rivulosus and Stropharia rugosoannulata | toxic effect | none | none | |
Cu | 5 mg·L−1 | Aspergillus flavus | hormetic effect | total RNA, aflatoxin, O-methylsterigmatocystin | none | [216] |
Cu | 5·10−4 M, 5·10−3 M CuSO4 and CuCl | Endothia parasitica | hormetic effect | none | none | [217] |
Cu | 3 ppm CuSO4·5H2O | Suillus luteus | hormetic effect | none | none | [218] |
Cu | 20 ppm | Cryptococcus neoformans | hormetic effect | [221] | ||
40 ppm | toxic effect | |||||
Fe | 5 mg·L−1 | Aspergillus flavus | hormetic effect | total RNA, aflatoxin, O-methylsterigmatocystin | none | [216] |
5·10−4 M and 5·10−3 M FeC12·4H2O. FeC13·6H2O | Endothia parasitica | hormetic effect | none | none | [217] | |
Li | 20–100 mg·kg−1 Li2 SO4·H2O | Agrocybe praecox | hormetic effect | none | none | [220] |
20–100 mg·kg−1 Li2 SO4·H2O | Pleurotus pulmonarius, Phlebia radiata, Physisporinus rivulosus and Stropharia rugosoannulata | toxic effect | none | none | ||
Pb | 3, 33 ppm Pb(NO3)2 | Suillus luteus | hormetic effect | none | none | [218] |
Pb | 3 ppm Pb(NO3)2 | Hebeloma spp. | hormetic effect | none | none | |
Mn | 10–400 mg·kg−1 MnSO4·4H2O | Agrocybe praecox | hormetic effect | none | none | [220] |
Mn | 10–400 mg·kg−1 MnSO4·4 H2O | Pleurotus pulmonarius, Phlebia radiata, Physisporinus rivulosus and Stropharia rugosoannulata | toxic effect | none | none | |
Zn | 5·10−4 M ZnSO4·7H2O | Endothia parasitica | hormetic effect | none | none | [217] |
Zn | 3 ppm ZnSO4·7H2O | Hebeloma spp. | hormetic effect | none | none | [218] |
Zn | 100, 200, 400 mg Zn kg−1 | Coniothyrium sp. | hormetic effect | none | enzyme production on ABTS malt extract agar plates | [219] |
100 mg·kg−1 Zn | Agrocybe praecox, Gymnopus peronatus, Gymnopilus sapineus, Stropharia rugosoannulata, Mycena galericulata | none | none | |||
100, 200, 400 mg Zn kg−1 | Sordaria sp., Pyrenophora sp., Alternaria sp., Chaetomium sp., Fusarium sp., Epicoccum sp., Gliocladium sp., Mortierella sp., Cylindrocarpon sp. | toxic effect | Enzyme production on ABTS malt extract agar plates | none | ||
100 mg·kg−1 Zn | Agaricus bisporus, Gymnopilus luteofolius, Stropharia aeruginosa | toxic effect | none | none |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morkunas, I.; Woźniak, A.; Mai, V.C.; Rucińska-Sobkowiak, R.; Jeandet, P. The Role of Heavy Metals in Plant Response to Biotic Stress. Molecules 2018, 23, 2320. https://doi.org/10.3390/molecules23092320
Morkunas I, Woźniak A, Mai VC, Rucińska-Sobkowiak R, Jeandet P. The Role of Heavy Metals in Plant Response to Biotic Stress. Molecules. 2018; 23(9):2320. https://doi.org/10.3390/molecules23092320
Chicago/Turabian StyleMorkunas, Iwona, Agnieszka Woźniak, Van Chung Mai, Renata Rucińska-Sobkowiak, and Philippe Jeandet. 2018. "The Role of Heavy Metals in Plant Response to Biotic Stress" Molecules 23, no. 9: 2320. https://doi.org/10.3390/molecules23092320