A Review on the Weight-Loss Effects of Oxidized Tea Polyphenols
Abstract
1. Introduction
2. Epidemiologic Evidences
2.1. Studies in Animal Models
2.2. Studies in Humans
3. Biological Mechanisms
3.1. Digestive Enzyme Inhibition
3.1.1. Pancreatic Lipase Inhibition
3.1.2. Glucosidase/Amylase Inhibition
3.2. Generation of Short-Chain Fatty Acids (SFCA)
3.3. Modulation of Gut Microbiota
3.4. Regulating Lipid Metabolism
3.4.1. The Role of Energy Sensing Systems
3.4.2. Down-Regulation of Lipogenesis
3.4.3. Up-Regulation of Lipolysis via AMPK
4. Analysis of Inconsistent Results
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Yang, C.S.; Zhang, J.; Zhang, L.; Huang, J.; Wang, Y. Mechanisms of body weight reduction and metabolic syndrome alleviation by tea. Mol. Nutr. Food Res. 2015, 60, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Henning, S.M.; Yang, J.; Hsu, M.; Lee, R.; Grojean, E.M.; Ly, A.; Li, Z. Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet-induced obese mice. Eur. J. Nutr. 2017, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jobu, K.; Yokota, J.; Yoshioka, S.; Moriyama, H.; Murata, S.; Ohishi, M.; Miyamura, M. Effects of Goishi tea on diet-induced obesity in mice. Food Res. Int. 2013, 54, 324–329. [Google Scholar] [CrossRef]
- Welker, T.L.; Wan, X.; Zhou, Y.; Yang, Y.; Overturf, K.; Barrows, F.; Liu, K. Effect of dietary green tea supplementation on growth, fat content, and muscle fatty acid profile of rainbow trout (Oncorhynchus mykiss). Aquac. Int. 2016, 25, 1073–1094. [Google Scholar] [CrossRef]
- Kayashima, Y.; Murata, S.; Sato, M.; Matsuura, K.; Asanuma, T.; Chimoto, J.; Yamakawa-Kobayashi, K. Tea polyphenols ameliorate fat storage induced by high-fat diet in Drosophila melanogaster. Biochem. Biophys. Rep. 2015, 4, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Sae-Tan, S.; Grove, K.A.; Kennett, M.J.; Lambert, J.D. (−)-Epigallocatechin-3-gallate increases the expression of genes related to fat oxidation in the skeletal muscle of high fat-fed mice. Food Funct. 2011, 2, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Zhang, X.; Miao, Y.; Cao, J.; Wu, Z.; Weng, P. The modulatory effect of (−)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3″Me) on intestinal microbiota of high fat diet-induced obesity mice model. Food Res. Int. 2017, 92, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, Y.; Wang, L.; Wang, L.; Tanaka, Y.; Zhang, T.; Ashida, H. Oolong, black and pu-erh tea suppresses adiposity in mice via activation of AMP-activated protein kinase. Food Funct. 2014, 5, 2420–2429. [Google Scholar] [CrossRef] [PubMed]
- Raso, R.A.; Paim, R.R.; Pinheiro, S.V.; Júnior, W.C.; Vasconcellos, L.D.; Alberti, L.R. Effects of chronic consumption of green tea on weight and body fat distribution of Wistar rats evaluated by computed tomography. Acta Cir. Bras. 2017, 32, 342–349. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lee, M.; Shin, Y.; Jung, S.; Kim, Y. Effects of epigallocatechin-3-gallate on thermogenesis and mitochondrial biogenesis in brown adipose tissues of diet-induced obese mice. Food Nutr. Res. 2017, 61, 1325307. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.S.; Wang, H.; Sheridan, Z.P. Studies on prevention of obesity, metabolic syndrome, diabetes, cardiovascular diseases and cancer by tea. J. Food Drug Anal. 2018, 26, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Hursel, R.; Viechtbauer, W.; Westerterp-Plantenga, M. Effects of green tea on weight loss and weight maintenance. A meta-analysis. Appetite 2009, 52, 838. [Google Scholar]
- Phung, O.J.; Baker, W.L.; Matthews, L.J.; Lanosa, M.; Thorne, A.; Coleman, C.I. Effect of green tea catechins with or without caffeine on anthropometric measures: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2009, 91, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Hursel, R.; Viechtbauer, W.; Dulloo, A.G.; Tremblay, A.; Tappy, L.; Rumpler, W.; Westerterp-Plantenga, M.S. The effects of catechin rich teas and caffeine on energy expenditure and fat oxidation: A meta-analysis. Obes. Rev. 2011, 12, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Palmatier, M.A.; Kang, A.; Kidd, K.K. Global variation in the frequencies of functionally different catechol-O-methyltransferase alleles. Biol. Psychiaty 1999, 46, 557–567. [Google Scholar] [CrossRef]
- Dulloo, A.G.; Duret, C.; Rohrer, D.; Girardier, L.; Mensi, N.; Fathi, M.; Vandermander, J. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am. J. Clin. Nutr. 1999, 70, 1040–1045. [Google Scholar] [CrossRef] [PubMed]
- Mielgo-Ayuso, J.; Barrenechea, L.; Alcorta, P.; Larrarte, E.; Margareto, J.; Labayen, I. Effects of dietary supplementation with epigallocatechin-3-gallate on weight loss, energy homeostasis, cardiometabolic risk factors and liver function in obese women: Randomised, double-blind, placebo-controlled clinical trial. Br. J. Nutr. 2013, 111, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Janssens, P.L.; Hursel, R.; Westerterp-Plantenga, M.S. Long-Term green tea extract supplementation does not affect fat absorption, resting energy expenditure, and body composition in adults. J. Nutr. 2015, 145, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Dostal, A.M.; Samavat, H.; Espejo, L.; Arikawa, A.Y.; Stendell-Hollis, N.R.; Kurzer, M.S. Green tea extract and catechol-O-Methyltransferase genotype modify fasting serum insulin and plasma adiponectin concentrations in a randomized controlled trial of overweight and obese postmenopausal women. J. Nutr. 2015, 146, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Grove, K.A.; Sae-Tan, S.; Kennett, M.J.; Lambert, J.D. (−)-Epigallocatechin-3-gallate inhibits pancreatic lipase and reduces body weight gain in high fat-fed obese mice. Obesity 2012, 20, 2311–2313. [Google Scholar] [CrossRef] [PubMed]
- Nagao, T.; Hase, T.; Tokimitsu, I. A green tea extract high in catechins reduces body fat and cardiovascular risks in humans. Obesity 2007, 15, 1473–1483. [Google Scholar] [CrossRef] [PubMed]
- Hamdaoui, M.H.; Snoussi, C.; Dhaouadi, K.; Fattouch, S.; Ducroc, R.; Gall, M.L.; Bado, A. tea decoctions prevent body weight gain in rats fed high-fat diet; black tea being more efficient than green tea. J. Nutr. Int. Metab. 2016, 6, 33–40. [Google Scholar] [CrossRef]
- Wang, S.; Huang, Y.; Xu, H.; Zhu, Q.; Lu, H.; Zhang, M.; Sheng, J. Oxidized tea polyphenols prevent lipid accumulation in liver and visceral white adipose tissue in rats. Eur. J. Nutr. 2016, 56, 2037–2048. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Chen, Y.; Cheng, M.; Zhang, X.; Zheng, X.; Zhang, Z. The modulatory effect of polyphenols from green tea, oolong tea and black tea on human intestinal microbiota in vitro. J. Food Sci. Technol. 2017, 55, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Glisan, S.L.; Grove, K.A.; Yennawar, N.H.; Lambert, J.D. Inhibition of pancreatic lipase by black tea theaflavins: Comparative enzymology and in silico modeling studies. Food Chem. 2017, 216, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Koo, S.; Noh, S. Green tea as inhibitor of the intestinal absorption of lipids: Potential mechanism for its lipid-lowering effect. J. Nutr. Biochem. 2007, 18, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Unno, T.; Osada, C.; Motoo, Y.; Suzuki, Y.; Kobayashi, M.; Nozawa, A. Dietary tea catechins increase fecal energy in rats. J. Nutr. Sci. Vitaminol. 2009, 55, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.; Temple, N.J. Beverage Impacts on Health and Nutrition; Humana Press: New York, NY, USA, 2016. [Google Scholar]
- Wang, S.; Sun, Z.; Dong, S.; Liu, Y.; Liu, Y. Molecular interactions between (−)-Epigallocatechin gallate analogs and pancreatic lipase. PLoS ONE 2014, 9, e111143. [Google Scholar] [CrossRef] [PubMed]
- Nakai, M.; Fukui, Y.; Asami, S.; Toyoda-Ono, Y.; Iwashita, T.; Shibata, H.; Kiso, Y. Inhibitory effects of oolong Tea polyphenols on pancreatic lipase in vitro. J. Agric. Food Chem. 2005, 53, 4593–4598. [Google Scholar] [CrossRef] [PubMed]
- Hsu, T.; Kusumoto, A.; Abe, K.; Hosoda, K.; Kiso, Y.; Wang, M.; Yamamoto, S. Polyphenol-enriched oolong tea increases fecal lipid excretion. Eur. J. Clin. Nutr. 2006, 60, 1330–1336. [Google Scholar] [CrossRef] [PubMed]
- Thurairajah, P.H.; Syn, W.; Neil, D.A.; Stell, D.; Haydon, G. Orlistat (Xenical)-induced subacute liver failure. Eur. J. Gastroenterol. Hepatol. 2005, 17, 1437–1438. [Google Scholar] [CrossRef] [PubMed]
- Karamadoukis, L.; Shivashankar, G.; Ludeman, L.; Williams, A. An unusual complication of treatment with orlistat. Clin. Nephrol. 2009, 71, 430–432. [Google Scholar] [CrossRef] [PubMed]
- Chaput, J.; St-Pierre, S.; Tremblay, A. Currently available drugs for the treatment of obesity: Sibutramine and orlistat. Mini-Rev. Med. Chem. 2007, 7, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Kong, F. Effects of tea polyphenols and different teas on pancreatic α-amylase activity in vitro. LWT-Food Sci. Technol. 2016, 66, 232–238. [Google Scholar] [CrossRef]
- Sun, L.; Warren, F.J.; Netzel, G.; Gidley, M.J. 3 or 3′-Galloyl substitution plays an important role in association of catechins and theaflavins with porcine pancreatic α-amylase: The kinetics of inhibition of α-amylase by tea polyphenols. J. Funct. Foods 2016, 26, 144–156. [Google Scholar] [CrossRef]
- Koh, L.W.; Wong, L.L.; Loo, Y.Y.; Kasapis, S.; Huang, D. Evaluation of different teas against starch digestibility by mammalian glycosidases. J. Agric. Food Chem. 2010, 58, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.; Apostolidis, E.; Shetty, K. Inhibitory potential of wine and tea against α-amylase and α-glucosidase for management of hyperglycemia linked to type 2 aiabetes. J. Food Biochem. 2008, 32, 15–31. [Google Scholar] [CrossRef]
- Miao, M.; Jiang, H.; Jiang, B.; Li, Y.; Cui, S.W.; Jin, Z. Structure elucidation of catechins for modulation of starch digestion. J. Funct. Foods 2013, 5, 2024–2029. [Google Scholar] [CrossRef]
- Liu, S.; Yu, Z.; Zhu, H.; Zhang, W.; Chen, Y. In vitro α-glucosidase inhibitory activity of isolated fractions from water extract of Qingzhuan dark tea. BMC Complement. Altern. Med. 2016, 16, 378. [Google Scholar] [CrossRef] [PubMed]
- Satoh, T.; Igarashi, M.; Yamada, S.; Takahashi, N.; Watanabe, K. Inhibitory effect of black tea and its combination with acarbose on small intestinal α-glucosidase activity. J. Ethnopharmacol. 2015, 161, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Li, H.; Du, Y.; Yan, R.; Ou, S.; Chen, T.; Fu, L. C-geranylated flavanones from Ying De black tea and their antioxidant and α -glucosidase inhibition activities. Food Chem. 2017, 235, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Rana, M.M.; Liu, G.; Gao, M.; Li, D.; Wu, F.; Wei, S. Green tea flavour determinants and their changes over manufacturing processes. Food Chem. 2016, 212, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Gao, Y.; Liu, Y.; Zheng, X.; Ye, J.; Liang, Y.; Lu, J. Studies on the mechanism of efficient extraction of tea components by aqueous ethanol. Food Chem. 2016, 194, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.; Kim, Y.; Park, J.; Kim, Y.; Kim, S. Changes in major polyphenolic compounds of tea (Camellia sinensis) leaves during the production of black tea. Food Sci. Biotechnol. 2016, 25, 1523–1527. [Google Scholar] [CrossRef]
- Mahmood, N. A review of α-amylase inhibitors on weight loss and glycemic control in pathological state such as obesity and diabetes. Comp. Clin. Pathol. 2014, 25, 1253–1264. [Google Scholar] [CrossRef]
- Nyambe-Silavwe, H.; Williamson, G. Polyphenol and fibre-rich dried fruits with green tea attenuate starch-derived postprandial blood glucose and insulin: A randomised, controlled, single-blind, cross-over intervention. Br. J. Nutr. 2016, 116, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Striegel, L.; Kang, B.; Pilkenton, S.J.; Rychlik, M.; Apostolidis, E. Effect of black tea and black tea pomace polyphenols on α-Glucosidase and α-Amylase Inhibition, relevant to type 2 diabetes prevention. Front. Nutr. 2015, 2, 3. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Nyman, M.; Fåk, F. Modulation of gut microbiota in rats fed high-fat diets by processing whole-grain barley to barley malt. Mol. Nutr. Food Res. 2015, 59, 2066–2076. [Google Scholar] [CrossRef] [PubMed]
- Besten, G.D.; Bleeker, A.; Gerding, A.; Eunen, K.V.; Havinga, R.; Dijk, T.H.; Bakker, B.M. Short-chain fatty acids protect against high-fat diet–Induced obesity via a PPAR γ-dependent switch from lipogenesis to fat oxidation. Diabetes 2015, 64, 2398–2408. [Google Scholar] [CrossRef] [PubMed]
- Hardie, D.G. AMPK: Positive and negative regulation, and its role in whole-body energy homeostasis. Curr. Opin. Cell Biol. 2015, 33, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Besten, G.D.; Gerding, A.; Dijk, T.H.; Ciapaite, J.; Bleeker, A.; Eunen, K.V.; Bakker, B.M. Protection against the metabolic syndrome by guar gum-derived short-chain fatty acids depends on peroxisome proliferator-activated receptor γ and glucagon-like peptide-1. PLoS ONE 2015, 10, e0136364. [Google Scholar] [CrossRef] [PubMed]
- Besten, G.D.; Havinga, R.; Bleeker, A.; Rao, S.; Gerding, A.; Eunen, K.V.; Bakker, B.M. The short-chain fatty acid uptake fluxes by mice on a guar gum supplemented diet associate with melioration of major biomarkers of the metabolic syndrome. PLoS ONE 2014, 9, e107392. [Google Scholar]
- Balaji, M.; Ganjayi, M.S.; Kumar, G.E.; Parim, B.N.; Mopuri, R.; Dasari, S. A review on possible therapeutic targets to contain obesity: The role of phytochemicals. Obes. Res. Clin. Pract. 2016, 10, 363–380. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Zuo, T.; Zhang, N.; Shi, H.; Liu, F.; Wu, J.; Tang, Q. High throughput sequencing analysis reveals amelioration of intestinal dysbiosis by squid ink polysaccharide. J. Funct. Foods 2016, 20, 506–515. [Google Scholar] [CrossRef]
- Candela, M.; Maccaferri, S.; Turroni, S.; Carnevali, P.; Brigidi, P. Functional intestinal microbiome, new frontiers in prebiotic design. Int. J. Food Microbiol. 2010, 140, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Korpela, K.; Flint, H.J.; Johnstone, A.M.; Lappi, J.; Poutanen, K.; Dewulf, E.; Salonen, A. Gut microbiota signatures predict host and microbiota responses to dietary interventions in obese individuals. PLoS ONE 2014, 9, e90702. [Google Scholar] [CrossRef] [PubMed]
- Tilg, H.; Moschen, A.R. Microbiota and diabetes: An evolving relationship. Gut 2014, 63, 1513–1521. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Gordon, J.I. A core gut microbiome in obese and lean twins. Nature 2008, 457, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Bradlow, H.L. Obesity and the gut microbiome: Pathophysiological aspects. Horm. Mol. Biol. Clin. Investig. 2014, 17, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Million, M.; Lagier, J.; Yahav, D.; Paul, M. Gut bacterial microbiota and obesity. Clin. Microbiol. Infect. 2013, 19, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Backhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Gordon, J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 2004, 101, 15718–15723. [Google Scholar] [CrossRef] [PubMed]
- Bessesen, D. An obesity-associated gut microbiome with increased capacity for energy harvest. Yearb. Endocrinol. 2007, 163–165. [Google Scholar] [CrossRef]
- Parks, B.; Nam, E.; Org, E.; Kostem, E.; Norheim, F.; Hui, S.; Lusis, A. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice cell. Metabolism 2013, 17, 141–152. [Google Scholar]
- Remely, M.; Tesar, I.; Hippe, B.; Gnauer, S.; Rust, P.; Haslberger, A. Gut microbiota composition correlates with changes in body fat content due to weight loss. Benef. Microbes 2015, 6, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Kałużna-Czaplińska, J.; Gątarek, P.; Chartrand, M.S.; Dadar, M.; Bjørklund, G. Is there a relationship between intestinal microbiota, dietary compounds, and obesity? Trends Food Sci. Technol. 2017, 70, 105–113. [Google Scholar] [CrossRef]
- Ozdal, T.; Sela, D.A.; Xiao, J.; Boyacioglu, D.; Chen, F.; Capanoglu, E. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 2016, 8, 78. [Google Scholar] [CrossRef] [PubMed]
- Espín, J.C.; González-Sarrías, A.; Tomás-Barberán, F.A. The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochem. Pharm. 2017, 139, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhu, X.; Sun, Y.; Hu, B.; Sun, Y.; Jabbar, S.; Zeng, X. Fermentation in vitro of EGCG, GCG and EGCG3”Me isolated from Oolong tea by human intestinal microbiota. Food Res. Int. 2013, 54, 1589–1595. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Z.; Weng, P. Antioxidant and Hepatoprotective Effect of (−)-Epigallocatechin 3-O-(3-O-Methyl) gallate (EGCG3″Me) from Chinese Oolong Tea. J. Agric. Food Chem. 2014, 62, 10046–10054. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Qiao, L.; Zhang, X.; Wu, Z.; Weng, P. Effect of methylated tea catechins from Chinese oolong tea on the proliferation and differentiation of 3T3-L1 preadipocyte. Fitoterapia 2015, 104, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhang, X.; Sun, Y.; Su, D.; Sun, Y.; Hu, B.; Zeng, X. Purification and fermentation in vitro of sesaminol triglucoside from sesame cake by human intestinal microbiota. J. Agric. Food Chem. 2013, 61, 1868–1877. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.M.; Howitt, M.R.; Panikov, N.; Michaud, M.; Gallini, C.A.; Bohlooly-y, M.; Garrett, W.S. The Microbial metabolites, short-chain fatty acids, regulate colonic treg cell homeostasis. Science 2013, 341, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wang, W.; Huang, J.; Ding, Y.; Pan, Z.; Zhao, Y.; Zeng, X. In vitro extraction and fermentation of polyphenols from grape seeds (Vitis vinifera) by human intestinal microbiota. Food Funct. 2016, 7, 1959–1967. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Indias, I.; Tinahones, F.J. Impaired adipose tissue expandability and lipogenic capacities as ones of the main causes of metabolic disorders. J. Diabetes Res. 2015, 2015, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, Y.; Wang, L.; Tinshun, Z.; Nakamura, T.; Ashida, H. Fermented tea improves glucose intolerance in mice by enhancing translocation of glucose transporter 4 in skeletal muscle. J. Agric. Food Chem. 2012, 60, 11366–11371. [Google Scholar] [CrossRef] [PubMed]
- Rocha, A.; Bolin, A.P.; Cardoso, C.A.; Otton, R. Green tea extract activates AMPK and ameliorates white adipose tissue metabolic dysfunction induced by obesity. Eur. J. Nutr. 2015, 55, 2231–2244. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Ghoshal, S.; Porter, T.D. Phosphorylation of hepatic AMP-activated protein kinase and liver kinase B1 is increased after a single oral dose of green tea extract to mice. Nutr. Res. 2012, 32, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Farah, B.L.; Sinha, R.A.; Wu, Y.; Singh, B.K.; Bay, B.; Yen, P.M. Epigallocatechin-3-Gallate (EGCG), a green tea polyphenol, stimulates hepatic autophagy and lipid clearance. PLoS ONE 2014, 9, e87161. [Google Scholar] [CrossRef] [PubMed]
- Serrano, J.C.; Gonzalo-Benito, H.; Jové, M.; Fourcade, S.; Cassanyé, A.; Boada, J.; Portero-Otín, M. Dietary intake of green tea polyphenols regulates insulin sensitivity with an increase in AMP-activated protein kinase α content and changes in mitochondrial respiratory complexes. Mol. Nutr. Food Res. 2012, 57, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Moseti, D.; Regassa, A.; Kim, W. Molecular regulation of adipogenesis and otential anti-adipogenic bioactive molecules. Int. J. Mol. Sci. 2016, 17, 124. [Google Scholar] [CrossRef] [PubMed]
- Lefterova, M.I.; Lazar, M.A. New developments in adipogenesis. Trends Endocrinol. Metab. 2009, 20, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Spiegelman, B.M. Transcriptional regulation of brown and white adipogenesis. In Novel Insights into Adipose Cell Functions; Research and Perspectives in Endocrine Interactions; Springer: Berlin/Heidelberg, Germany, 2010; pp. 89–92. [Google Scholar]
- Wen, X. Methylated Flavonoids Have Greatly Improved Intestinal Absorption and Metabolic Stability. Drug Metab. Dispos. 2006, 34, 1786–1792. [Google Scholar] [CrossRef] [PubMed]
- Walle, T. Methylation of dietary flavones increases their metabolic stability and chemopreventive effects. Int. J. Mol. Sci. 2009, 10, 5002–5019. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Xi-fu, S. Effect of theaflavins on the differentiation of rabbit bone marrow mesenchymal stem cells into adipocytes. J. Clin. Rehabil. Tissue 2008, 16, 3061–3064. [Google Scholar]
- Cao, Z.; Yang, H.; He, Z.; Luo, C.; Xu, Z.; Gu, D.; Lin, Q. Effects of aqueous extracts of raw Pu-erh tea and ripened Pu-Erh tea on proliferation and differentiation of 3T3-L1 Preadipocytes. Phytother. Res. 2012, 27, 1193–1199. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Deng, H.; Cao, J. The comparative study on effects of green tea and black tea polyphenols on genes related to adipocyte differentiation in rats. Acta Nutr. Sin. 2007, 29, 582–586. [Google Scholar]
- Long, Y.C. AMP-activated protein kinase signaling in metabolic regulation. J. Clin. Investig. 2012, 116, 1776–1783. [Google Scholar] [CrossRef] [PubMed]
- Nam, M.; Choi, M.; Choi, J.; Kim, N.; Kim, M.; Jung, S.; Hwang, G. Effect of green tea on hepatic lipid metabolism in mice fed a high-fat diet. J. Nutr. Biochem. 2018, 51, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, J.M.; Puddey, I.B.; Burke, V.; Croft, K.D. Is reversal of endothelial dysfunction by tea related to flavonoid metabolism? Br. J. Nutr. 2006, 95, 14–17. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Janssens, P.L.; Penders, J.; Hursel, R.; Budding, A.E.; Savelkoul, P.H.; Westerterp-Plantenga, M.S. Long-Term green tea supplementation does not change the human gut microbiota. PLoS ONE 2016, 11, e0153134. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, Y.; Wu, Z.; Weng, P. The modulatory effect of anthocyanins from purple sweet potato on human intestinal microbiota in vitro. J. Agric. Food Chem. 2016, 64, 2582–2590. [Google Scholar] [CrossRef] [PubMed]
- Besten, G.D.; Eunen, K.V.; Groen, A.K.; Venema, K.; Reijngoud, D.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef] [PubMed]
Test Subjects | Tea Polyphenol or Tea Type | Doses | Duration and Design | Type of Effect | Mechanisms | References |
---|---|---|---|---|---|---|
C57BL/6J mice | green tea polyphenols and black tea polyphenols (GTP)/(BTP), both decaffeinated | Average polyphenol consumption was 240 and 320 mg per kg body weight for mice fed GTP and BTP respectively | 4 weeks testing period on 4 groups of mice: high-fat/high-sucrose (HF/HS), HF/HS + GTP or BTP, and low fat/high-sucrose. | GTP and BTP significantly induced weight loss. GTP and BTP induced significant increase in AMPK phosphorylation by 70 and 289% respectively. | BTPs increased pAMPK through increased SCFA production, GTPs increased AMPK in liver tissue. | [2] |
3T3L-1 cells and C57BL/6J mice | Goishi tea (post-fermented tea) extract | 1 mg/mL extract for cells and 4 g of tea leaves to 1 L infuse for mice | 84 days testing period on 4 groups of mice, HFD(high-fat diet) tap water, HFD Goishi tea, HFD green tea. | Goishi tea is likely effective against diet-induced obesity. | Goishi tea largely influenced the reduction of serum total cholesterol and low-density lipoprotein cholesterol and inhibited oxidation. | [3] |
transgenic Drosophila melanogaster | Theaflavin (TF), epitheaflagallin (ETG), and epigallocatechin gallate (EGCG) | 0.1–0.5%TF, 0.1–0.5%ETG, 1–10 mM EGCG | 80 days testing period on female (n = 140); male (n = 220) TF, ETG, 1 mMEGCg) | Fat accumulation-suppressing effect of ETG in Drosophila larval fat body, which was more effective than that of TF or EGCG | TF and ETG activated fatty acid oxidation in mitochondria, EGCG activated fatty acid oxidation in peroxisomes. | [5] |
Male C57BL/6J mice with colonized microbial community using faecal samples from 5 volunteers | EGCG”Me (methylated EGCG found in oolong teas) | EGCG”Me was added to high fat diet at concentration of 0.1% | 8 weeks study using 3 groups: (HFD), (HFD + EGCG”Me), (LFD) | Compared to HFD group, EGCG”Me group showed significantly decreased body mass gains and improved stability of gut microbiota. | EGCG”Me significantly modulated intestinal microbiota and increased production of SCFA by anaerobic microbes. | [7] |
Male C57BL/6J mice | epigallocatechin gallate (EGCG) | 0.2% EGCG (w/w)-supplemented high-fat diet for 8 weeks | a high-fat control diet and a 0.2% EGCG (w/w)-supplemented high-fat diet for 8 weeks | The EGCG-supplemented group showed decreased body weight gain, and plasma and liver lipids. | EGCG may have anti-obesity properties through BAT thermogenesis and mitochondria biogenesis. | [10] |
10 healthy men | Green tea extract (GTE) | 3 types: (50 mg caffeine + 90 mg EGCG) or (50 mg caffeine) or placebo | On 3 separate occasions, subjects were randomly assigned one of 3 treatments | GTE treatment significantly increased 24 h energy expenditure (EE) (4%: p < 0.01). 50 mg caffeine alone had no effects on EE. | GTE promoted fat oxidation and thermogenesis beyond that explained by it’s caffeine content alone. | [16] |
High fat-fed obese C57bl/6J mice | EGCG | 0.32% EGCG diet | 6 weeks with mice fed high-fat diet alone or high-fat diet with EGCG | 44% decrease in body weight gain in high fat-fed obese mice (p < 0.01). | Increased fecal lipid content by 29.4% (p < 0.05) compared to high-fat control. | [20] |
240 men and women with visceral fat-type obesity. | Green tea with two different catechin contents | green tea containing 583 mg of catechins and 96 mg of catechins (control) per day | After a 2 weeks diet run-in period, a 12-week double-blind parallel multicenter trial was performed. | Decreases in body weight, body fat mass, waist circumference, visceral fat area, and subcutaneous fat area were greater in catechin group than control. | Further study necessary to elucidate the mechanism of action of catechins. | [21] |
Male Wistar rats | 15 min Green tea and Black tea decoctions brewed at 50 g tea leaves per L water (GTD)/(BTD) | GTD: 346 mg total phenolic compounds (TPC) and 73 mg caffeine BTD: 121.4 mg TPC and 89 mg caffeine | 10 weeks. Three groups; high-fat diet (HFD), HFD + GTD, HFD + BTD. | Adipose tissue gains reduced by 56.4% in GTD group, 60% in BTD group. Reduction of 21 and 55% of weight gains in GTD and BTD groups. | GTD and BTD prevented fat storage in liver and lowered blood lipids by increasing fecal triglyceride excretion, with a strong effect of BTD compared to GTD. | [22] |
Eight-week-old male Sprague-Dawley (SD) rats | Oxidized tea polyphenols (OTP) | Diet containing 2% OTP. | 12 weeks study on three groups: LFD; HFD; HFD + OTP | OTPs significantly decreased weight gain and alleviated lipid accumulation in liver and visceral white adipose tissue. OTPs Also promoted lipid excretion. | OTP + HFD group changed expression levels of PPARs, enhanced fatty acid oxidation, and enhanced biosynthesis of mitochondria in visceral WAT. | [23] |
Samples from six healthy volunteers (three females and three males, age 25–30) | Polyphenols from green tea, oolong tea, and black tea extracted with hot water (GTP, OTP, BTP) | 100 g of tea powder extracted with 1600 mL of distilled water. | 150 mcg of fecal mixture added to 1350 mcg of medium in anaerobic atomosphere. Samples taken at 36 h. | OTP and BTP showed better effects than GTP during fermentation. OTP performed best. | Microbes altered polyphenols to make them more bioavailable, while polyphenols proliferated SCFA-generating bacteria. | [24] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rothenberg, D.O.; Zhou, C.; Zhang, L. A Review on the Weight-Loss Effects of Oxidized Tea Polyphenols. Molecules 2018, 23, 1176. https://doi.org/10.3390/molecules23051176
Rothenberg DO, Zhou C, Zhang L. A Review on the Weight-Loss Effects of Oxidized Tea Polyphenols. Molecules. 2018; 23(5):1176. https://doi.org/10.3390/molecules23051176
Chicago/Turabian StyleRothenberg, Dylan O’Neill, Caibi Zhou, and Lingyun Zhang. 2018. "A Review on the Weight-Loss Effects of Oxidized Tea Polyphenols" Molecules 23, no. 5: 1176. https://doi.org/10.3390/molecules23051176
APA StyleRothenberg, D. O., Zhou, C., & Zhang, L. (2018). A Review on the Weight-Loss Effects of Oxidized Tea Polyphenols. Molecules, 23(5), 1176. https://doi.org/10.3390/molecules23051176