Next Article in Journal
Synthesis of New 5-Aryl-benzo[f][1,7]naphthyridines via a Cascade Process (Ugi-3CR/Intramolecular Aza-Diels-Alder Cycloaddition)/Aromatization
Next Article in Special Issue
New Advances in General Biomedical Applications of PAMAM Dendrimers
Previous Article in Journal
Isolation and Purification of Galloyl, Caffeoyl, and Hexahydroxydiphenoyl Esters of Glucoses from Balanophora simaoensis by High-Speed Countercurrent Chromatography and Their Antioxidant Activities In Vitro
Previous Article in Special Issue
Effect of Dendrimer Generation and Aglyconic Linkers on the Binding Properties of Mannosylated Dendrimers Prepared by a Combined Convergent and Onion Peel Approach
Article Menu
Issue 8 (August) cover image

Export Article

Open AccessArticle
Molecules 2018, 23(8), 2028;

Evaluation of Amino-Functional Polyester Dendrimers Based on Bis-MPA as Nonviral Vectors for siRNA Delivery

Fiber and Polymer Technology, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain
CIBERNED, Instituto de Salud Carlos III, 28029 Madrid, Spain
Author to whom correspondence should be addressed.
Received: 24 July 2018 / Revised: 8 August 2018 / Accepted: 10 August 2018 / Published: 14 August 2018
Full-Text   |   PDF [1736 KB, uploaded 14 August 2018]   |  


Herein, we present the first evaluation of cationic dendrimers based on 2,2-bis(methylol)propionic acid (bis-MPA) as nonviral vectors for transfection of short interfering RNA (siRNA) in cell cultures. The study encompassed dendrimers of generation one to four (G1–G4), modified to bear 6–48 amino end-groups, where the G2–G4 proved to be capable of siRNA complexation and protection against RNase-mediated degradation. The dendrimers were nontoxic to astrocytes, glioma (C6), and glioblastoma (U87), while G3 and G4 exhibited concentration dependent toxicity towards primary neurons. The G2 showed no toxicity to primary neurons at any of the tested concentrations. Fluorescence microscopy experiments suggested that the dendrimers are highly efficient at endo-lysosomal escape since fluorescently labeled dendrimers were localized specifically in mitochondria, and diffuse cytosolic distribution of fluorescent siRNA complexed by dendrimers was observed. This is a desired feature for intracellular drug delivery, since the endocytic pathway otherwise transfers the drugs into lysosomes where they can be degraded without reaching their intended target. siRNA-transfection was successful in C6 and U87 cell lines using the G3 and G4 dendrimers followed by a decrease of approximately 20% of target protein p42-MAPK expression. View Full-Text
Keywords: dendrimer; siRNA; RNAi; bis-MPA; monodisperse; polycation dendrimer; siRNA; RNAi; bis-MPA; monodisperse; polycation

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

Printed Edition Available!
A printed edition of this Special Issue is available here.

Share & Cite This Article

MDPI and ACS Style

Stenström, P.; Manzanares, D.; Zhang, Y.; Ceña, V.; Malkoch, M. Evaluation of Amino-Functional Polyester Dendrimers Based on Bis-MPA as Nonviral Vectors for siRNA Delivery. Molecules 2018, 23, 2028.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top