Isolation and Antimicrobial Activity of Coumarin Derivatives from Fruits of Peucedanum luxurians Tamamsch
Abstract
1. Introduction
2. Results and Discussion
2.1. Preliminary HPLC Analysis and Screening of Activity of Extracts
2.2. HPCCC Separation
2.3. Quantitative HPLC-DAD Analysis
2.4. Antimicrobial Activity
3. Materials and Methods
3.1. Chemicals
3.2. Plant Material
3.3. Accelerated Solvent Extraction
3.4. HPCCC Separation
3.4.1. HPCCC Apparatus
3.4.2. Selection of Two-Phase Solvent System
3.4.3. Separation Procedure
3.5. Semi-Preparative HPLC Separation
3.6. HPLC-DAD Analysis
3.7. HPLC-DAD-ESI-Q-TOF-MS Analysis
3.8. NMR Analysis
3.9. Antimicrobial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bilal, M.; Rasheed, T.; Iqbal, H.M.N.; Hu, H.; Wang, W.; Zhang, X. Macromolecular agents with antimicrobial potentialities: A drive to combat antimicrobial resistance. Int. J. Biol. Macromol. 2017, 103, 554–574. [Google Scholar] [CrossRef] [PubMed]
- Detsi, A.; Kontogiorgis, C.; Hadjipavlou-Litina, D. Coumarin derivatives: An updated patent review (2015–2016). Expert. Opin. Ther. Pat. 2017, 27, 1201–1226. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.J.; Standiford, H.C.; Reboli, A.C.; John, J.F.; Mulligan, M.E.; Ribner, B.S.; Montgomerie, J.Z.; Goetz, M.B.; Mayhall, C.G.; Rimland, D.; et al. Randomized double-blinded trial of rifampin with either novobiocin or trimethoprim-sulfamethoxazole against methicillin-resistant Staphylococcus aureus colonization: Prevention of antimicrobial resistance and effect of host factors on outcome. Antimicrob. Agents Chemother. 1993, 37, 1334–1342. [Google Scholar] [CrossRef] [PubMed]
- Hisamoto, M.; Kikuzaki, H.; Nakataki, N. Constituents of the leaves of Peucedanum japonicum Thunb. J. Agric. Food Chem. 2003, 52, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Morioka, T.; Suzui, M.; Nabandith, V.; Inamine, M.; Aniya, Y.; Nakayama, T.; Ichiba, T.; Mori, H.; Yoshimi, N. The modifying effect of Peucedanum japonicum, a herb in the Ryukyu Islands, on azoxymethane-induced colon preneoplastic lesions in male F344 rats. Cancer Lett. 2004, 205, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Leporatti, M.L.; Ivancheva, S. Preliminary comparative analysis of medicinal plants used in the traditional medicine of Bulgaria and Italy. J. Ethnopharmacol. 2003, 87, 123–142. [Google Scholar] [CrossRef]
- Sarkhail, P. Traditional uses, phytochemistry and pharmacological properties of the genus Peucedanum: A review. J. Ethnopharmacol. 2014, 156, 235–270. [Google Scholar] [CrossRef] [PubMed]
- Skalicka-Wozniak, K.; Los, R.; Glowniak, K.; Malm, A. Antimicrobial activity of fatty acids from fruits of Peucedanum cervaria and Peucedanum alsaticum. Chem. Biodivers. 2010, 7, 2748–2754. [Google Scholar] [CrossRef] [PubMed]
- Joa, H.; Vogl, S.; Atanasov, A.G.; Zehl, M.; Nakel, T.; Fakhrudin, N.; Heiss, E.H.; Picker, P.; Urban, E.; Wawrosch, C.; et al. Identification of ostruthin from Peucedanum ostruthium rhizomes as an inhibitor of vascular smooth muscle cell proliferation. J. Nat. Prod. 2011, 74, 1513–1516. [Google Scholar] [CrossRef] [PubMed]
- Schinkovitz, A.; Gibbons, S.; Starvi, M.; Cocksedge, M.J.; Bucar, F. Ostruthin: An antimycobacterial coumarin from the root of Peucedanum ostruthium. Planta Med. 2003, 69, 369–371. [Google Scholar] [CrossRef] [PubMed]
- Gökay, O.; Kühner, D.; Los, M.; Götz, F.; Bertsche, U.; Albert, K. An efficient approach for the isolation, identification and evaluation of antimicrobial plant components on an analytical scale, demonstrated by the example of Radix imperatoriae. Anal. Bioanal. Chem. 2010, 398, 2039–2047. [Google Scholar] [CrossRef] [PubMed]
- Ngwendson, J.N.; Bedir, E.; Efange, S.M.; Okunji, C.O.; Iwu, M.M.; Schuster, B.G.; Khan, I.A. Constituents of Peucedanum zenkeri seeds and their antimicrobial effects. Pharmazie 2003, 58, 587–589. [Google Scholar] [PubMed]
- Ciesla, L.; Skalicka-Wozniak, K.; Hajnos, M.; Hawryl, M.; Waksmundzka-Hajnos, M. Multidimentional TLC procedure for separation of complex natural mixtures spanning a wide polarity range: Application for fingerprint construction and for investigation of systematic relationships within the Peucedanum genus. Acta Chromatogr. 2009, 21, 641–657. [Google Scholar] [CrossRef]
- Chinou, I.; Widelski, J.; Fokialakis, N.; Magiatis, P.; Glowniak, K. Coumarins from Peucedanum luxurians. Fitoterapia 2007, 78, 448–449. [Google Scholar] [CrossRef] [PubMed]
- Widelski, J.; Kukula-Koch, W.; Baj, T.; Kedzierski, B.; Fokialakis, N.; Magiatis, P.; Pozarowski, P.; Rolinski, J.; Graikou, K.; Chinou, I.; et al. Rare coumarins induce apoptosis, G1 cell block and reduce RNA content in HL60 cells. Open Chem. 2017, 15, 1–6. [Google Scholar] [CrossRef]
- Skalicka-Woźniak, K.; Garrard, I. A comprehensive classification of solvent systems used for natural product purifications in countercurrent and centrifugal partition chromatography. Nat. Prod. Rep. 2012, 32, 1556–1561. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.J.; Bellevue, F.H., III; Woster, P.M. Identification of 6′,7′-dihydroxybergamottin, a cytochrome P450 inhibitor, in grapefruit juice. Drug. Metab. Dispos. 1996, 24, 1287–1290. [Google Scholar] [PubMed]
- Tesso, H.; König, W.A.; Kubeczka, K.H.; Bartnik, M.; Glowniak, K. Secondary metabolites of Peucedanum tauricum fruits. Phytochemistry 2005, 66, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Kozovska, V.; Zheleva, A. Natural coumarins. X. A new furocoumarin, 8-methoxy-peucedanin from the roots of Peucedanum ruthenicum. Planta Med. 1980, 40, 60–63. [Google Scholar] [CrossRef]
- Hadaček, F.; Müller, C.; Werner, A.; Greger, H.; Proksch, P. Analysis, isolation and insecticidal activity of linear furanocoumarins and other coumarin derivatives from Peucedanum (Apiaceae: Apioideae). J. Chem. Ecol. 1994, 20, 2035–2054. [Google Scholar] [CrossRef] [PubMed]
- Muckensturm, B.; Boulanger, A.; Ouahabi, S.; Reduron, J.P. A new irregular diterpenoid from Opopanax chironium. Fitoterapia 2005, 76, 768–770. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, S.; Habibi, Z. A new dihydrofuranocoumarin from Opopanax hispidus (Friv.) Griseb. Nat. Prod. Res. 2014, 28, 1808–1812. [Google Scholar] [CrossRef] [PubMed]
- Shults, E.E.; Petrova, T.N.; Shakirov, M.M.; Chernyak, E.I.; Pokrovskiy, L.M.; Nekhoroshev, S.A.; Tolstikov, G.A. Coumarin compounds from roots of Peucedanum (Peucedanum morisonii Bess.). Chem. Sustain. Dev. 2003, 11, 649–654. [Google Scholar]
- Waksmundzka-Hajnos, M.; Petruczynik, A.; Dragan, A.; Wianowska, D.; Dawidowicz, A.L. Effect of extraction method on the yield of furanocumarins from fruits of Archangelica officinalis Hoffm. Phytochem. Anal. 2004, 15, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Skalicka-Wozniak, K.; Glowniak, K. Pressurized liquid extraction on coumarins from fruits of Heracleum leskowii with application of solvents with different polarity under increasing temperature. Molecules 2012, 14, 4133–4141. [Google Scholar] [CrossRef] [PubMed]
- Walasek, M.; Grzegorczyk, A.; Malm, A.; Skalicka-Wozniak, K. Bioactivity-guided isolation of antimicrobial coumarins from Heracleum mantegazzianum Sommier & Levier (Apiaceae) fruits by high-performance counter-current chromatography. Food Chem. 2015, 186, 133–138. [Google Scholar] [PubMed]
- Popova, M.; Giannopoulou, E.; Skalicka-Woźniak, K.; Graikou, K.; Widelski, J.; Bankova, V.; Kalofonos, H.; Sivolapenko, G.; Gaweł-Bęben, K.; Antosiewicz, B.; et al. Characterization and Biological Evaluation of Propolis from Poland. Molecules 2017, 22, 1159. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds 6′,7′-dihydroxybergamottin, officinalin, stenocarpin isobutyrate, officinalin isobutyrate, 8-methoxypeucedanin, and peucedaninare available from the authors. |
Solvent System | Coumarins | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
HEMWat (5:6:5:6) | 0.83 | 3.01 | 5.14 | 5.16 | 9.49 | 11.57 |
HEMWat (1:1:1:1) | 0.47 | 1.59 | 3.09 | 3.25 | 5.31 | 6.34 |
PEMWat (1:1:1:1) | 0.50 | 1.95 | 2.47 | 2.51 | 4.38 | 4.90 |
HAtWat (3.9:5:1.9) | 0.16 | 1.22 | 1.15 | 1.06 | 0.55 | 0.33 |
HEMWat (6:5:6:5) | 0.19 | 0.89 | 1.57 | 1.65 | 2.85 | 3.61 |
α2/1 = 4.68 | α3/2 = 1.76 | α4/3 = 1.05 | α5/4 = 1.73 | α6/5 = 1.27 |
Coumarins | Plant Material | Solvent | Yield (mg/100 g d.w.) | RSD% |
---|---|---|---|---|
1 | Aerial parts | PE | 13.72 ± 0.41 | 2.99 |
DCM | 24.71 ± 0.66 | 2.67 | ||
MeOH | 30.61 ± 1.83 | 5.97 | ||
Fruits | PE | 83.17 ± 5.04 | 6.05 | |
DCM | 442.23 ± 2.45 | 0.55 | ||
MeOH | 465.74 ± 1.66 | 0.36 | ||
2 | Aerial parts | PE | 29.60 ± 0.84 | 2.84 |
DCM | 51.70 ± 2.71 | 5.24 | ||
MeOH | 53.51 ± 0.39 | 0.73 | ||
Fruits | PE | 229.12 ± 0.62 | 0.27 | |
DCM | 1336.26 ± 0.80 | 0.06 | ||
MeOH | 1309.43 ± 1.31 | 0.10 | ||
3 | Aerial parts | PE | 23.61 ± 0.02 | 0.09 |
DCM | 33.49 ± 0.19 | 0.58 | ||
MeOH | 47.84 ± 0.95 | 1.99 | ||
Fruits | PE | 56.86 ± 0.03 | 0.05 | |
DCM | 101.72 ± 0.10 | 0.10 | ||
MeOH | 93.88 ± 0.59 | 0.63 | ||
4 | Aerial parts | PE | 8.39 ± 0.12 | 0.13 |
DCM | 8.56 ± 0.16 | 0.12 | ||
MeOH | 8.47 ± 0.41 | 1.06 | ||
Fruits | PE | 89.93 ± 0.12 | 0.13 | |
DCM | 191.78 ± 0.02 | 0.01 | ||
MeOH | 170.06 ± 0.09 | 0.05 | ||
5 | Aerial parts | PE | 62.55 ± 0.03 | 0.05 |
DCM | 79.68 ± 0.29 | 0.37 | ||
MeOH | 66.21 ± 0.07 | 0.11 | ||
Fruits | PE | 341.91 ± 0.17 | 0.05 | |
DCM | 1652.15 ± 0.87 | 0.05 | ||
MeOH | 1622.91 ± 0.56 | 0.03 | ||
6 | Aerial parts | PE | 28.94 ± 0.11 | 0.38 |
DCM | 22.60 ± 0.11 | 0.49 | ||
MeOH | 21.49 ± 0.25 | 1.16 | ||
Fruits | PE | 3689.91 ± 1.07 | 0.03 | |
DCM | 4563.94 ± 3.35 | 0.07 | ||
MeOH | 4538.09 ± 1.13 | 0.02 |
Tested Extract/Compound | S. aureus | S. epidermidis | P. aeruginosa | E. cloacae | K. pneumoniae | E. coli |
---|---|---|---|---|---|---|
P. luxurians aerial parts DCM | 15/1.90 | 16/1.88 | 13/2.40 | 12/3.50 | 12/3.10 | 12/3.35 |
P. luxurians aerial parts MeOH | 17/0.90 | 17/0.92 | 13/2.80 | 12/3.50 | 12/2.75 | 12/2.50 |
P. luxurians fruits DCM | 17/0.84 | 17/0.90 | 14/3.00 | 13/3.45 | 13/2.77 | 13/2.60 |
P. luxurians fruits MeOH | 18/0.95 | 18/0.85 | 14/2.84 | 14/2.75 | 14/2.50 | 14/2.25 |
(1) 6′,7′-Dihydroxybergamottin | 17/1.20 | 17/1.35 | 17/1.37 | 16/1.75 | 16/2.10 | 17/1.45 |
(2) Officinalin | 13/4.50 | 12/5.50 | 12/5.00 | 12/5.75 | 13/4.80 | 13/4.90 |
(3) Stenocarpin isobutyrate | 12/5.25 | 14/4.00 | 13/5.00 | 13/4.80 | 14/3.90 | 14/4.50 |
(4) Officinalin isobutyrate | 14/3.50 | 15/2.70 | 14/3.50 | 15/2.75 | 15/2.25 | 13/4.80 |
(5) 8-metoxypeucedanin | 12/5.25 | 14/4.00 | 13/5.00 | 13/4.80 | 14/3.90 | 14/4.50 |
(6) Peucedanin | 16/1.50 | 16/1.75 | 17/1.40 | 16/2.10 | 16/2.50 | 16/2.75 |
Netilmicin | 21/0.004 | 25/0.004 | 20/0.088 | 23/0.008 | 22/0.008 | 24/0.010 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Widelski, J.; Luca, S.V.; Skiba, A.; Chinou, I.; Marcourt, L.; Wolfender, J.-L.; Skalicka-Wozniak, K. Isolation and Antimicrobial Activity of Coumarin Derivatives from Fruits of Peucedanum luxurians Tamamsch. Molecules 2018, 23, 1222. https://doi.org/10.3390/molecules23051222
Widelski J, Luca SV, Skiba A, Chinou I, Marcourt L, Wolfender J-L, Skalicka-Wozniak K. Isolation and Antimicrobial Activity of Coumarin Derivatives from Fruits of Peucedanum luxurians Tamamsch. Molecules. 2018; 23(5):1222. https://doi.org/10.3390/molecules23051222
Chicago/Turabian StyleWidelski, Jarosław, Simon Vlad Luca, Adrianna Skiba, Ioanna Chinou, Laurence Marcourt, Jean-Luc Wolfender, and Krystyna Skalicka-Wozniak. 2018. "Isolation and Antimicrobial Activity of Coumarin Derivatives from Fruits of Peucedanum luxurians Tamamsch" Molecules 23, no. 5: 1222. https://doi.org/10.3390/molecules23051222
APA StyleWidelski, J., Luca, S. V., Skiba, A., Chinou, I., Marcourt, L., Wolfender, J.-L., & Skalicka-Wozniak, K. (2018). Isolation and Antimicrobial Activity of Coumarin Derivatives from Fruits of Peucedanum luxurians Tamamsch. Molecules, 23(5), 1222. https://doi.org/10.3390/molecules23051222