You are currently viewing a new version of our website. To view the old version click .
Molecules
  • Review
  • Open Access

19 June 2018

Fatty Acid-Stimulated Insulin Secretion vs. Lipotoxicity

,
,
and
Institute of Physiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Biology of Reactive Oxygen and Nitrogen Species: Redox Signaling, Metabolic Effects, Cellular Functions and Oxidative Damage

Abstract

Fatty acid (FA)-stimulated insulin secretion (FASIS) is reviewed here in contrast to type 2 diabetes etiology, resulting from FA overload, oxidative stress, intermediate hyperinsulinemia, and inflammation, all converging into insulin resistance. Focusing on pancreatic islet β-cells, we compare the physiological FA roles with the pathological ones. Considering FAs not as mere amplifiers of glucose-stimulated insulin secretion (GSIS), but as parallel insulin granule exocytosis inductors, partly independent of the KATP channel closure, we describe the FA initiating roles in the prediabetic state that is induced by retardations in the glycerol-3-phosphate (glucose)-promoted glycerol/FA cycle and by the impaired GPR40/FFA1 (free FA1) receptor pathway, specifically in its amplification by the redox-activated mitochondrial phospholipase, iPLA2γ. Also, excessive dietary FAs stimulate intestine enterocyte incretin secretion, further elevating GSIS, even at low glucose levels, thus contributing to diabetic hyperinsulinemia. With overnutrition and obesity, the FA overload causes impaired GSIS by metabolic dysbalance, paralleled by oxidative and metabolic stress, endoplasmic reticulum stress and numerous pro-apoptotic signaling, all leading to decreased β-cell survival. Lipotoxicity is exerted by saturated FAs, whereas ω-3 polyunsaturated FAs frequently exert antilipotoxic effects. FA-facilitated inflammation upon the recruitment of excess M1 macrophages into islets (over resolving M2 type), amplified by cytokine and chemokine secretion by β-cells, leads to an inevitable failure of pancreatic β-cells.

1. Introduction

The Janus face role of fatty acids (FAs) in relation to insulin secretion and the development of pre-diabetic and diabetic states of type 2 diabetes are discussed in this review. We summarize the simple fact that, on the one hand, the long chain C16–C18 FAs (LCFAs) are the most efficient stimulants of the insulin release in pancreatic β-cells [,], whereas, on the other hand, elevated LCFA concentrations in obesity via elevated oxidative stress and low-grade inflammation result in impaired insulin secretion and may lead to the disease progression of fully developed type 2 diabetes []. The direct effect of various FAs on β-cell function is complex and pleiotropic. It depends on the chemical nature, concentration, exposure time, and interaction with other nutrients []. These aspects are discussed in detail below.
Type 2 diabetes is a very complex disease [] involving components of the impaired β-cell and pancreatic islet biogenesis and homeostasis; impaired hormonal (endocrine, paracrine, and autocrine) effects on β-cells, but also other islet cell types; components of the chronic low-grade inflammation [,,], typically in white adipose tissue (WAT), but also involving pancreatic islet inflammation; plus the manifested insulin resistance of peripheral tissues []. As a result of this complexity, we will focus in this review only on the components of the oxidative and metabolic stresses impacting pancreatic β-cells and low-grade inflammation in pancreatic islets. The molecules in focus will be long chain fatty acids.

1.1. Canonical Mechanism of Insulin Secretion

1.1.1. Glucose-Stimulated Insulin Secretion (GSIS)

The glucose sensor of pancreatic β-cells is substantiated, namely, by the elevated ATP as a result of the increased oxidative phosphorylation (OXPHOS) upon the glucose intake from the basal levels of 3.9 mM in humans, and 5.5 mM in mice [,,]. Unlike in other cell types, the constant glucose intake, equilibrating the capillary blood glucose levels with the β-cell cytosolic levels, is ensured by the glucose transporter GLUT2 in rodents and possibly by GLUT1 in humans. The increasing ATP/ADP ratio affects the plasma membrane ATP-sensitive K+ channel (KATP), which closes and initiates concerted events of several other channels, leading to plasma membrane depolarization []. This activates voltage-gated l-type Ca2+ channels (CaL), causing Ca2+ entry and resulting in Ca2+-dependent exocytosis of the insulin-containing secretory granules. The latter may be augmented (or initiated), for example, at the glucagon-like peptide 1 (GLP-1) stimulation via the GLP-1 receptor, Gs protein, and the cyclic AMP- (cAMP)-dependent activation by the protein kinase A (PKA) and the exchange protein directly activated by cAMP 2 (EPAC2) []. Alternatively, the glucose-dependent insulinotropic peptide (GIP) acts in a similar way []. Similarly, the acetylcholine via muscarinic M3 receptors, ATP via purinoreceptors, and LCFAs or other metabolites via metabotropic receptors (GPRs, see below) act by stimulation of the Gq proteins and the Ca2+ release independent of KATP []. Also, the glycerol/fatty acid cycle that is relevant for fatty acid insulin secretion, acts independently of KATP []. Notably, an inhibitory mechanism for insulin release exists, acting via the inhibitory Gi proteins upon the activation of α2-adrenergic receptors or somatostatin receptors [].
Since the glycolytic enzyme hexokinase IV (glucokinase) in β-cells is not inhibited by the glucose-6-phosphate [], the lack of such feedback of the inhibition of glycolysis directly connects glycolysis to pyruvate. Consequently, the β-cell respiration and OXPHOS rates are directly related to the availability of glucose. Note also that most of the other cell types demand respiration and metabolism rates according to their needs and not according to the substrate availability, as do the β-cells. Particularly glucokinase enables that glycolysis amplifies a triggering pathway of glucose-stimulated insulin secretion, through the action of the increased cytosolic Ca2+ [].
The recently discovered aspect has explained the adjustment of the range of glucose concentrations for the glucose sensor []. Surprisingly, this is ensured by the inhibitory factor protein IF-1 of the mitochondrial ATP-synthase. The ablation of IF-1 allowed a ‘premature switching on’ of the sensor (i.e., elevation of respiration and OXPHOS), just beginning from the zero glucose concentrations. By a weak inhibition of the ATP-synthase (and hence, OXPHOS), IF-1 thus ensures that the mitochondrial respiration and the resulting ATP synthesis starts to increase sharply at ~3 mM glucose levels and saturates at ~12 to 15 mM glucose. In these saturating glucose concentrations, the maximum OXPHOS takes places with the established maximum respiration and maximum mitochondrial inner membrane potential. At the fasting states with ~5.5 mM glucose levels, β-cell respiration is relatively low, as well as the intensity of the ATP synthesis [].
Also, lipidomics have elucidated details of insulin granule exocytosis. It has been demonstrated that the negatively charged phospholipids (e.g., phosphatidylserine) promote the interaction of the positively charged regions in the membrane soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins of the insulin secretory vesicle, with the positively charged regions in the SNARE proteins in the plasma membrane []. In this way, insulin exocytosis is facilitated by the phosphatidylserine enrichment of the secretory granules.

1.1.2. Impaired GSIS in Type 2 Diabetes

Out of the scope of this review, the etiology of type 2 diabetes is not fully understood []. For decades, advances in research have preferred either a predominant component of insulin resistance [], occurring as a consequence of low-grade inflammation, causing dysfunctional insulin receptor signaling; or, on the other hand, the impaired biogenesis and dysfunction of pancreatic β-cells was emphasized, including, among numerous other factors, the key role of damaged mitochondria [,,] and pancreatic islet inflammation (see Section 3.2). In reality, both the peripheral insulin resistance and dysfunction of pancreatic β-cells as a result of various factors, including β-cell de-differentiation [], act in concert. Disease development proceeds most probably in an intermittent manner in a ‘spiral of events’, when any small disturbance of, for example, β-cell function/biogenesis, can be projected as initiating insulin resistance, which strikes back and promotes a further turn of β-cell dysfunction and viability deficiency or de-differentiation. Numerous turns of such a vicious spiral lead, via pre-diabetic states, to fully developed type 2 diabetes. The original event might be low-grade inflammation starting in WAT, as is the case with metabolic syndrome. However, since non-diabetic (‘healthy’) obese patients are also frequent, it must initiate as well as defend against diabetes in other ways.

2. Physiological Involvement of LCFAs in Insulin Secretion

2.1. FA-Stimulated Insulin Secretion (FASIS)

2.1.1. Dietary vs. Cleaved FAs as Relevant Secretagogues for Insulin Secretion

The transformed dietary fat lipids in the form of triglyceride-rich chylomicrons are cleaved locally in the pancreatic islet capillaries by lipoprotein lipase to 2-monoacylglycerol (2MAG) and LCFAs [,,,]. The 2MAG stimulates the G-protein coupled receptor (GPR), GPR119, residing on the β-cells []. The GPR119, via stimulating the stimulatory Gs protein, augments insulin secretion by cAMP-dependent pathways. LCFAs were supposed to directly activate the GPR40/FFA1 (free FA1) receptor, (i.e., another receptor of β-cells stimulating insulin granule exocytosis via the Gq protein), but also via the Gs and arrestin pathways [,,,,]. Activation of GPR40 is further relayed to the signal-regulated kinase 1 and 2 (ERK1/2) []. The GPR40 ablation or point mutation in mice led to the impaired insulin secretion that was stimulated by FAs, while only mice with the point mutation had normal GSIS []. The GPR40 downstream signaling only slightly increases respiration []. Secretory phospholipases A2 might also contribute to FASIS, which is similar to phospholipase C []. LCFAs are typically imported into β-cells by the CD36 FA transporter. Acetylation/deacetylation may regulate the function of CD36 [], hence, the NAD+-activated sirtuins, as lysine deacetylases, should promote the FA intake into β-cells.
In model β-cells and with isolated pancreatic islets (ex vivo, Jabůrek et al., unpublished, and preliminary data reported in []), a novel phenomenon of signal amplification for GPR40 has been reported []. Physiologically relevant concentrations of exogenous palmitic acid were not able or sufficient to directly activate the GPR40 to stimulate insulin secretion, but instead were metabolized by the mitochondrial β-oxidation. The latter is pro-oxidant as it produces superoxide at the EF site of the electron-transferring flavoprotein, Q oxidoreductase system (ETFQOR) []. The resulting superoxide is converted by superoxide dismutase MnSOD to H2O2. Such a redox (direct H2O2) signaling activates the mitochondrial-specific calcium-independent phospholipase A2, isoform γ (iPLA2γ). The active iPLA2γ is able to cleave free FAs from the mitochondrial inner membrane phospholipids, including cardiolipin, and leaves lysophospholipids. Consistent with the known properties of transmembrane FA transport, the intracellular cleaved FA can equilibrate rapidly within the cellular compartments, and it has been demonstrated that the FAs diffuse in and out of the β-cells within a minute []. Thus, at least ex vivo, free FAs can diffuse out of mitochondria to the plasma membrane and stimulate GPR40, and subsequently, insulin secretion []. However, this mechanism has yet to be demonstrated to exist in vivo.
If this amplification exists in vivo, it would coordinate the balance between the two branches of FA-stimulated insulin secretion (FASIS), namely: the ATP-dependent branch, which is automatically KATP-dependent; and the glycerolipid/FA cycle and GPR40-dependent branch, which is predominantly KATP-independent. Thus, the FA metabolism leads to (i) the elevated ATP, produced because of the increased mitochondrial oxidative phosphorylation (OXPHOS) during the FA β-oxidation; and the (ii) stimulated GPR40 by the FAs that returned to the plasma membrane from each possible point of the metabolic pathways (with free FAs as reaction products), and by ‘amplifying’ the FFAs cleaved off phospholipids, reportedly in mitochondria and possibly also in peroxisomes. If one considers also the contribution of either chylomicron-derived 2MAG or 2MAG, originating from the glycerolipid/FA cycle, all of these stimuli belong to the components of the in vivo net FASIS (Figure 1).
Figure 1. Fatty acid (FA)-stimulated insulin secretion (FASIS) in mice (a,b) as compared to glucose-stimulated insulin secretion (GSIS), (a) and schemes of incretin-mediated basal insulin secretion at fasting (c) and FASIS at basal glucose levels (d), with a theoretical fat only meal. (a,b) Time course of insulin release into the blood from the eye plexus blood vessel in C57Bl6J mice, fasted 6 h prior to an intraperitoneal (i.p.) injection (arrows) of 0.1 mg palmitic acid (a, black) or 1.5 mg intralipid (b) per 1 g of mice body weight, is plotted as the obtained data or the averages with standard deviations. Alternatively, glucose 1 mg per g body weight was i.p. injected (a, red). Insulin was detected from the blood serum by an insulin kit (Mercodia, Uppsala, Sweden). Approved by the Animal Care and Use Committee (Inst. Molecular Genetics, ASCR), in accordance with the European Union Directive 2010/63/EU. (c,d) Insulin release prior to and after a fatty meal not containing saccharides—predicted mechanisms of negligible fasting fatty acid-stimulated insulin secretion (FASIS) vs. significant postraprandial FASIS: (a) FASIS due to the existence of FAs in plasma during fasting (‘fasting basal FASIS’) is a part of the basal insulin secretion. Such a very low contribution to the insulin released during the fasting state may originate from the FA stimulation of the intenstinal incretin release with subsequent GLP1R- and GIPR-mediated insulin release in β-cells. (b) Postprandial FASIS can also be considered as consisting of the intenstinal and β-cell components—a much higher induction of intenstinal incretin release is now in effect. Solely β-cell-dependent FASIS is now initiated by the lipoprotein lipase cleavage of triglycerides from chylomicrons to long chain C16–C18 FAs (LCFAs) and 2MAG, both stimulating their own receptors (GPR40 and GPR119, respectively), which further stimulates insulin granule exocytosis in KATP-independent ways, as well as evoking metabolic stimulation of the insulin release, after the FA transport into β-cells by the CD36 transporter. The metabolic stimulation proceeds either via the glycerol/FA cycle (part of which stimulates the insulin release in a KATP-independent way via the exocytosis-promoting protein Munc13-1, and part via the corresponding fractional increase in ATP) or after β-oxidation and, subsequently, increased the OXPHOS (hence, ATP) by the KATP-dependent way. Dotted arrows represent low or non-existing signaling or fluxes.
However, the FA metabolism in pancreatic β-cells may be specific in preferring the activation of the glycerolipid/FA cycle upon the intake of glucose plus FA. The glycerolipid/FA cycle releases 2MAG, which, via the exocytosis-promoting protein Munc13-1, also stimulates the insulin granule exocytosis []. Mitochondrial β-oxidation can be considered apparently as downstream of the glycerolipid/FA, since the human islets perfused at zero glucose do not increase respiration upon the LCFA addition, but do release insulin as a response to the LCFAs []. Both respiration and insulin release are increased upon the LCFA addition to human islets in the presence of 5.5 mM glucose. Recently, a novel enzyme, glycerol-3-phosphatase, has been discovered that produces glycerol and thus regulates glycolysis, cellular redox state, ATP production, and other important branches of metabolism []. Dysbalance within the glycerolipid/FA cycle is considered to induce insulin resistance, islet β-cell failure, and type 2 diabetes.
In addition, it is also necessary to inspect whether the minimum levels of FAs that are bound to plasma albumin upon ongoing GSIS also activate insulin secretion by such a basal FASIS. Upon glucose intake, FA levels are minimum due to the inhibited lipolysis in WAT, when adipocyte lipases are inhibited by insulin receptor signaling at the expense of the glucose uptake []. In contrast, in the fasting state, WAT lipolysis promotes higher ‘fasting levels’ of FAs. Hence, it must be investigated whether there is a FASIS component due to these ‘fasting FA levels’, contributing to the minimum (basal) insulin release. Moreover, it should be determined whether overnutrition and obesity increases this basal insulin release (Figure 2). One should ask whether the FASIS component in it is increased as a result of the increased plasma FAs? Finally, postprandial levels of FAs bound to albumin should be high (though they may increase first and then decline), and it should be recognized that not only the FA intake facilitated by lipoprotein lipase from chylomicrons, but also simple transfer from the FA bound to albumin, is relevant for postprandial FASIS.
Figure 2. Predicted amount of insulin released by the mechanisms described in Figure 1 (based on References [,] and unpublished observations of GLP-1-induced insulin release in fasted mice, by Plecitá-Hlavatá et al.), as follows: 1st column: Basal, very low, insulin secretion at fasting can be considered partly as originating from the FA stimulation of the intenstinal incretin release with subsequent GLP1R- and GIPR-mediated insulin release in β-cells. We predict that at the lipid overnutrition and metabolic syndrome (2nd column), the elevated plasma FAs at fasting will significantly increase this insulin secretion by regular FASIS mechanisms, thus contributing to developed hyperinsulinemia. 3rd column: Postprandial FASIS in healthy subjects stems from both instenstinal and β-cell components, and is likely to be much higher in comparison with the regular GSIS []. Thus, a typical meal with fat and saccharide components (4th column) provides a maximum insulin secretion, where the incretin component is elevated and regular GSIS is superimposed onto FASIS. Definitions of ‘net FASIS’, ‘crude FASIS’, and total insulin secretion are shown. Note also that time dependence is not considered, thus the typical 1st phase and 2nd phase of insulin release can be composed by different glucose-dependent, incretin-dependent, and FA-dependent fractions.

2.1.2. Experimental Determination of FASIS

However, even at basal glucose with an experimental dosage of LCFAs (Figure 1a,b), the determined blood insulin release, the obtained total FASIS (i.e., ‘crude FASIS’), contains components of the ‘net FASIS’ (i.e., β-cell specific, incretin-independent FASIS, above the fasting basal FASIS, if it exists), given by both the KATP-dependent and KATP-independent mechanisms, as described above, including the GPR40 pathway (GPR120 [] and the glycerolipid/FA cycle might also be involved, as well as a component of the incretin-stimulated insulin secretion at basal 5.5 mM glucose) (Plecitá-Hlavatá et al., unpublished).
We repeat that the latter exists because of the intenstinal stimulation of incretin secretion by FAs. Indeed, the LCFAs cleaved off the dietary fat stimulate the enterocyte GPR120/FFA4 receptor, thus inducing the secretion of incretins GLP-1 [] and GIP [], both of which amplify the GSIS in β-cells via their receptors. Bile acids also stimulate the enterocyte incretin secretion via the TGR5 receptor []. Consequently, experimentally, the ‘net FASIS’ might be evaluated only at the blocked GLP-1 and GIP receptors (Figure 2).
As considered above, one may ask reciprocally whether the relatively higher blood circulating LCFAs at fasting also stimulate the basal insulin secretion at fasting glucose via the enterocyte GPR120/FFA4 receptor and ‘basal GLP-1’? These basal events would explain the basal insulin secretion, which are given similarly by the GLP-1 (GIP) component, and the GPR40 and glycerolipid/FFA cycle components. Simply, the fasting basal levels of a healthy organism result from these basal equilibria of hormones, metabolites, and cell homeostasis at fasting. In states of the impaired glucose tolerance, this basal fasting blood glucose is already slightly higher than 5.5 mM, whereas with developed type 2 diabetes, significant hyperglycemia exists. Of course, both of these pathologies would elevate the basal GLP-1-related GSIS plus basal FASIS because of ‘fasting FAs’, acting via the GPR40 pathway. Consequently, such a situation can further perpetuate the continuation of pathology development.
Previously, FAs were considered only as amplifiers of GSIS in the absence of pathological states [,,]. Indeed, supraphysiological experiments at zero glucose with human pancreatic islets gave only halved insulin responses on added FAs, but lacked the ability to increase the islet respiration [,]. However, with basal (5.5 mM) glucose, FA-induced respiration and FASIS occurred [], as was similar to mice (Figure 1a,b). All of these data reflect the preferential function of the glycerolipid/FA cycle over the FA β-oxidation in pancreatic β-cells. We prefer a physiological definition, considering a theoretical fat-only meal as inducing FASIS at basal (5.5 mM) glucose. With increasing glucose, the pathways of FASIS and GSIS act in concert. In experiments, FASIS may exceed GSIS [,]; however, the proportions of these two mechanisms, in response to various human diets, have to be further investigated.
When we recognize the existence of FASIS, despite the difficulties to quantify it experimentally in vivo [,], one may get a deeper insight into the interrelationships between the glucose and lipid metabolism. The net FASIS in model pancreatic β-cells, insulinoma INS-1E cells, provides >3 times more insulin than GSIS [,,]. The similar pattern is valid when comparing the intraperitoneal (i.p.) dosage of glucose vs. LCFA (Figure 1a). Thus, despite the higher blood circulating LCFAs at fasting vs. the lower blood LCFAs due to the insulin-induced FA intake into adipocytes, the dietary intenstinal LCFAs (via GLP-1 and GIP) and LCFAs cleaved locally from chylomicrons at β-cell intersticia, should induce a much higher insulin release, when compared with the fasting (and higher) blood circulating LCFAs (Figure 2).
Let us consider now even higher blood circulating LCFAs in obese states. The basal net FASIS should be higher, and at the elevated food intake the crude FASIS must be even higher (Figure 2). In pre-diabetic states, when insulin release is not hampered, the resulting very intense insulin release enhances FA storage into WAT. This is of course facilitated in the absence of skeletal muscle energy expenditure. As stated above, in this way, higher pathological levels are perpetuated.

2.2. Specificity of Distinct Classes of Fatty Acids

2.2.1. Polyunsaturated FAs (PUFAs)

As recognized in numerous studies, the FA acute and chronic effects on pancreatic β-cell function are quite complex. The first clear sorting can be carried out in relation to the chemical nature of FA. In the first rough selection, unsaturated vs. saturated FAs can be considered. However, since polyunsaturated FAs (PUFAs) are precursors for the metabolism of a wide spectrum of pro-inflammatory or even anti-inflammatory compounds, and since PUFAs as components of lipids are prone to lipid peroxidation, they should be considered as specific and more complex entities. PUFAs were reported to be more active in numerous aspects, including FASIS, but certain PUFAs are less pro-inflammatory and exert opposite effects with the regard to the induction of insulin resistance []. Typically, ω-3 PUFAs may exert different effects than ω-6 PUFAs. Thus, for example, metabolism of ω-3 PUFA, such as eicosapentaenoic acid (EPA), leads to prostaglandin PGE3, while the more common PGE2 is an arachidonic acid metabolite (i.e., metabolite of ω-6 PUFA). PGE2 has been known to reduce GSIS. However, PGE3 is nearly without such a lipotoxic effect. In accordance with this, the enrichment by EPA—which decreases arachidonic acid and its metabolites—has a positive, anti-lipotoxic effect, probably due to PGE3 signaling []. Also, synthetic FA derivatives are tested as anti-lipotoxic agents or agents improving insulin secretion (e.g., artificial GPR40 ligands) [].

2.2.2. ω-3 Polyunsaturated FAs

The ω-3 PUFAs are recognized to be specific among FAs. ω-3 PUFAs have been reported to prevent or reverse the high-fat diet-induced WAT inflammation and insulin resistance. ω-3 PUFAs also block cytokine-induced β-cell death. Their supplementation thus prevents β-cell destruction and corrects insulin resistance []. Multifaceted effects are provided (e.g., by EPA), namely for the potentiation of GLP-1 secretion in L-enterocytes, up-regulation of the apelin pathway, and down-regulation of other pathways, thus enhancing insulin secretion in β-cells []. EPA also suppresses inflammatory responses to adipokines and inhibits peroxisome proliferator-activated receptor α (PPAR α) signaling; likewise, potentiating the insulin-like growth factor-1 secretion and thus counteracting the peripheral insulin resistance. The EPA effects in the organism may be largely ascribed to its anti-inflammatory metabolites resolvins. Also, docosahexaneoic acid (DHA) is metabolized into DHA-derived specialized pro-resolving mediators, DHA epoxides, electrophilic oxo-derivatives of DHA, neuroprostanes, ethanolamines, acylglycerols, docosahexaenoyl amides of amino acids or neurotransmitters, and branched DHA esters of hydroxyFAs [,,]. A description of their roles is out of the scope of this review.

2.2.3. Oxidized FAs—Specific Messengers vs. Pathology Markers

Lipidomics describing the very long chain PUFA downstream products is even more complex when considering their oxidized products, which are formed either by specific enzymes (e.g., by lipoxygenases) or by free-radical-initiated non-enzymatic lipid peroxidation. Thus, for example, an eicosanoid metabolite of the ω-6 PUFA arachidonic acid, 20-hydroxyeicosatetraenoic acid (20-HETE), could also be considered as an anti-inflammatory compound. The 20-HETE is present in the human plasma in nanomolar concentrations []. Recently, it has been found that pancreatic β-cells form 20-HETE by cytochrome P450-dependent ω-hydroxylases, and such a formation was enhanced at high levels of glucose. Moreover, the 20-HETE was recognized as a more efficient agonist of the GPR40 receptor than the dietary FAs []. 20-HETE thus stimulates FASIS and appears to play an autocrine-like role in β-cells.

Author Contributions

L.P.-H. and M.J. contributed to several chapters; B.H. conducted the experiments, as shown in Figure 1a,b; M.J. handled the references; and P.J. wrote the paper, designed the figures, and plotted them.

Funding

This research was funded by the Grant Agency of the Czech Republic, grant No. 16-06700S.

Acknowledgments

An excellent technical assistance of Jana Vaicová and Ludmila Šimečková is acknowledged.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Prentki, M.; Matschinsky, F.M.; Madiraju, S.R.M. Metabolic signaling in fuel-induced insulin secretion. Cell Metab. 2013, 18, 162–185. [Google Scholar] [CrossRef] [PubMed]
  2. Ježek, J.; Dlasková, A.; Zelenka, J.; Jabůrek, M.; Ježek, P. H2O2-Activated Mitochondrial Phospholipase iPLA2γ Prevents Lipotoxic Oxidative Stress in Synergy with UCP2, Amplifies Signaling via G-Protein–Coupled Receptor GPR40, and Regulates Insulin Secretion in Pancreat. Antioxid. Redox Signal. 2015, 23, 958–972. [Google Scholar] [CrossRef] [PubMed]
  3. Acosta-Montaño, P.; García-González, V. Effects of Dietary Fatty Acids in Pancreatic Beta Cell Metabolism, Implications in Homeostasis. Nutrients 2018, 10, 393. [Google Scholar] [CrossRef] [PubMed]
  4. Bermudez, B.; Ortega-Gomez, A.; Varela, L.M.; Villar, J.; Abia, R.; Muriana, F.J.G.; Lopez, S. Clustering effects on postprandial insulin secretion and sensitivity in response to meals with different fatty acid compositions. Food Funct. 2014, 5, 1374. [Google Scholar] [CrossRef] [PubMed]
  5. Kubota, T.; Kubota, N.; Kadowaki, T. Imbalanced Insulin Actions in Obesity and Type 2 Diabetes: Key Mouse Models of Insulin Signaling Pathway. Cell Metab. 2017, 25, 797–810. [Google Scholar] [CrossRef] [PubMed]
  6. Samuel, V.T.; Shulman, G.I. Mechanisms for Insulin Resistance: Common Threads and Missing Links. Cell 2012, 148, 852–871. [Google Scholar] [CrossRef] [PubMed]
  7. Rehman, K.; Akash, M.S.H. Mechanisms of inflammatory responses and development of insulin resistance: How are they interlinked? J. Biomed. Sci. 2016, 23, 87. [Google Scholar] [CrossRef] [PubMed]
  8. Van Greevenbroek, M.M.J.; Schalkwijk, C.G.; Stehouwer, C.D.A. Obesity-associated low-grade inflammation in type 2 diabetes mellitus: causes and consequences. Neth. J. Med. 2013, 71, 174–187. [Google Scholar] [PubMed]
  9. Boulinguiez, A.; Staels, B.; Duez, H.; Lancel, S. Mitochondria and endoplasmic reticulum: Targets for a better insulin sensitivity in skeletal muscle? Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2017, 1862, 901–916. [Google Scholar] [CrossRef] [PubMed]
  10. Ashcroft, F.M.M.; Rorsman, P. Diabetes mellitus and the β cell: The last ten years. Cell 2012, 148, 1160–1171. [Google Scholar] [CrossRef] [PubMed]
  11. Rutter, G.A.; Pullen, T.J.; Hodson, D.J.; Martinez-Sanchez, A. Pancreatic β-cell identity, glucose sensing and the control of insulin secretion. Biochem. J. 2015, 466, 203–218. [Google Scholar] [CrossRef] [PubMed]
  12. Drews, G.; Krippeit-Drews, P.; Düfer, M. Electrophysiology of islet cells. Adv. Exp. Med. Biol. 2010, 654, 115–163. [Google Scholar] [CrossRef] [PubMed]
  13. Graaf, C.D.; Donnelly, D.; Wootten, D.; Lau, J.; Sexton, P.M.; Miller, L.J.; Ahn, J.-M.; Liao, J.; Fletcher, M.M.; Yang, D.; et al. Glucagon-Like Peptide-1 and Its Class B G Protein-Coupled Receptors: A Long March to Therapeutic Successes. Pharmacol. Rev. 2016, 68, 954–1013. [Google Scholar] [CrossRef] [PubMed]
  14. McIntosh, C.H.S.; Widenmaier, S.; Kim, S.J. Glucose-dependent insulinotropic polypeptide signaling in pancreatic β-cells and adipocytes. J. Diabetes Investig. 2012, 3, 96–106. [Google Scholar] [CrossRef] [PubMed]
  15. Lenzen, S. A fresh view of glycolysis and glucokinase regulation: history and current status. J. Biol. Chem. 2014, 289, 12189–12194. [Google Scholar] [CrossRef] [PubMed]
  16. Kahancová, A.; Sklenář, F.; Ježek, P.; Dlasková, A. Regulation of glucose-stimulated insulin secretion by ATPase Inhibitory Factor 1 (IF1). FEBS Lett. 2018, 592, 999–1009. [Google Scholar] [CrossRef] [PubMed]
  17. Špaček, T.; Šantorová, J.; Zacharovová, K.; Berková, Z.; Hlavatá, L.; Saudek, F.; Ježek, P. Glucose-stimulated insulin secretion of insulinoma INS-1E cells is associated with elevation of both respiration and mitochondrial membrane potential. Int. J. Biochem. Cell Biol. 2008, 40, 1522–1535. [Google Scholar] [CrossRef] [PubMed]
  18. MacDonald, M.J.; Ade, L.; Ntambi, J.M.; Ansari, I.-U.H.; Stoker, S.W. Characterization of phospholipids in insulin secretory granules and mitochondria in pancreatic beta cells and their changes with glucose stimulation. J. Biol. Chem. 2015, 290, 11075–11092. [Google Scholar] [CrossRef] [PubMed]
  19. Kahn, S.E.; Cooper, M.E.; Del Prato, S. Pathophysiology and treatment of type 2 diabetes: Perspectives on the past, present, and future. Lancet 2014, 383, 1068–1083. [Google Scholar] [CrossRef]
  20. Hoehn, K.L.; Salmon, A.B.; Hohnen-Behrens, C.; Turner, N.; Hoy, A.J.; Maghzal, G.J.; Stocker, R.; Van Remmen, H.; Kraegen, E.W.; Cooney, G.J.; et al. Insulin resistance is a cellular antioxidant defense mechanism. Proc. Natl. Acad. Sci. USA 2009, 106, 17787–17792. [Google Scholar] [CrossRef] [PubMed]
  21. Nishikawa, T.; Araki, E. Impact of Mitochondrial ROS Production in the Pathogenesis of Diabetes Mellitus and Its Complications. Antioxid. Redox Signal. 2007, 9, 343–353. [Google Scholar] [CrossRef] [PubMed]
  22. Sivitz, W.I.; Yorek, M.A. Mitochondrial dysfunction in diabetes: From molecular mechanisms to functional significance and therapeutic opportunities. Antioxid. Redox Signal. 2010, 12, 537–577. [Google Scholar] [CrossRef] [PubMed]
  23. Lu, H.; Koshkin, V.; Allister, E.M.; Gyulkhandanyan, A.V.; Wheeler, M.B. Molecular and metabolic evidence for mitochondrial defects associated with beta-cell dysfunction in a mouse model of type 2 diabetes. Diabetes 2010, 59, 448–459. [Google Scholar] [CrossRef] [PubMed]
  24. Bensellam, M.; Jonas, J.-C.; Laybutt, D.R. Mechanisms of β-cell dedifferentiation in diabetes: Recent findings and future research directions. J. Endocrinol. 2018, 236, R109–R143. [Google Scholar] [CrossRef] [PubMed]
  25. Nyrén, R.; Chang, C.L.; Lindström, P.; Barmina, A.; Vorrsjö, E.; Ali, Y.; Juntti-Berggren, L.; Bensadoun, A.; Young, S.G.; Olivecrona, T.; et al. Localization of lipoprotein lipase and GPIHBP1 in mouse pancreas: Effects of diet and leptin deficiency. BMC Physiol. 2012, 12, 14. [Google Scholar] [CrossRef] [PubMed]
  26. Winzell, M.S.; Ström, K.; Holm, C.; Ahrén, B. Glucose-stimulated insulin secretion correlates with β-cell lipolysis. Nutr. Metab. Cardiovasc. Dis. 2006, 16, S11–S16. [Google Scholar] [CrossRef] [PubMed]
  27. Cruz, W.S.; Kwon, G.; Marshall, C.A.; McDaniel, M.L.; Semenkovich, C.F. Glucose and insulin stimulate heparin-releasable lipoprotein lipase activity in mouse islets and INS-1 cells. A potential link between insulin resistance and β-cell dysfunction. J. Biol. Chem. 2001, 276, 12162–12168. [Google Scholar] [CrossRef] [PubMed]
  28. Marshall, B.A.; Tordjman, K.; Host, H.H.; Ensor, N.J.; Kwon, G.; Marshall, C.A.; Coleman, T.; McDaniel, M.L.; Semenkovich, C.F. Relative hypoglycemia and hyperinsulinemia in mice with heterozygous lipoprotein lipase (LPL) deficiency. Islet LPL regulates insulin secretion. J. Biol. Chem. 1999, 274, 27426–27432. [Google Scholar] [CrossRef] [PubMed]
  29. Moran, B.M.; Abdel-Wahab, Y.H.A.; Flatt, P.R.; McKillop, A.M. Activation of GPR119 by fatty acid agonists augments insulin release from clonal β-cells and isolated pancreatic islets and improves glucose tolerance in mice. Biol. Chem. 2014, 395, 453–464. [Google Scholar] [CrossRef] [PubMed]
  30. Husted, A.S.; Trauelsen, M.; Rudenko, O.; Hjorth, S.A.; Schwartz, T.W. GPCR-Mediated Signaling of Metabolites. Cell Metab. 2017, 25, 777–796. [Google Scholar] [CrossRef] [PubMed]
  31. Itoh, Y.; Kawamata, Y.; Harada, M.; Kobayashi, M.; Fujii, R.; Fukusumi, S.; Ogi, K.; Hosoya, M.; Tanaka, Y.; Uejima, H.; et al. Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40. Nature 2003, 422, 173–176. [Google Scholar] [CrossRef] [PubMed]
  32. Hauge, M.; Vestmar, M.A.; Husted, A.S.; Ekberg, J.P.; Wright, M.J.; Di Salvo, J.; Weinglass, A.B.; Engelstoft, M.S.; Madsen, A.N.; Lückmann, M.; et al. GPR40 (FFAR1)—Combined Gs and Gq signaling in vitro is associated with robust incretin secretagogue action ex vivo and in vivo. Mol. Metab. 2015, 4, 3–14. [Google Scholar] [CrossRef] [PubMed]
  33. Mancini, A.D.; Bertrand, G.; Vivot, K.; Carpentier, É.; Tremblay, C.; Ghislain, J.; Bouvier, M.; Poitout, V. Β-Arrestin Recruitment and Biased Agonism At Free Fatty Acid Receptor 1. J. Biol. Chem. 2015, 290, 21131–21140. [Google Scholar] [CrossRef] [PubMed]
  34. Graciano, M.F.; Valle, M.M.; Curi, R.; Carpinelli, A.R. Evidence for the involvement of GPR40 and NADPH oxidase in palmitic acid-induced superoxide production and insulin secretion. Islets 2013, 5, 139–148. [Google Scholar] [CrossRef] [PubMed]
  35. Qian, J.; Gu, Y.; Wu, C.; Yu, F.; Chen, Y.; Zhu, J.; Yao, X.; Bei, C.; Zhu, Q. Agonist-induced activation of human FFA1 receptor signals to extracellular signal-regulated kinase 1 and 2 through Gq- and Gi-coupled signaling cascades. Cell. Mol. Biol. Lett. 2017, 22, 13. [Google Scholar] [CrossRef] [PubMed]
  36. Sabrautzki, S.; Kaiser, G.; Przemeck, G.K.H.; Gerst, F.; Lorza-Gil, E.; Panse, M.; Sartorius, T.; Hoene, M.; Marschall, S.; Häring, H.-U.; et al. Point mutation of Ffar1 abrogates fatty acid-dependent insulin secretion, but protects against HFD-induced glucose intolerance. Mol. Metab. 2017, 6, 1304–1312. [Google Scholar] [CrossRef] [PubMed]
  37. Kristinsson, H.; Bergsten, P.; Sargsyan, E. Free fatty acid receptor 1 (FFAR1/GPR40) signaling affects insulin secretion by enhancing mitochondrial respiration during palmitate exposure. Biochim. Biophys. Acta. 2015, 1853, 3248–3257. [Google Scholar] [CrossRef] [PubMed]
  38. Fujiwara, K.; Maekawa, F.; Yada, T. Oleic acid interacts with GPR40 to induce Ca2+ signaling in rat islet beta-cells: Mediation by PLC and L-type Ca2+ channel and link to insulin release. Am. J. Physiol. Endocrinol. Metab. 2005, 289, E670–E677. [Google Scholar] [CrossRef] [PubMed]
  39. Khan, S.; Kowluru, A. CD36 mediates lipid accumulation in pancreatic beta cells under the duress of glucolipotoxic conditions: Novel roles of lysine deacetylases. Biochem. Biophys. Res. Commun. 2018, 495, 2221–2226. [Google Scholar] [CrossRef] [PubMed]
  40. Leguina-Ruzzi, A.; Průchová, P.; Holendová, B.; Ježek, P.; Jabůrek, M. iPLA2γ Ablation Alters Glucose Homeostasis and Insulin Secretion in Response to Fatty Acids. Free Radic. Biol. Med. 2017, 112, 152–153. [Google Scholar] [CrossRef]
  41. Brand, M.D. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic. Biol. Med. 2016, 100, 14–31. [Google Scholar] [CrossRef] [PubMed]
  42. Hamilton, J.A.; Kamp, F. How are free fatty acids transported in membranes?—Is it by proteins or by free diffusion through the lipids? Diabetes 1999, 48, 2255–2269. [Google Scholar] [CrossRef] [PubMed]
  43. Cen, J.; Sargsyan, E.; Bergsten, P. Fatty acids stimulate insulin secretion from human pancreatic islets at fasting glucose concentrations via mitochondria-dependent and -independent mechanisms. Nutr. Metab. 2016, 13, 59. [Google Scholar] [CrossRef] [PubMed]
  44. Mugabo, Y.; Zhao, S.; Seifried, A.; Gezzar, S.; Al-Mass, A.; Zhang, D.; Lamontagne, J.; Attane, C.; Poursharifi, P.; Iglesias, J.; et al. Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes. Proc. Natl. Acad. Sci. USA 2016, 113, E430–E439. [Google Scholar] [CrossRef] [PubMed]
  45. Rossmeisl, M.; Flachs, P.; Brauner, P.; Sponarova, J.; Matejkova, O.; Prazak, T.; Ruzickova, J.; Bardova, K.; Kuda, O.; Kopecky, J. Role of energy charge and amp-activated protein kinase in adipocytes in the control of body fat stores. Int. J. Obes. 2004, 28, S38–S44. [Google Scholar] [CrossRef] [PubMed]
  46. Moran, B.M.; Abdel-Wahab, Y.H.A.; Flatt, P.R.; Mckillop, A.M. Evaluation of the insulin-releasing and glucose-lowering effects of GPR120 activation in pancreatic β-cells. Diabetes Obes. Metab. 2014, 16, 1128–1139. [Google Scholar] [CrossRef] [PubMed]
  47. El-Azzouny, M.; Evans, C.R.; Treutelaar, M.K.; Kennedy, R.T.; Burant, C.F. Increased glucose metabolism and glycerolipid formation by fatty acids and GPR40 receptor signaling underlies the fatty acid potentiation of insulin secretion. J. Biol. Chem. 2014, 289, 13575–13588. [Google Scholar] [CrossRef] [PubMed]
  48. Lenzen, S. Chemistry and biology of reactive species with special reference to the antioxidative defence status in pancreatic β-cells. Biochim. Biophys. Acta-Gen. Subj. 2017, 1861, 1929–1942. [Google Scholar] [CrossRef] [PubMed]
  49. Gehrmann, W.; Elsner, M.; Lenzen, S. Role of metabolically generated reactive oxygen species for lipotoxicity in pancreatic  β-cells. Diabetes Obes. Metab. 2010, 12, 149–158. [Google Scholar] [CrossRef] [PubMed]
  50. Kristinsson, H.; Sargsyan, E.; Manell, H.; Smith, D.M.; Göpel, S.O.; Bergsten, P. Basal hypersecretion of glucagon and insulin from palmitate-exposed human islets depends on FFAR1 but not decreased somatostatin secretion. Sci. Rep. 2017, 7, 4657. [Google Scholar] [CrossRef] [PubMed]
  51. Baynes, H.W.; Mideksa, S.; Ambachew, S. The role of polyunsaturated fatty acids (n-3 PUFAs) on the pancreatic β-cells and insulin action. Adipocyte 2018, 1–7. [Google Scholar] [CrossRef] [PubMed]
  52. Neuman, J.C.; Schaid, M.D.; Brill, A.L.; Fenske, R.J.; Kibbe, C.R.; Fontaine, D.A.; Sdao, S.M.; Brar, H.K.; Connors, K.M.; Wienkes, H.N.; et al. Enriching Islet Phospholipids With Eicosapentaenoic Acid Reduces Prostaglandin E2 Signaling and Enhances Diabetic β-Cell Function. Diabetes 2017, 66, 1572–1585. [Google Scholar] [CrossRef] [PubMed]
  53. Badolato, M.; Carullo, G.; Perri, M.; Cione, E.; Manetti, F.; Di Gioia, M.L.; Brizzi, A.; Caroleo, M.C.; Aiello, F. Quercetin/oleic acid-based G-protein-coupled receptor 40 ligands as new insulin secretion modulators. Future Med. Chem. 2017, 9, 1873–1885. [Google Scholar] [CrossRef] [PubMed]
  54. Bhaswant, M.; Poudyal, H.; Brown, L. Mechanisms of enhanced insulin secretion and sensitivity with n-3 unsaturated fatty acids. J. Nutr. Biochem. 2015, 26, 571–584. [Google Scholar] [CrossRef] [PubMed]
  55. Layé, S.; Nadjar, A.; Joffre, C.; Bazinet, R.P. Anti-Inflammatory Effects of Omega-3 Fatty Acids in the Brain: Physiological Mechanisms and Relevance to Pharmacology. Pharmacol. Rev. 2018, 70, 12–38. [Google Scholar] [CrossRef] [PubMed]
  56. Kuda, O. Bioactive metabolites of docosahexaenoic acid. Biochimie 2017, 136, 12–20. [Google Scholar] [CrossRef] [PubMed]
  57. Das, U.N. Is there a role for bioactive lipids in the pathobiology of diabetes mellitus? Front. Endocrinol. 2017, 8, 182. [Google Scholar] [CrossRef] [PubMed]
  58. Minuz, P.; Jiang, H.; Fava, C.; Turolo, L.; Tacconelli, S.; Ricci, M.; Patrignani, P.; Morganti, A.; Lechi, A.; McGiff, J.C. Altered release of cytochrome p450 metabolites of arachidonic acid in renovascular disease. Hypertension 2008, 51, 1379–1385. [Google Scholar] [CrossRef] [PubMed]
  59. Tunaru, S.; Bonnavion, R.; Brandenburger, I.; Preussner, J.; Thomas, D.; Scholich, K.; Offermanns, S. 20-HETE promotes glucose-stimulated insulin secretion in an autocrine manner through FFAR1. Nat. Commun. 2018, 9, 177. [Google Scholar] [CrossRef] [PubMed]
  60. Janikiewicz, J.; Hanzelka, K.; Kozinski, K.; Kolczynska, K.; Dobrzyn, A. Islet β-cell failure in type 2 diabetes—Within the network of toxic lipids. Biochem. Biophys. Res. Commun. 2015, 460, 491–496. [Google Scholar] [CrossRef] [PubMed]
  61. Newsholme, P.; Cruzat, V.F.; Keane, K.N.; Carlessi, R.; de Bittencourt, P.I.H. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem. J. 2016, 473, 4527–4550. [Google Scholar] [CrossRef] [PubMed]
  62. Gerber, P.A.; Rutter, G.A. The Role of Oxidative Stress and Hypoxia in Pancreatic Beta-Cell Dysfunction in Diabetes Mellitus. Antioxid. Redox Signal. 2017, 26, 501–518. [Google Scholar] [CrossRef] [PubMed]
  63. Johns, I.; Goff, L.; Bluck, L.J.; Griffin, B.A.; Jebb, S.A.; Lovegrove, J.A.; Sanders, T.A.B.; Frost, G.; Dornhorst, A. Plasma free fatty acids do not provide the link between obesity and insulin resistance or β-cell dysfunction: Results of the Reading, Imperial, Surrey, Cambridge, Kings (RISCK) study. Diabet. Med. 2014, 31, 1310–1315. [Google Scholar] [CrossRef] [PubMed]
  64. Ježek, P.; Hlavatá, L. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int. J. Biochem. Cell Biol. 2005, 37, 2478–2503. [Google Scholar] [CrossRef] [PubMed]
  65. Plecitá-Hlavatá, L.; Ježek, P. Integration of superoxide formation and cristae morphology for mitochondrial redox signaling. Int. J. Biochem. Cell Biol. 2016, 80, 31–50. [Google Scholar] [CrossRef] [PubMed]
  66. Victor, V.M.; Rocha, M.; Herance, R.; Hernandez-Mijares, A. Oxidative stress and mitochondrial dysfunction in type 2 diabetes. Curr. Pharm. Des. 2011, 17, 3947–3958. [Google Scholar] [CrossRef] [PubMed]
  67. Supale, S.; Li, N.; Brun, T.; Maechler, P. Mitochondrial dysfunction in pancreatic β cells. Trends Endocrinol. Metab. 2012, 23, 477–487. [Google Scholar] [CrossRef] [PubMed]
  68. Okado-Matsumoto, A.; Fridovich, I. Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn-SOD in mitochondria. J. Biol. Chem. 2001, 276, 38388–38393. [Google Scholar] [CrossRef] [PubMed]
  69. Wang, X.; Vatamaniuk, M.Z.; Roneker, C.A.; Pepper, M.P.; Hu, L.G.; Simmons, R.A.; Lei, X.G. Knockouts of SOD1 and GPX1 exert different impacts on murine islet function and pancreatic integrity. Antioxid. Redox Signal. 2011, 14, 391–401. [Google Scholar] [CrossRef] [PubMed]
  70. Nomura, K.; Imai, H.; Koumura, T.; Kobayashi, T.; Nakagawa, Y. Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem. J. 2000, 351, 183–193. [Google Scholar] [CrossRef] [PubMed]
  71. Wang, H.P.; Schafer, F.Q.; Goswami, P.C.; Oberley, L.W.; Buettner, G.R. Phospholipid hydroperoxide glutathione peroxidase induces a delay in G1 of the cell cycle. Free Radic. Res. 2003, 37, 621–630. [Google Scholar] [CrossRef] [PubMed]
  72. Koulajian, K.; Ivovic, A.; Ye, K.; Desai, T.; Shah, A.; Fantus, I.G.; Ran, Q.; Giacca, A. Overexpression of glutathione peroxidase 4 prevents β-cell dysfunction induced by prolonged elevation of lipids in vivo. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E254–E262. [Google Scholar] [CrossRef] [PubMed]
  73. Elsner, M.; Gehrmann, W.; Lenzen, S. Peroxisome-generated hydrogen peroxide as important mediator of lipotoxicity in insulin-producing cells. Diabetes 2011, 60, 200–208. [Google Scholar] [CrossRef] [PubMed]
  74. Maulucci, G.; Daniel, B.; Cohen, O.; Avrahami, Y.; Sasson, S. Hormetic and regulatory effects of lipid peroxidation mediators in pancreatic beta cells. Mol. Asp. Med. 2016, 49, 49–77. [Google Scholar] [CrossRef] [PubMed]
  75. Song, H.; Wohltmann, M.; Tan, M.; Ladenson, J.H.; Turk, J. Group VIA phospholipase A2 mitigates palmitate-induced beta-cell mitochondrial injury and apoptosis. J. Biol. Chem. 2014, 289, 14194–14210. [Google Scholar] [CrossRef] [PubMed]
  76. Shida, T.; Kamei, N.; Takeda-Morishita, M.; Isowa, K.; Takayama, K. Colonic delivery of docosahexaenoic acid improves impaired glucose tolerance via GLP-1 secretion and suppresses pancreatic islet hyperplasia in diabetic KK-A(y) mice. Int. J. Pharm. 2013, 450, 63–69. [Google Scholar] [CrossRef] [PubMed]
  77. Tersey, S.A.; Bolanis, E.; Holman, T.R.; Maloney, D.J.; Nadler, J.L.; Mirmira, R.G. Minireview: 12-Lipoxygenase and Islet β-Cell Dysfunction in Diabetes. Mol. Endocrinol. 2015, 29, 791–800. [Google Scholar] [CrossRef] [PubMed]
  78. Weaver, J.R.; Holman, T.R.; Imai, Y.; Jadhav, A.; Kenyon, V.; Maloney, D.J.; Nadler, J.L.; Rai, G.; Simeonov, A.; Taylor-Fishwick, D.A. Integration of pro-inflammatory cytokines, 12-lipoxygenase and NOX-1 in pancreatic islet beta cell dysfunction. Mol. Cell. Endocrinol. 2012, 358, 88–95. [Google Scholar] [CrossRef] [PubMed]
  79. Taylor-Fishwick, D.A.; Weaver, J.; Glenn, L.; Kuhn, N.; Rai, G.; Jadhav, A.; Simeonov, A.; Dudda, A.; Schmoll, D.; Holman, T.R.; et al. Selective inhibition of 12-lipoxygenase protects islets and beta cells from inflammatory cytokine-mediated beta cell dysfunction. Diabetologia 2015, 58, 549–557. [Google Scholar] [CrossRef] [PubMed]
  80. Cohen, G.; Riahi, Y.; Sunda, V.; Deplano, S.; Chatgilialoglu, C.; Ferreri, C.; Kaiser, N.; Sasson, S. Signaling properties of 4-hydroxyalkenals formed by lipid peroxidation in diabetes. Free Radic. Biol. Med. 2013, 65, 978–987. [Google Scholar] [CrossRef] [PubMed]
  81. Grankvist, K.; Marklund, S.L.; Täljedal, I.B. CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem. J. 1981, 199, 393–398. [Google Scholar] [CrossRef] [PubMed]
  82. Bachnoff, N.; Trus, M.; Atlas, D. Alleviation of oxidative stress by potent and selective thioredoxin-mimetic peptides. Free Radic. Biol. Med. 2011, 50, 1355–1367. [Google Scholar] [CrossRef] [PubMed]
  83. Reinbothe, T.M.; Ivarsson, R.; Li, D.-Q.; Niazi, O.; Jing, X.; Zhang, E.; Stenson, L.; Bryborn, U.; Renström, E. Glutaredoxin-1 Mediates NADPH-Dependent Stimulation of Calcium-Dependent Insulin Secretion. Mol. Endocrinol. 2009, 23, 893–900. [Google Scholar] [CrossRef] [PubMed]
  84. Zhao, F.; Wang, Q. The protective effect of peroxiredoxin II on oxidative stress induced apoptosis in pancreatic β-cells. Cell Biosci. 2012, 2, 22. [Google Scholar] [CrossRef] [PubMed]
  85. Yang, K.-S.; Kang, S.W.; Woo, H.A.; Hwang, S.C.; Chae, H.Z.; Kim, K.; Rhee, S.G. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J. Biol. Chem. 2002, 277, 38029–38036. [Google Scholar] [CrossRef] [PubMed]
  86. Monteiro, G.; Horta, B.B.; Pimenta, D.C.; Augusto, O.; Netto, L.E.S. Reduction of 1-Cys peroxiredoxins by ascorbate changes the thiol-specific antioxidant paradigm, revealing another function of vitamin C. Proc. Natl. Acad. Sci. USA 2007, 104, 4886–4891. [Google Scholar] [CrossRef] [PubMed]
  87. Chandel, N.S. Mitochondrial complex III: An essential component of universal oxygen sensing machinery? Respir. Physiol. Neurobiol. 2010, 174, 175–181. [Google Scholar] [CrossRef] [PubMed]
  88. Chouchani, E.T.; Kazak, L.; Jedrychowski, M.P.; Lu, G.Z.; Erickson, B.K.; Szpyt, J.; Pierce, K.A.; Laznik-Bogoslavski, D.; Vetrivelan, R.; Clish, C.B.; et al. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature 2016, 532, 112–116. [Google Scholar] [CrossRef] [PubMed]
  89. Edalat, A.; Schulte-Mecklenbeck, P.; Bauer, C.; Undank, S.; Krippeit-Drews, P.; Drews, G.; Düfer, M. Mitochondrial succinate dehydrogenase is involved in stimulus-secretion coupling and endogenous ROS formation in murine beta cells. Diabetologia 2015, 58, 1532–1541. [Google Scholar] [CrossRef] [PubMed]
  90. Martino, L.; Masini, M.; Novelli, M.; Beffy, P.; Bugliani, M.; Marselli, L.; Masiello, P.; Marchetti, P.; De Tata, V. Palmitate activates autophagy in INS-1E β-cells and in isolated rat and human pancreatic islets. PLoS ONE 2012, 7, e36188. [Google Scholar] [CrossRef] [PubMed]
  91. Twig, G.; Elorza, A.; Molina, A.J.A.; Mohamed, H.; Wikstrom, J.D.; Walzer, G.; Stiles, L.; Haigh, S.E.; Katz, S.; Las, G.; et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008, 27, 433–446. [Google Scholar] [CrossRef] [PubMed]
  92. Jung, H.S.; Chung, K.W.; Won Kim, J.; Kim, J.; Komatsu, M.; Tanaka, K.; Nguyen, Y.H.; Kang, T.M.; Yoon, K.-H.; Kim, J.-W.; et al. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab. 2008, 8, 318–324. [Google Scholar] [CrossRef] [PubMed]
  93. Biden, T.J.; Boslem, E.; Chu, K.Y.; Sue, N. Lipotoxic endoplasmic reticulum stress, β cell failure, and type 2 diabetes mellitus. Trends Endocrinol. Metab. 2014, 25, 389–398. [Google Scholar] [CrossRef] [PubMed]
  94. Cui, W.; Ma, J.; Wang, X.; Yang, W.; Zhang, J.; Ji, Q. Free fatty acid induces endoplasmic reticulum stress and apoptosis of β-cells by Ca2+/calpain-2 pathways. PLoS ONE 2013, 8, e59921. [Google Scholar] [CrossRef] [PubMed]
  95. Wu, J.; Sun, P.; Zhang, X.; Liu, H.; Jiang, H.; Zhu, W.; Wang, H. Inhibition of GPR40 protects MIN6 β cells from palmitate-induced ER stress and apoptosis. J. Cell. Biochem. 2012, 113, 1152–1158. [Google Scholar] [CrossRef] [PubMed]
  96. Mehmeti, I.; Gurgul-Convey, E.; Lenzen, S.; Lortz, S. Induction of the intrinsic apoptosis pathway in insulin-secreting cells is dependent on oxidative damage of mitochondria but independent of caspase-12 activation. Biochim. Biophys. Acta 2011, 1813, 1827–1835. [Google Scholar] [CrossRef] [PubMed]
  97. Hou, N.; Torii, S.; Saito, N.; Hosaka, M.; Takeuchi, T. Reactive oxygen species-mediated pancreatic beta-cell death is regulated by interactions between stress-activated protein kinases, p38 and c-Jun N-terminal kinase, and mitogen-activated protein kinase phosphatases. Endocrinology 2008, 149, 1654–1665. [Google Scholar] [CrossRef] [PubMed]
  98. Lin, N.; Chen, H.; Zhang, H.; Wan, X.; Su, Q. Mitochondrial reactive oxygen species (ROS) inhibition ameliorates palmitate-induced INS-1 beta cell death. Endocrine 2012, 42, 107–117. [Google Scholar] [CrossRef] [PubMed]
  99. Yu, H.; Guo, P.; Xie, X.; Wang, Y.; Chen, G. Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J. Cell. Mol. Med. 2017, 21, 648–657. [Google Scholar] [CrossRef] [PubMed]
  100. Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell 2017, 171, 273–285. [Google Scholar] [CrossRef] [PubMed]
  101. Tyurina, Y.Y.; Shrivastava, I.; Tyurin, V.A.; Mao, G.; Dar, H.H.; Watkins, S.; Epperly, M.; Bahar, I.; Shvedova, A.A.; Pitt, B.; et al. “Only a Life Lived for Others Is Worth Living”: Redox Signaling by Oxygenated Phospholipids in Cell Fate Decisions. Antioxid. Redox Signal. 2017. [Google Scholar] [CrossRef] [PubMed]
  102. Jung, I.R.; Choi, S.E.; Jung, J.G.; Lee, S.A.; Han, S.J.; Kim, H.J.; Kim, D.J.; Lee, K.W.; Kang, Y. Involvement of iron depletion in palmitate-induced lipotoxicity of beta cells. Mol. Cell. Endocrinol. 2015, 407, 74–84. [Google Scholar] [CrossRef] [PubMed]
  103. Purves, T.; Middlemas, A.; Agthong, S.; Jude, E.B.; Boulton, A.J.; Fernyhough, P.; Tomlinson, D.R. A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy. FASEB J. 2001, 15, 2508–2514. [Google Scholar] [CrossRef] [PubMed]
  104. Koya, D.; King, G.L. Protein kinase C activation and the development of diabetic complications. Diabetes 1998, 47, 859–866. [Google Scholar] [CrossRef] [PubMed]
  105. Kaneto, H.; Kajimoto, Y.; Miyagawa, J.; Matsuoka, T.; Fujitani, Y.; Umayahara, Y.; Hanafusa, T.; Matsuzawa, Y.; Yamasaki, Y.; Hori, M. Beneficial effects of antioxidants in diabetes: Possible protection of pancreatic β-cells against glucose toxicity. Diabetes 1999, 48, 2398–2406. [Google Scholar] [CrossRef] [PubMed]
  106. Harmon, J.S.; Stein, R.; Robertson, R.P. Oxidative stress-mediated, post-translational loss of MafA protein as a contributing mechanism to loss of insulin gene expression in glucotoxic beta cells. J. Biol. Chem. 2005, 280, 11107–11113. [Google Scholar] [CrossRef] [PubMed]
  107. Morgan, D.; Oliveira-Emilio, H.R.; Keane, D.; Hirata, A.E.; Santos da Rocha, M.; Bordin, S.; Curi, R.; Newsholme, P.; Carpinelli, A.R. Glucose, palmitate and pro-inflammatory cytokines modulate production and activity of a phagocyte-like NADPH oxidase in rat pancreatic islets and a clonal beta cell line. Diabetologia 2007, 50, 359–369. [Google Scholar] [CrossRef] [PubMed]
  108. Cacicedo, J.M.; Benjachareowong, S.; Chou, E.; Ruderman, N.B.; Ido, Y. Palmitate-induced apoptosis in cultured bovine retinal pericytes: Roles of NAD(P)H oxidase, oxidant stress, and ceramide. Diabetes 2005, 54, 1838–1845. [Google Scholar] [CrossRef] [PubMed]
  109. Lupi, R.; Dotta, F.; Marselli, L.; Del Guerra, S.; Masini, M.; Santangelo, C.; Patané, G.; Boggi, U.; Piro, S.; Anello, M.; et al. Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: Evidence that β-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes 2002, 51, 1437–1442. [Google Scholar] [CrossRef] [PubMed]
  110. Beeharry, N.; Chambers, J.A.; Green, I.C. Fatty acid protection from palmitic acid-induced apoptosis is lost following PI3-kinase inhibition. Apoptosis 2004, 9, 599–607. [Google Scholar] [CrossRef] [PubMed]
  111. Boslem, E.; Meikle, P.J.; Biden, T.J. Roles of ceramide and sphingolipids in pancreatic β-cell function and dysfunction. Islets 2012, 4, 177–187. [Google Scholar] [CrossRef] [PubMed]
  112. Boslem, E.; Weir, J.M.; MacIntosh, G.; Sue, N.; Cantley, J.; Meikle, P.J.; Biden, T.J. Alteration of endoplasmic reticulum lipid rafts contributes to lipotoxicity in pancreatic β-cells. J. Biol. Chem. 2013, 288, 26569–26582. [Google Scholar] [CrossRef] [PubMed]
  113. Engin, A.B. What Is Lipotoxicity? Adv. Exp. Med. Biol. 2017, 960, 197–220. [Google Scholar] [CrossRef] [PubMed]
  114. Giacca, A.; Xiao, C.; Oprescu, A.I.; Carpentier, A.C.; Lewis, G.F. Lipid-induced pancreatic β-cell dysfunction: focus on in vivo studies. AJP Endocrinol. Metab. 2011, 300, E255–E262. [Google Scholar] [CrossRef] [PubMed]
  115. Graciano, M.F.; Valle, M.M.; Kowluru, A.; Curi, R.; Carpinelli, A.R. Regulation of insulin secretion and reactive oxygen species production by free fatty acids in pancreatic islets. Islets 2011, 3, 213–223. [Google Scholar] [CrossRef] [PubMed]
  116. Spector, A.A. Structure and lipid binding properties of serum albumin. Methods Enzymol. 1986, 128, 320–339. [Google Scholar] [CrossRef] [PubMed]
  117. Richieri, G.V.; Kleinfeld, A.M. Unbound free fatty acid levels in human serum. J. Lipid Res. 1995, 36, 229–240. [Google Scholar] [PubMed]
  118. Richieri, G.V.; Anel, A.; Kleinfeld, A.M. Interactions of Long-Chain Fatty Acids and Albumin: Determination of Free Fatty Acid Levels Using the Fluorescent Probe ADIFAB. Biochemistry 1993, 32, 7574–7580. [Google Scholar] [CrossRef] [PubMed]
  119. Jensen, M.D.; Nielsen, S. Insulin dose response analysis of free fatty acid kinetics. Metabolism 2007, 56, 68–76. [Google Scholar] [CrossRef] [PubMed]
  120. Van der Vusse, G.J. Albumin as Fatty Acid Transporter. Drug Metab. Pharmacokinet. 2009, 24, 300–307. [Google Scholar] [CrossRef] [PubMed]
  121. Huber, A.H.; Kleinfeld, A.M. Unbound free fatty acid profiles in human plasma and the unexpected absence of unbound palmitoleate. J. Lipid Res. 2017, 58, 578–585. [Google Scholar] [CrossRef] [PubMed]
  122. Alsabeeh, N.; Chausse, B.; Kakimoto, P.A.; Kowaltowski, A.J.; Shirihai, O. Cell culture models of fatty acid overload: Problems and solutions. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2018, 1863, 143–151. [Google Scholar] [CrossRef] [PubMed]
  123. Plötz, T.; Krümmel, B.; Laporte, A.; Pingitore, A.; Persaud, S.J.; Jörns, A.; Elsner, M.; Mehmeti, I.; Lenzen, S. The monounsaturated fatty acid oleate is the major physiological toxic free fatty acid for human beta cells. Nutr. Diabetes 2017, 7, 305. [Google Scholar] [CrossRef] [PubMed]
  124. Gehrmann, W.; Würdemann, W.; Plötz, T.; Jörns, A.; Lenzen, S.; Elsner, M. Antagonism between Saturated and Unsaturated Fatty Acids in ROS Mediated Lipotoxicity in Rat Insulin-Producing Cells. Cell. Physiol. Biochem. 2015, 36, 852–865. [Google Scholar] [CrossRef] [PubMed]
  125. Cooper, M.B.; Tan, K.C.B.; Hales, C.N.; Betteridge, D.J. Postprandial lipid metabolism and β-cell function in non-insulin-dependent (Type 2) diabetes mellitus after a mixed meal with a high fat content. Diabet. Med. 1996, 13, 816–827. [Google Scholar] [CrossRef]
  126. Malin, S.K.; Kashyap, S.R.; Hammel, J.; Miyazaki, Y.; DeFronzo, R.A.; Kirwan, J.P. Adjusting glucose-stimulated insulin secretion for adipose insulin resistance: An index of β-cell function in obese adults. Diabetes Care 2014, 37, 2940–2946. [Google Scholar] [CrossRef] [PubMed]
  127. Xiao, C.; Giacca, A.; Carpentier, A.; Lewis, G.F. Differential effects of monounsaturated, polyunsaturated and saturated fat ingestion on glucose-stimulated insulin secretion, sensitivity and clearance in overweight and obese, non-diabetic humans. Diabetologia 2006, 49, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
  128. Lenzen, S. Oxidative stress: The vulnerable β-cell. Biochem. Soc. Trans. 2008, 36, 343–347. [Google Scholar] [CrossRef] [PubMed]
  129. Szkudlinska, M.A.; von Frankenberg, A.D.; Utzschneider, K.M. The antioxidant N-Acetylcysteine does not improve glucose tolerance or β-cell function in type 2 diabetes. J. Diabetes Complicat. 2016, 30, 618–622. [Google Scholar] [CrossRef] [PubMed]
  130. Ansari, I.H.; Longacre, M.J.; Stoker, S.W.; Kendrick, M.A.; O’Neill, L.M.; Zitur, L.J.; Fernandez, L.A.; Ntambi, J.M.; MacDonald, M.J. Characterization of Acyl-CoA synthetase isoforms in pancreatic beta cells: Gene silencing shows participation of ACSL3 and ACSL4 in insulin secretion. Arch. Biochem. Biophys. 2017, 618, 32–43. [Google Scholar] [CrossRef] [PubMed]
  131. Kim-Muller, J.Y.; Kim, Y.J.R.; Fan, J.; Zhao, S.; Banks, A.S.; Prentki, M.; Accili, D. FoxO1 Deacetylation Decreases Fatty Acid Oxidation in β-Cells and Sustains Insulin Secretion in Diabetes. J. Biol. Chem. 2016, 291, 10162–10172. [Google Scholar] [CrossRef] [PubMed]
  132. Ježek, J.; Jabůrek, M.; Zelenka, J.; Ježek, P. Mitochondrial phospholipase A2 activated by reactive oxygen species in heart mitochondria induces mild uncoupling. Physiol. Res. 2010, 59, 737–747. [Google Scholar] [PubMed]
  133. Ježek, P.; Olejár, T.; Smolková, K.; Ježek, J.; Dlasková, A.; Plecitá-Hlavatá, L.; Zelenka, J.; Špaček, T.; Engstová, H.; Pajuelo Reguera, D.; et al. Antioxidant and regulatory role of mitochondrial uncoupling protein UCP2 in pancreatic beta-cells. Physiol. Res. 2014, 63 (Suppl. 1), S73–S91. [Google Scholar] [PubMed]
  134. Ježek, P.; Holendová, B.; Garlid, K.D.; Jabůrek, M. Mitochondrial uncoupling proteins: Subtle regulators of cellular redox signaling. Antioxid. Redox Signal. 2018. [Google Scholar] [CrossRef] [PubMed]
  135. Giorgio, V.; Guo, L.; Bassot, C.; Petronilli, V.; Bernardi, P. Calcium and regulation of the mitochondrial permeability transition. Cell Calcium 2018, 70, 56–63. [Google Scholar] [CrossRef] [PubMed]
  136. Bernardi, P.; Rasola, A.; Forte, M.; Lippe, G. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. Physiol. Rev. 2015, 95, 1111–1155. [Google Scholar] [CrossRef] [PubMed]
  137. Velasquez, C.; Vasquez, J.S.; Balcazar, N. In vitro effect of fatty acids identified in the plasma of obese adolescents on the function of pancreatic β-cells. Diabetes Metab. J. 2017, 41, 303–315. [Google Scholar] [CrossRef] [PubMed]
  138. Cohen, G.; Shamni, O.; Avrahami, Y.; Cohen, O.; Broner, E.C.; Filippov-Levy, N.; Chatgilialoglu, C.; Ferreri, C.; Kaiser, N.; Sasson, S. Beta cell response to nutrient overload involves phospholipid remodelling and lipid peroxidation. Diabetologia 2015, 58, 1333–1343. [Google Scholar] [CrossRef] [PubMed]
  139. Fransen, M.; Lismont, C.; Walton, P. The peroxisome-mitochondria connection: How and why? Int. J. Mol. Sci. 2017, 18, 1126. [Google Scholar] [CrossRef] [PubMed]
  140. Walker, C.L.; Pomatto, L.C.D.; Tripathi, D.N.; Davies, K.J.A. Redox Regulation of Homeostasis and Proteostasis in Peroxisomes. Physiol. Rev. 2018, 98, 89–115. [Google Scholar] [CrossRef] [PubMed]
  141. Kunau, W.H.; Dommes, V.; Schulz, H. beta-oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: A century of continued progress. Prog. Lipid Res. 1995, 34, 267–342. [Google Scholar] [CrossRef]
  142. Wanders, R.J.A.; Waterham, H.R.; Ferdinandusse, S. Metabolic interplay between peroxisomes and other subcellular organelles including mitochondria and the endoplasmic reticulum. Front. Cell Dev. Biol. 2016, 3, 83. [Google Scholar] [CrossRef] [PubMed]
  143. Van Veldhoven, P.P. Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J. Lipid Res. 2010, 51, 2863–2895. [Google Scholar] [CrossRef] [PubMed]
  144. Azevedo-Martins, A.K.; Monteirom, A.P.; Lima, C.L.; Lenzen, S.; Curi, R. Fatty acid-induced toxicity and neutral lipid accumulation in insulin-producing RINm5F cells. Toxicol. In Vitro 2006, 20, 1106–1113. [Google Scholar] [CrossRef] [PubMed]
  145. Gehrmann, W.; Elsner, M.A. specific fluorescence probe for hydrogen peroxide detection in peroxisomes. Free Radic. Res. 2011, 45, 501–506. [Google Scholar] [CrossRef]
  146. Bao, S.; Song, H.; Tan, M.; Wohltmann, M.; Ladenson, J.H.; Turk, J. Group VIB Phospholipase A(2) promotes proliferation of INS-1 insulinoma cells and attenuates lipid peroxidation and apoptosis induced by inflammatory cytokines and oxidant agents. Oxid. Med. Cell Longev. 2012. [Google Scholar] [CrossRef] [PubMed]
  147. Lismont, C.; Nordgren, M.; Van Veldhoven, P.P.; Fransen, M. Redox interplay between mitochondria and peroxisomes. Front. Cell Dev. Biol. 2015, 3, 35. [Google Scholar] [CrossRef] [PubMed]
  148. Zhao, H.; Matsuzaka, T.; Nakano, Y.; Motomura, K.; Tang, N.; Yokoo, T.; Okajima, Y.; Han, S.; Takeuchi, Y.; Aita, Y.; et al. Elovl6 Deficiency Improves Glycemic Control in Diabetic db/db Mice by Expanding β-Cell Mass and Increasing Insulin Secretory Capacity. Diabetes 2017, 66, 1833–1846. [Google Scholar] [CrossRef] [PubMed]
  149. Cruciani-Guglielmacci, C.; Bellini, L.; Denom, J.; Oshima, M.; Fernandez, N.; Normandie-Levi, P.; Berney, X.P.; Kassis, N.; Rouch, C.; Dairou, J.; et al. Molecular phenotyping of multiple mouse strains under metabolic challenge uncovers a role for Elovl2 in glucose-induced insulin secretion. Mol. Metab. 2017, 6, 340–351. [Google Scholar] [CrossRef] [PubMed]
  150. Graciano, M.F.; Leonelli, M.; Curi, R.; R Carpinelli, A. Omega-3 fatty acids control productions of superoxide and nitrogen oxide and insulin content in INS-1E cells. J. Physiol. Biochem. 2016, 72, 699–710. [Google Scholar] [CrossRef] [PubMed]
  151. Lenzen, S.; Drinkgern, J.; Tiedge, M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic. Biol. Med. 1996, 20, 463–466. [Google Scholar] [CrossRef]
  152. Tiedge, M.; Lortz, S.; Drinkgern, J.; Lenzen, S. Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 1997, 46, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
  153. Modak, M.A.; Datar, S.P.; Bhonde, R.R.; Ghaskadbi, S.S. Differential susceptibility of chick and mouse islets to streptozotocin and its co-relation with islet antioxidant status. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 2007, 177, 247–257. [Google Scholar] [CrossRef] [PubMed]
  154. Modak, M.A.; Parab, P.B.; Ghaskadbi, S.S. Pancreatic islets are very poor in rectifying oxidative DNA damage. Pancreas 2009, 38, 23–29. [Google Scholar] [CrossRef] [PubMed]
  155. Ivarsson, R.; Quintens, R.; Dejonghe, S.; Tsukamoto, K.; In’t Veld, P.; Renström, E.; Schuit, F.C. Redox control of exocytosis: Regulatory role of NADPH, thioredoxin, and glutaredoxin. Diabetes 2005, 54, 2132–2142. [Google Scholar] [CrossRef] [PubMed]
  156. Welsh, N.; Margulis, B.; Borg, L.A.; Wiklund, H.J.; Saldeen, J.; Flodström, M.; Mello, M.A.; Andersson, A.; Pipeleers, D.G.; Hellerström, C. Differences in the expression of heat-shock proteins and antioxidant enzymes between human and rodent pancreatic islets: Implications for the pathogenesis of insulin-dependent diabetes mellitus. Mol. Med. 1995, 1, 806–820. [Google Scholar] [PubMed]
  157. Tonooka, N.; Oseid, E.; Zhou, H.; Harmon, J.S.; Robertson, R.P. Glutathione peroxidase protein expression and activity in human islets isolated for transplantation. Clin. Transplant. 2007, 21, 767–772. [Google Scholar] [CrossRef] [PubMed]
  158. Newsholme, P.; Homem De Bittencourt, P.I.; O’ Hagan, C.; De Vito, G.; Murphy, C.; Krause, M.S. Exercise and possible molecular mechanisms of protection from vascular disease and diabetes: The central role of ROS and nitric oxide. Clin. Sci. 2010, 118, 341–349. [Google Scholar] [CrossRef] [PubMed]
  159. Traba, J.; Geiger, S.S.; Kwarteng-Siaw, M.; Han, K.; Ra, O.H.; Siegel, R.M.; Gius, D.; Sack, M.N. Prolonged fasting suppresses mitochondrial NLRP3 inflammasome assembly and activation via SIRT3-mediated activation of superoxide dismutase 2. J. Biol. Chem. 2017, 292, 12153–12164. [Google Scholar] [CrossRef] [PubMed]
  160. Ciregia, F.; Bugliani, M.; Ronci, M.; Giusti, L.; Boldrini, C.; Mazzoni, M.R.; Mossuto, S.; Grano, F.; Cnop, M.; Marselli, L.; et al. Palmitate-induced lipotoxicity alters acetylation of multiple proteins in clonal β cells and human pancreatic islets. Sci. Rep. 2017, 7, 13445. [Google Scholar] [CrossRef] [PubMed]
  161. Zhou, Y.; Chung, A.C.K.; Fan, R.; Lee, H.M.; Xu, G.; Tomlinson, B.; Chan, J.C.N.; Kong, A.P.S. Sirt3 Deficiency Increased the Vulnerability of Pancreatic Beta Cells to Oxidative Stress-Induced Dysfunction. Antioxid. Redox Signal. 2017, 27, 962–976. [Google Scholar] [CrossRef] [PubMed]
  162. Kim, M.; Lee, J.S.; Oh, J.E.; Nan, J.; Lee, H.; Jung, H.S.; Chung, S.S.; Park, K.S. SIRT3 overexpression attenuates palmitate-induced pancreatic β-cell dysfunction. PLoS ONE 2015, 10, e0124744. [Google Scholar] [CrossRef] [PubMed]
  163. Mehmeti, I.; Lortz, S.; Avezov, E.; Jörns, A.; Lenzen, S. ER-resident antioxidative GPx7 and GPx8 enzyme isoforms protect insulin-secreting INS-1E β-cells against lipotoxicity by improving the ER antioxidative capacity. Free Radic. Biol. Med. 2017, 112, 121–130. [Google Scholar] [CrossRef] [PubMed]
  164. Hall, E.; Volkov, P.; Dayeh, T.; Bacos, K.; Rönn, T.; Nitert, M.D.; Ling, C. Effects of palmitate on genome-wide mRNA expression and DNA methylation patterns in human pancreatic islets. BMC Med. 2014, 12, 103. [Google Scholar] [CrossRef] [PubMed]
  165. Briand, O.; Helleboid-Chapman, A.; Ploton, M.; Hennuyer, N.; Carpentier, R.; Pattou, F.; Vandewalle, B.; Moerman, E.; Gmyr, V.; Kerr-Conte, J.; et al. The Nuclear Orphan Receptor Nur77 Is a Lipotoxicity Sensor Regulating Glucose-Induced Insulin Secretion in Pancreatic β-Cells. Mol. Endocrinol. 2012, 26, 399–413. [Google Scholar] [CrossRef] [PubMed]
  166. Choi, H.J.; Hwang, S.; Lee, S.H.; Lee, Y.R.; Shin, J.; Park, K.S.; Cho, Y.M. Genome-wide identification of palmitate-regulated immediate early genes and target genes in pancreatic beta-cells reveals a central role of NF-κB. Mol. Biol. Rep. 2012, 39, 6781–6789. [Google Scholar] [CrossRef] [PubMed]
  167. Tuo, Y.; Feng, D.D.; Wang, D.F.; Sun, J.; Li, S.B.; Chen, C. Long-term in vitro treatment of INS-1 rat pancreatic β-cells by unsaturated free fatty acids protects cells against gluco- and lipotoxicities via activation of GPR40 receptors. Clin. Exp. Pharmacol. Physiol. 2012, 39, 423–428. [Google Scholar] [CrossRef] [PubMed]
  168. Keane, D.C.; Takahashi, H.K.; Dhayal, S.; Morgan, N.G.; Curi, R.; Newsholme, P. Arachidonic acid actions on functional integrity and attenuation of the negative effects of palmitic acid in a clonal pancreatic β-cell line. Clin. Sci. 2011, 120, 195–206. [Google Scholar] [CrossRef] [PubMed]
  169. Hagman, D.K.; Hays, L.B.; Parazzoli, S.D.; Poitout, V. Palmitate inhibits insulin gene expression by altering PDX-1 nuclear localization and reducing MafA expression in isolated rat islets of Langerhans. J. Biol. Chem. 2005, 280, 32413–32418. [Google Scholar] [CrossRef] [PubMed]
  170. Roomp, K.; Kristinsson, H.; Schvartz, D.; Ubhayasekera, K.; Sargsyan, E.; Manukyan, L.; Chowdhury, A.; Manell, H.; Satagopam, V.; Groebe, K.; et al. Combined lipidomic and proteomic analysis of isolated human islets exposed to palmitate reveals time-dependent changes in insulin secretion and lipid metabolism. PLoS ONE 2017, 12, e0176391. [Google Scholar] [CrossRef] [PubMed]
  171. Hirata, T.; Kawai, T.; Hirose, H.; Tanaka, K.; Kurosawa, H.; Fujii, C.; Fujita, H.; Seto, Y.; Matsumoto, H.; Itoh, H. Palmitic acid-rich diet suppresses glucose-stimulated insulin secretion (GSIS) and induces endoplasmic reticulum (ER) stress in pancreatic islets in mice. Endocr. Res. 2016, 41, 8–15. [Google Scholar] [CrossRef] [PubMed]
  172. Hoppa, M.B.; Collins, S.; Ramracheya, R.; Hodson, L.; Amisten, S.; Zhang, Q.; Johnson, P.; Ashcroft, F.M.; Rorsman, P. Chronic Palmitate Exposure Inhibits Insulin Secretion by Dissociation of Ca2+ Channels from Secretory Granules. Cell Metab. 2009, 10, 455–465. [Google Scholar] [CrossRef] [PubMed]
  173. Natalicchio, A.; Biondi, G.; Marrano, N.; Labarbuta, R.; Tortosa, F.; Spagnuolo, R.; D’Oria, R.; Carchia, E.; Leonardini, A.; Cignarelli, A.; et al. Long-term exposure of pancreatic β-cells to palmitate results in SREBP-1C-dependent decreases in GLP-1 receptor signaling via CREB and AKT and insulin secretory response. Endocrinology 2016, 157, 2243–2258. [Google Scholar] [CrossRef] [PubMed]
  174. Yang, Y.; Tong, Y.; Gong, M.; Lu, Y.; Wang, C.; Zhou, M.; Yang, Q.; Mao, T.; Tong, N. Activation of PPARβ/δ protects pancreatic β cells from palmitate-induced apoptosis by upregulating the expression of GLP-1 receptor. Cell. Signal. 2014, 26, 268–278. [Google Scholar] [CrossRef] [PubMed]
  175. Sommerweiss, D.; Gorski, T.; Richter, S.; Garten, A.; Kiess, W. Oleate rescues INS-1E β-cells from palmitate-induced apoptosis by preventing activation of the unfolded protein response. Biochem. Biophys. Res. Commun. 2013, 441, 770–776. [Google Scholar] [CrossRef] [PubMed]
  176. Tian, G.; Maria Sol, E.R.; Xu, Y.; Shuai, H.; Tengholm, A. Impaired cAMP generation contributes to defective glucose-stimulated insulin secretion after long-term exposure to palmitate. Diabetes 2015, 64, 904–915. [Google Scholar] [CrossRef] [PubMed]
  177. Lu, H.; Hao, L.; Li, S.; Lin, S.; Lv, L.; Chen, Y.; Cui, H.; Zi, T.; Chu, X.; Na, L.; et al. Elevated circulating stearic acid leads to a major lipotoxic effect on mouse pancreatic beta cells in hyperlipidaemia via a miR-34a-5p-mediated PERK/p53-dependent pathway. Diabetologia 2016, 59, 1247–1257. [Google Scholar] [CrossRef] [PubMed]
  178. Zhang, B.; Lai, G.; Wu, J.; Sun, R.; Xu, R.; Yang, X.; Qi, Y.; Zhao, Y. 20-HETE attenuates the response of glucose-stimulated insulin secretion through the AKT/GSK-3β/Glut2 pathway. Endocrine 2016, 54, 371–382. [Google Scholar] [CrossRef] [PubMed]
  179. Pascoe, J.; Hollern, D.; Stamateris, R.; Abbasi, M.; Romano, L.C.; Zou, B.; O’Donnell, C.P.; Garcia-Ocana, A.; Alonso, L.C. Free fatty acids block glucose-induced β-cell proliferation in mice by inducing cell cycle inhibitors p16 and p18. Diabetes 2012, 61, 632–641. [Google Scholar] [CrossRef] [PubMed]
  180. Hodson, D.J.; Mitchell, R.K.; Bellomo, E.A.; Sun, G.; Vinet, L.; Meda, P.; Li, D.; Li, W.H.; Bugliani, M.; Marchetti, P.; et al. Lipotoxicity disrupts incretin-regulated human β cell connectivity. J. Clin. Investig. 2013, 123, 4182–4194. [Google Scholar] [CrossRef] [PubMed]
  181. Morita, S.; Shimajiri, Y.; Sakagashira, S.; Furuta, M.; Sanke, T. Effect of exposure to non-esterified fatty acid on progressive deterioration of insulin secretion in patients with Type2 diabetes: A long-term follow-up study. Diabet. Med. 2012, 29, 980–985. [Google Scholar] [CrossRef] [PubMed]
  182. Marchetti, P. Islet inflammation in type 2 diabetes. Diabetologia 2016, 59, 668–672. [Google Scholar] [CrossRef] [PubMed]
  183. Innes, J.K.; Calder, P.C. Omega-6 fatty acids and inflammation. Prostaglandins Leukot. Essent. Fat. Acids 2018. [Google Scholar] [CrossRef] [PubMed]
  184. Flachs, P.; Horakova, O.; Brauner, P.; Rossmeisl, M.; Pecina, P.; Franssen-Van Hal, N.; Ruzickova, J.; Sponarova, J.; Drahota, Z.; Vlcek, C.; et al. Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce β-oxidation in white fat. Diabetologia 2005, 48, 2365–2375. [Google Scholar] [CrossRef] [PubMed]
  185. Kusunoki, C.; Yang, L.; Yoshizaki, T.; Nakagawa, F.; Ishikado, A.; Kondo, M.; Morino, K.; Sekine, O.; Ugi, S.; Nishio, Y.; et al. Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 2013, 430, 225–230. [Google Scholar] [CrossRef] [PubMed]
  186. Lee, M.-S.; Shin, Y.; Moon, S.; Kim, S.; Kim, Y. Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on Mitochondrial DNA Replication and PGC-1α Gene Expression in C2C12 Muscle Cells. Prev. Nutr. Food Sci. 2016, 21, 317–322. [Google Scholar] [CrossRef] [PubMed]
  187. Lepretti, M.; Martucciello, S.; Burgos Aceves, M.; Putti, R.; Lionetti, L. Omega-3 Fatty Acids and Insulin Resistance: Focus on the Regulation of Mitochondria and Endoplasmic Reticulum Stress. Nutrients 2018, 10, 350. [Google Scholar] [CrossRef] [PubMed]
  188. Yang, W.; Chen, X.; Chen, M.; Li, Y.; Li, Q.; Jiang, X.; Yang, Y.; Ling, W. Fish oil supplementation inhibits endoplasmic reticulum stress and improves insulin resistance: Involvement of AMP-activated protein kinase. Food Funct. 2017, 8, 1481–1493. [Google Scholar] [CrossRef] [PubMed]
  189. Oh, D.Y.; Talukdar, S.; Bae, E.J.; Imamura, T.; Morinaga, H.; Fan, W.; Li, P.; Lu, W.J.; Watkins, S.M.; Olefsky, J.M. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 2010, 142, 687–698. [Google Scholar] [CrossRef] [PubMed]
  190. Mena, S.J.; Manosalva, C.; Carretta, M.D.; Teuber, S.; Olmo, I.; Burgos, R.A.; Hidalgo, M.A. Differential free fatty acid receptor-1 (FFAR1/GPR40) signalling is associated with gene expression or gelatinase granule release in bovine neutrophils. Innate Immun. 2016, 22, 479–489. [Google Scholar] [CrossRef] [PubMed]
  191. Roelofsen, H.; Priebe, M.G.; Vonk, R.J. The interaction of short-chain fatty acids with adipose tissue: Relevance for prevention of type 2 diabetes. Benef. Microbes 2010, 1, 433–437. [Google Scholar] [CrossRef] [PubMed]
  192. Zheng, S.; Ren, X.; Han, T.; Chen, Y.; Qiu, H.; Liu, W.; Hu, Y. Fenofibrate attenuates fatty acid-induced islet β-cell dysfunction and apoptosis via inhibiting the NF-κB/MIF dependent inflammatory pathway. Metabolism 2017, 77, 23–38. [Google Scholar] [CrossRef] [PubMed]
  193. Mukhuty, A.; Fouzder, C.; Mukherjee, S.; Malick, C.; Mukhopadhyay, S.; Bhattacharya, S.; Kundu, R. Palmitate induced Fetuin-A secretion from pancreatic β-cells adversely affects its function and elicits inflammation. Biochem. Biophys. Res. Commun. 2017, 491, 1118–1124. [Google Scholar] [CrossRef] [PubMed]
  194. Imai, Y.; Dobrian, A.D.; Morris, M.A.; Taylor-Fishwick, D.A.; Nadler, J.L. Lipids and immunoinflammatory pathways of beta cell destruction. Diabetologia 2016, 59, 673–678. [Google Scholar] [CrossRef] [PubMed]
  195. Eguchi, K.; Nagai, R. Islet inflammation in type 2 diabetes and physiology. J. Clin. Investig. 2017, 127, 14–23. [Google Scholar] [CrossRef] [PubMed]
  196. Collier, J.J.; Sparer, T.E.; Karlstad, M.D.; Burke, S.J. Pancreatic islet inflammation: An emerging role for chemokines. J. Mol. Endocrinol. 2017, 59, R33–R46. [Google Scholar] [CrossRef] [PubMed]
  197. Igoillo-Esteve, M.; Marselli, L.; Cunha, D.A.; Ladrière, L.; Ortis, F.; Grieco, F.A.; Dotta, F.; Weir, G.C.; Marchetti, P.; Eizirik, D.L.; et al. Palmitate induces a pro-inflammatory response in human pancreatic islets that mimics CCL2 expression by beta cells in type 2 diabetes. Diabetologia 2010, 53, 1395–1405. [Google Scholar] [CrossRef] [PubMed]
  198. Cnop, M.; Abdulkarim, B.; Bottu, G.; Cunha, D.A.; Igoillo-Esteve, M.; Masini, M.; Turatsinze, J.V.; Griebel, T.; Villate, O.; Santin, I.; et al. RNA sequencing identifies dysregulation of the human pancreatic islet transcriptome by the saturated fatty acid palmitate. Diabetes 2014, 63, 1978–1993. [Google Scholar] [CrossRef] [PubMed]
  199. Eguchi, K.; Manabe, I.; Oishi-Tanaka, Y.; Ohsugi, M.; Kono, N.; Ogata, F.; Yagi, N.; Ohto, U.; Kimoto, M.; Miyake, K.; et al. Saturated fatty acid and TLR signaling link β cell dysfunction and islet inflammation. Cell Metab. 2012, 15, 518–533. [Google Scholar] [CrossRef] [PubMed]
  200. Inoue, H.; Shirakawa, J.; Togashi, Y.; Tajima, K.; Okuyama, T.; Kyohara, M.; Tanaka, Y.; Orime, K.; Saisho, Y.; Yamada, T.; et al. Signaling between pancreatic β-cells and macrophages via S100 calcium-binding protein A8 exacerbates β-cell apoptosis and islet inflammation. J. Biol. Chem. 2018, 293, 5934–5946. [Google Scholar] [CrossRef] [PubMed]
  201. Mahdi, T.; Hänzelmann, S.; Salehi, A.; Muhammed, S.J.; Reinbothe, T.M.; Tang, Y.; Axelsson, A.S.; Zhou, Y.; Jing, X.; Almgren, P.; et al. Secreted frizzled-related protein 4 reduces insulin secretion and is overexpressed in type 2 diabetes. Cell Metab. 2012, 16, 625–633. [Google Scholar] [CrossRef] [PubMed]
  202. Taneera, J.; Lang, S.; Sharma, A.; Fadista, J.; Zhou, Y.; Ahlqvist, E.; Jonsson, A.; Lyssenko, V.; Vikman, P.; Hansson, O.; et al. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets. Cell Metab. 2012, 16, 122–134. [Google Scholar] [CrossRef] [PubMed]
  203. Marselli, L.; Thorne, J.; Dahiya, S.; Sgroi, D.C.; Sharma, A.; Bonner-Weir, S.; Marchetti, P.; Weir, G.C. Gene expression profiles of beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PLoS ONE 2010, 5, e11499. [Google Scholar] [CrossRef] [PubMed]
  204. Böni-Schnetzler, M.; Thorne, J.; Parnaud, G.; Marselli, L.; Ehses, J.A.; Kerr-Conte, J.; Pattou, F.; Halban, P.A.; Weir, G.C.; Donath, M.Y. Increased interleukin (IL)-1β messenger ribonucleic acid expression in β-cells of individuals with type 2 diabetes and regulation of IL-1β in human islets by glucose and autostimulation. J. Clin. Endocrinol. Metab. 2008, 93, 4065–4074. [Google Scholar] [CrossRef] [PubMed]
  205. Eguchi, K.; Manabe, I. Macrophages and islet inflammation in type 2 diabetes. Diabetes Obes. Metab. 2013, 15, 152–158. [Google Scholar] [CrossRef] [PubMed]
  206. Kugelberg, E. Diabetes: Macrophages mediate β-cell loss in T2DM. Nat. Rev. Endocrinol. 2013, 9, 626. [Google Scholar] [CrossRef] [PubMed]
  207. Jourdan, T.; Godlewski, G.; Cinar, R.; Bertola, A.; Szanda, G.; Liu, J.; Tam, J.; Han, T.; Mukhopadhyay, B.; Skarulis, M.C.; et al. Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes. Nat. Med. 2013, 19, 1132–1140. [Google Scholar] [CrossRef] [PubMed]
  208. Azevedo-Martins, A.K.; Lortz, S.; Lenzen, S.; Curi, R.; Eizirik, D.L.; Tiedge, M. Improvement of the mitochondrial antioxidant defense status prevents cytokine-induced nuclear factor-κB activation in insulin-producing cells. Diabetes 2003, 52, 93–101. [Google Scholar] [CrossRef] [PubMed]
  209. Brozzi, F.; Nardelli, T.R.; Lopes, M.; Millard, I.; Barthson, J.; Igoillo-Esteve, M.; Grieco, F.A.; Villate, O.; Oliveira, J.M.; Casimir, M.; et al. Cytokines induce endoplasmic reticulum stress in human, rat and mouse beta cells via different mechanisms. Diabetologia 2015, 58, 2307–2316. [Google Scholar] [CrossRef] [PubMed]
  210. Zummo, F.P.; Cullen, K.S.; Honkanen-Scott, M.; Shaw, J.A.M.; Lovat, P.E.; Arden, C. Glucagon-Like Peptide 1 Protects Pancreatic β-Cells From Death by Increasing Autophagic Flux and Restoring Lysosomal Function. Diabetes 2017, 66, 1272–1285. [Google Scholar] [CrossRef] [PubMed]
  211. Natalicchio, A.; Marrano, N.; Biondi, G.; Spagnuolo, R.; Labarbuta, R.; Porreca, I.; Cignarelli, A.; Bugliani, M.; Marchetti, P.; Perrini, S.; et al. The Myokine Irisin Is Released in Response to Saturated Fatty Acids and Promotes Pancreatic β-Cell Survival and Insulin Secretion. Diabetes 2017, 66, 2849–2856. [Google Scholar] [CrossRef] [PubMed]
  212. Luo, F.; Feng, Y.; Ma, H.; Liu, C.; Chen, G.; Wei, X.; Mao, X.; Li, X.; Xu, Y.; Tang, S.; et al. Neutral ceramidase activity inhibition is involved in palmitate-induced apoptosis in INS-1 cells. Endocr. J. 2017, 64, 767–776. [Google Scholar] [CrossRef] [PubMed]
  213. Cunha, D.A.; Cito, M.; Grieco, F.A.; Cosentino, C.; Danilova, T.; Ladrière, L.; Lindahl, M.; Domanskyi, A.; Bugliani, M.; Marchetti, P.; et al. Pancreatic β-cell protection from inflammatory stress by the endoplasmic reticulum proteins thrombospondin 1 and mesencephalic astrocyte-derived neutrotrophic factor (MANF). J. Biol. Chem. 2017, 292, 14977–14988. [Google Scholar] [CrossRef] [PubMed]

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.