In Vitro/In Vivo Metabolism of Ginsenoside Rg5 in Rat Using Ultra-Performance Liquid Chromatography/Quadrupole-Time-of-Flight Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mass Spectral Properties of Rg5
2.2. Metabolites of Rg5 in RLMs
2.3. Metabolites of Rg5 Detected in the Urine, Feces, Plasma Samples of Rats after Oral Administration
2.3.1. Metabolite M1
2.3.2. Metabolite M2
2.3.3. Metabolite M3
2.3.4. Metabolite M4
2.3.5. Metabolite M5
2.3.6. Metabolite M6
2.3.7. Metabolite M7
2.3.8. Metabolite M8
2.3.9. Metabolite M9
2.3.10. Metabolite M10
2.3.11. Metabolite M11
2.3.12. Metabolite M12
2.3.13. Metabolite M13
2.4. Metabolic Pathways of Rg5
3. Materials and Methods
3.1. Materials
3.2. In Vitro Microsomal Incubation with NADPH and UDPGA
3.3. Drug Administration and Sample Collection
3.4. Sample Preparation
3.5. UPLC Chromatography and Q/TOF Mass Spectrometer
3.6. Data Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Block, K.I.; Mead, M.N. Immune system effects of echinacea, ginseng, and astragalus: A review. Integr. Cancer Ther. 2003, 2, 247–267. [Google Scholar] [CrossRef] [PubMed]
- Herraiz, T.; Papavergou, E. Identification and occurrence of tryptamine- and tryptophan-derived tetrahydro–carbolines in commercial sausages. Food Chem. 2004, 52, 2652–2658. [Google Scholar] [CrossRef] [PubMed]
- Musgrave, I.F.; Badoer, E. Harmane produces hypotension following microinjection into the RVLM: Possible role of I1-imidazoline receptors. Br. J. Pharmacol. 2000, 129, 1057–1059. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Yang, Y.; Lu, Y.; Lu, C.; Lv, J.; Jiang, N.; Xu, Q.; Gao, Y.; Chang, Q.; Liu, X. Radioprotective effects of dammarane sapogenins against 60Co-induced myelosuppression in mice. Phytother. Res. 2018, 32, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, X.; Lin, Z.X.; Dai, J.G.; Huang, Y.F.; Zhao, Y.N. Preventive effects of ginseng total saponins on chronic corticosterone-induced impairment in astrocyte structural plasticity and hippocampal atrophy. Phytother. Res. 2017, 31, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Wang, P.; Liu, J.; Wang, C. Panax notoginseng preparations for unstable angina pectoris: A systematic review and meta-analysis. Phytother. Res. 2017, 31, 1162–1172. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Zhang, B.Y.; Dong, L.M.; Lv, J.W.; Lu, C.; Wang, Q.; Fan, L.X.; Zhang, H.X.; Pan, R.L.; Liu, X.M. Antidepressant effects of dammarane sapogenins in chronic unpredictable mild stress-induced depressive mice. Phytother. Res. 2018, 32, 1023–1029. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Song, J.; Zhang, J.; Wang, T.; Yan, Y.; Tao, Z.; Li, S.; Zhang, H.; Kang, T.; Yang, J. Ginseng protein reverses amyloid beta peptide and H2O2 cytotoxicity in neurons, and ameliorates cognitive impairment in AD rats induced by a combination of d-galactose and AlCl3. Phytother. Res. 2017, 31, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Gao, J.; Wei, F.; Zhao, J.; Wang, D.; Wei, J. Therapeutic potential of ginsenosides as an adjuvant treatment for diabetes. Front. Pharmacol. 2018, 9, 423–437. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Jung, J.S.; Moon, Y.S.; Sung, J.H.; Suh, H.W.; Kim, Y.H.; Song, D.K. Inhibition of intracerebroventricular injection stress-inducted plasma corticosterone levels by intracerebroventricularly administered compound K, a ginseng saponin metabolite, in mice. Biol. Pharm. Bull. 2003, 26, 1035–1038. [Google Scholar] [CrossRef] [PubMed]
- Park, E.K.; Choo, M.K.; Oh, J.K.; Ryu, J.H.; Kim, D.H. Ginsenoside Rh2 reduces ischemic brain injury in rats. Biol. Pharm. Bull. 2004, 27, 433–436. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Lv, J.; Dong, L.; Jiang, N.; Wang, Y.; Wang, Q.; Li, Y.; Chen, S.; Fan, B.; Wang, F.; et al. Neuroprotective effects of 20(S)-protopanaxatriol (PPT) on scopolamine-induced cognitive deficits in mice. Phytother. Res. 2018, 32, 1056–1063. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Shi, Z.; Dong, L.; Lv, J.; Xu, P.; Li, Y.; Qu, L.; Liu, X. Exploring the effect of ginsenoside Rh1 in a sleep deprivation-induced mouse memory impairment model. Phytother. Res. 2017, 31, 763–770. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Xu, P.; Lu, C.; Dong, L.; Zhang, B.; Lu, J.; Yang, Y.; Liu, X. Effects of ginsenoside Rg1 on learning and memory in a reward-directed instrumental conditioning task in chronic restraint stressed rats. Phytother. Res. 2017, 31, 81–89. [Google Scholar]
- Chang, T.C.; Huang, S.F.; Yang, T.C.; Chan, F.N.; Lin, H.C.; Chang, W.L. Effect of ginsenosides on glucose uptake in human Caco-2 cells is mediated through altered Na+/Glucose cotransporter 1 expression. J. Agric. Food Chem. 2007, 55, 1993–1998. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Sun, Y.; Zheng, S.L.; Qin, Y.; McClements, D.J.; Hu, J.N.; Deng, Z.Y. Antitumor and immunomodulatory effects of ginsenoside Rh2 and its octyl ester derivative in H22 tumor-bearing mice. J. Funct. Foods 2017, 32, 382–390. [Google Scholar] [CrossRef]
- Kwon, S.W.; Han, S.B.; Park, I.H.; Kim, J.M.; Park, M.K.; Park, J.H. Liquid chromatographic determination of less polar ginsenosides in processed ginseng. J. Chromatogr. A 2001, 92, 1335–1339. [Google Scholar] [CrossRef]
- Bae, E.A.; Kim, E.J.; Park, J.S.; Kim, H.S.; Ryu, J.H.; Kim, D.H. Ginsenosides Rg3 and Rh2 inhibit the activation of AP-1 and protein kinase A pathway in lipopolysaccharide/interferon-gamma-stimulated BV-2 microglial cells. Planta Med. 2006, 72, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Jung, I.H.; Van Le, T.K.; Jeong, J.J.; Kim, N.J.; Kim, D.H. Ginsenosides Rg5 and Rh3 protect scopolamine-induced memory deficits in mice. J. Ethnopharmacol. 2013, 146, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.Y.; Park, J.S.; Jung, J.S.; Kim, D.H.; Kim, H.S. Anti-inflammatory effect of ginsenoside Rg5 in lipopolysaccharide-stimulated BV2 microglial cells. Int. J. Mol. Sci. 2013, 14, 9820–9823. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.W.; Bae, E.A.; Kim, D.H. Inhibitory effect of ginsenoside Rg5 and its metabolite ginsenoside Rh3 in an oxazolone-induced mouse chronic dermatitis model. Arch. Pharm. Res. 2006, 29, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Kim, A.K. Anti-breast cancer activity of Fine Black ginseng (Panax ginseng Meyer) and ginsenoside Rg5. J. Ginseng Res. 2015, 39, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.D.; He, T.; Du, T.W.; Fan, Y.G.; Chen, D.S.; Wang, Y. Ginsenoside-Rg5 induces apoptosis and DNA damage in human cervical cancer cells. Mol. Med. Rep. 2014, 11, 940–946. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Lee, Y.H.; Kim, S.I.; Park, J.H.; Lee, S.K. Ginsenoside-Rg5 suppresses cyclin e-dependent protein kinase activity via up-regulating p21Cip/WAF1 and downregulating cyclin E in SK-HEP-1 cells. Anticancer Res. 1997, 17, 1067–1072. [Google Scholar] [PubMed]
- Kim, T.W.; Joh, E.H.; Kim, B.; Kim, D.H. Ginsenoside Rg5 ameliorates lung inflammation in mice by inhibiting the binding of LPS to toll-like receptor-4 on macrophages. Int. Immunopharmacol. 2012, 12, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.H.; Gu, J.F.; Feng, L.; Liu, J.P.; Zhang, M.H. Ginsenoside Rg5 improves cognitive dysfunction and beta-amyloid deposition in STZ-induced memory impaired rats via attenuating neuroinflammatory responses. Int. Immunopharmacol. 2014, 19, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yan, M.H.; Liu, Y.; Liu, Z.; Wang, Z.; Chen, C.; Zhang, J.; Sun, Y.S. Ginsenoside Rg5 ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of inflammation, oxidative stress, and apoptosis. Nutrients 2016, 8, 566. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.F.; Björkhem, I.; Eneroth, P. Gas chromatographic-mass spectrometric determination of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol for study on human urinary excretion of ginsenosides after ingestion of ginseng preparations. J. Chromatogr. B 1997, 689, 349–355. [Google Scholar] [CrossRef]
- Mona, A.T.; Ute, B.; Michael, K.; Mario, W. Degradation of ginsenosides in humans after oral administration. Drug Metab. Dispos. 2003, 31, 1065–1071. [Google Scholar]
- Odani, T.; Tanizawa, H.; Takino, Y. Studies on the absorption, distribution, excretion and metabolism of ginseng saponins. II. The absorption, distribution and excretion of ginsenoside Rg1 in the rat. Chem. Pharm. Bull. 1983, 31, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Karikura, M.; Miyase, T.; Tanizawa, H.; Takino, Y.; Taniyama, T.; Hayashi, T. Studies on absorption, distribution, excretion and metabolism of ginseng saponins. V. The decomposition products of ginsenoside Rb2 in the large intestine of rats. Chem. Pharm. Bull. 1990, 38, 2859–2861. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, H.; Sung, J.-H.; Benno, Y. Role of human intestinal Prevotella oris in hydrolyzing ginseng saponins. Planta Med. 1997, 63, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Akao, T.; Kanaoka, M.; Kobashi, K. Appearance of compound K, a major metabolite of ginsenoside Rb1 by intestinal bacteria, in rat plasma after oral administration—Measurement of compound K by enzyme immunoassay. Biol. Pharm. Bull. 1990, 21, 245–249. [Google Scholar] [CrossRef]
- Bae, E.A.; Han, N.J.; Shin, Y.W.; Kim, D.H. Inhibitory effects of Korean red ginseng and its genuine constituents ginsenosides Rg3, Rf, and Rh2 in mouse passive cutaneous anaphylaxis reaction and contact dermatitis models. Biol. Pharm. Bull. 2006, 29, 1862–1867. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.W.; Bae, E.A. Metabolism of ginsenoside Rg5, a main constituent isolated from red ginseng, by human intestinal microflora and their antiallergic effect. J. Microbiol. Biotechnol. 2006, 16, 1791–1798. [Google Scholar]
- Zhang, Y.; Xu, F.; Dong, J.; Liang, J.; Hashi, Y.; Shang, M. Profiling and identification of the metabolites of calycosin in rat hepatic supernatant incubation system and the metabolites of calycosin-7-O-β-d-glucoside in rat urine. J. Pharm. Biomed. Anal. 2012, 70, 425–439. [Google Scholar] [CrossRef] [PubMed]
- Arib, O.; Rat, P.R.; Molimard, A. Electrophysiological characterization of harmane-induced activation of mesolimbic dopamine neurons. Eur. J. Pharmacol. 2010, 629, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Rommelspacher, H.; May, T.; Susilo, R. Beta-carbolines and tetrahydroisoquinolines: Detection and function in mammals. Planta Med. 1991, 57, S85–S92. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Mitchelson, K.R. Improved separation of six harmane alkaloids by high-performance capillary electrophoresis. J. Chromatogr. A 1997, 761, 297–305. [Google Scholar] [CrossRef]
- Li, S.P.; Liu, W.; Teng, L.; Cheng, X.M.; Wang, Z.T.; Wang, C.H. Metabolites identification of harmane in vitro/in vivo in rats by ultra-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. J. Pharm. Biomed. 2014, 92, 53–62. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Not Available. |
No. | Formula | tR (min) | Experimental m/z | ppm Error | Source | Pathway |
---|---|---|---|---|---|---|
Parent | C42H70O12 | 5.95 | 767.4914 | −3 | FP | 1 |
M1 | C42H70O13 | 11.31 | 783.4855 | −4.4 | P | 1 |
M2 | C48H78O18 | 4.3 | 943.5231 | −3.1 | U | 2 |
M3 | C42H68O11 | 12.05 | 749.4838 | 0.5 | F | 1 |
M4 | C36H60O7 | 7.38 | 605.4374 | −3.5 | F, P, R | 1 |
M5 | C36H60O8 | 4.87 | 621.4351 | 4.87 | R | 1 |
M6 | C36H58O6 | 7.38 | 587.4283 | −3.9 | F | 1 |
M7 | C36H60O6 | 11.2 | 589.446 | −0.5 | F | 1 |
M8 | C42H68O12 | 4.84 | 765.4757 | −3.5 | F, R | 2 |
M9 | C48H76O18 | 4.64 | 941.5082 | −2.3 | U | 2 |
M10 | C30H50O2 | 10.69 | 443.3886 | 0.5 | F, R | 1 |
M11-1 | C30H50O3 | 8.2 | 459.3818 | −3.2 | F | 1 |
M11-2 | C30H50O3 | 6.33 | 459.3817 | −3.5 | F | 1 |
M11-3 | C30H50O3 | 9.01 | 459.3817 | −3.4 | F | 1 |
M12-1 | C30H48O | 10.51 | 425.3768 | −2.4 | F, | 1 |
M12-2 | C30H48O | 5.98 | 425.3771 | −1.7 | F, | 1 |
M13-1 | C29H48O2 | 10.54 | 429.3727 | 0 | FP | 1 |
M13-2 | C29H48O2 | 9.89 | 429.3723 | −1 | FP | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, C.; Yang, P.; Li, S.; Guo, Y.; Wang, D.; Wang, J. In Vitro/In Vivo Metabolism of Ginsenoside Rg5 in Rat Using Ultra-Performance Liquid Chromatography/Quadrupole-Time-of-Flight Mass Spectrometry. Molecules 2018, 23, 2113. https://doi.org/10.3390/molecules23092113
Hong C, Yang P, Li S, Guo Y, Wang D, Wang J. In Vitro/In Vivo Metabolism of Ginsenoside Rg5 in Rat Using Ultra-Performance Liquid Chromatography/Quadrupole-Time-of-Flight Mass Spectrometry. Molecules. 2018; 23(9):2113. https://doi.org/10.3390/molecules23092113
Chicago/Turabian StyleHong, Chao, Ping Yang, Shuping Li, Yizhen Guo, Dan Wang, and Jianxin Wang. 2018. "In Vitro/In Vivo Metabolism of Ginsenoside Rg5 in Rat Using Ultra-Performance Liquid Chromatography/Quadrupole-Time-of-Flight Mass Spectrometry" Molecules 23, no. 9: 2113. https://doi.org/10.3390/molecules23092113
APA StyleHong, C., Yang, P., Li, S., Guo, Y., Wang, D., & Wang, J. (2018). In Vitro/In Vivo Metabolism of Ginsenoside Rg5 in Rat Using Ultra-Performance Liquid Chromatography/Quadrupole-Time-of-Flight Mass Spectrometry. Molecules, 23(9), 2113. https://doi.org/10.3390/molecules23092113