Quantitative and Discriminative Evaluation of Contents of Phenolic and Flavonoid and Antioxidant Competence for Chinese Honeys from Different Botanical Origins
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization and Method Validation of UPLC-MS/MS Method
2.2. Quantitative Determination of Phenolic and Flavonoids Compounds in Honey
2.3. Antioxidant Activity
2.4. Chemometric Analysis
2.4.1. Principal Component Analysis
2.4.2. Hierarchical Cluster Analysis
2.4.3. Discriminant Analysis
3. Materials and Methods
3.1. Honey Samples
3.2. Chemicals
3.3. Sample Preparation
3.4. UPLC-MS/MS Instrumentation
3.5. Determination of Total Phenolic Content (TPC)
3.6. DPPH Assay
3.7. ABTS Assay
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- The Council of the European Union. Council Directive 2001/110/EC relating honey. Off. J. Eur. Communities 2002, L10, 47–52. [Google Scholar]
- Gašić, U.; Kečkeš, S.; Dabić, D.; Trifković, J.; Milojković-Opsenica, D.; Natić, M.; Tešić, Ž. Phenolic profile and antioxidant activity of Serbian polyfloral honeys. Food Chem. 2014, 145, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Castro-Vázquez, L.; Díaz-Maroto, M.C.; González-Viñas, M.A.; Pérez-Coello, M.S. Differentiation of monofloral citrus, rosemary, eucalyptus, lavender, thyme and heather honeys based on volatile composition and sensory descriptive analysis. Food Chem. 2009, 112, 1022–1030. [Google Scholar] [CrossRef]
- Do Nascimento, K.S.; Gasparotto Sattler, J.A.; Lauer Macedo, L.F.; Serna González, C.V.; Pereira de Melo, I.L.; da Silva Araújo, E.; de Almeida-Muradian, L.B. Phenolic compounds, antioxidant capacity and physicochemical properties of Brazilian Apis mellifera honeys. LWT 2018, 91, 85–94. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Martos, I.; Ferreres, F.; Radovic, B.S.; Anklam, E. HPLC flavonoid profiles as markers for the botanical origin of European unifloral honeys. J. Sci. Food Agric. 2001, 81, 485–496. [Google Scholar] [CrossRef]
- Chen, H.; Jin, L.; Chang, Q.; Peng, T.; Hu, X.; Fan, C.; Wang, W. Discrimination of botanical origins for Chinese honey according to free amino acids content by high-performance liquid chromatography with fluorescence detection with chemometric approaches. J. Sci. Food Agric. 2017, 97, 2042–2049. [Google Scholar] [CrossRef] [PubMed]
- Libonatti, C.; Soledad, V.; Marina, B. Antibacterial activity of honey: A review of honey around the world. J. Microbiol. Antimicrob. 2014, 6, 51–56. [Google Scholar] [CrossRef]
- Kassim, M.; Achoui, M.; Mustafa, M.R.; Mohd, M.A.; Yusoff, K.M. Ellagic acid, phenolic acids, and flavonoids in Malaysian honey extracts demonstrate in vitro anti-inflammatory activity. Nutr. Res. 2010, 30, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Pichichero, E.; Canuti, L.; Canini, A. Characterisation of the phenolic and flavonoid fractions and antioxidant power of Italian honeys of different botanical origin. J. Sci. Food Agric. 2009, 89, 609–616. [Google Scholar] [CrossRef]
- Deng, J.; Liu, R.; Lu, Q.; Hao, P.; Xu, A.; Zhang, J.; Tan, J. Biochemical properties, antibacterial and cellular antioxidant activities of buckwheat honey in comparison to manuka honey. Food Chem. 2018, 252, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Oroian, M.; Amariei, S.; Escriche, I.; Leahu, A.; Damian, C.; Gutt, G. Chemical composition and the rheological behaviour of honeys. Int. J. Food Prop. 2014, 17, 2228–2240. [Google Scholar] [CrossRef]
- Oroian, M.; Amariei, S.; Rosu, A.; Gutt, G. Classification of unifloral honeys using multivariate analysis. J. Essent. Oil Res. 2015, 27, 533–544. [Google Scholar] [CrossRef]
- Oroian, M. Influence of temperature, frequency and moisture content on honey viscoelastic parameters—Neural networks and adaptive neuro-fuzzy inference system prediction. LWT Food Sci Technol. 2015, 63, 1309–1316. [Google Scholar] [CrossRef]
- Alvarez-suarez, J.M.; Tulipani, S.; Romandini, S.; Vidal, A.; Battino, M. Methodological aspects about determination of phenolic compounds and in vitro evaluation of antioxidant capacity in the honey: A Review. Curr. Anal. Chem. 2009, 5, 293–302. [Google Scholar] [CrossRef]
- Pyrzynska, K.; Biesaga, M. Analysis of phenolic acids and flavonoids in honey. TrAC Trend Anal. Chem. 2009, 28, 893–902. [Google Scholar] [CrossRef]
- Oelschlaegel, S.; Gruner, M.; Wang, P.N.; Boettcher, A.; Koelling-Speer, I.; Speer, K. Classification and characterization of manuka honeys based on phenolic compounds and methylglyoxal. J. Agric. Food Chem. 2012, 60, 7229–7237. [Google Scholar] [CrossRef] [PubMed]
- National Bureau of Statistics of China. Annual Data of Honey Production. Available online: http://data.stats.gov.cn/easyquery.htm?cn=C01 (accessed on 10 April 2018).
- International Trade Centre. Trade Statistics for International Business Development. Available online: https://www.trademap.org/index.aspx (accessed on 10 April 2018).
- Zhou, J.; Yao, L.; Li, Y.; Chen, L.; Wu, L.; Zhao, J. Floral classification of honey using liquid chromatography–diode array detection–tandem mass spectrometry and chemometric analysis. Food Chem. 2014, 145, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Du, X.; Cheng, N.; Chen, L.; Xue, X.; Zhao, J.; Cao, W. Identification of monofloral honeys using HPLC–ECD and chemometrics. Food Chem. 2016, 194, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Mattonai, M.; Parri, E.; Querci, D.; Degano, I.; Ribechini, E. Development and validation of an HPLC-DAD and HPLC/ESI-MS2 method for the determination of polyphenols in monofloral honeys from Tuscany (Italy). Microchem. J. 2016, 126, 220–229. [Google Scholar] [CrossRef]
- Michalkiewicz, A.; Biesaga, M.; Pyrzynska, K. Solid-phase extraction procedure for determination of phenolic acids and some flavonols in honey. J. Chromatogr. A 2008, 1187, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Frankel, S.; Robinson, G.E.; Berenbaum, M.R. Antioxidant capacity and correlated characteristics of 14 unifloral honeys. J. Apic. Res. 1998, 37, 27–31. [Google Scholar] [CrossRef]
- Lin, X.; Zhao, L.; Tang, S.; Zhou, Q.; Lin, Q.; Li, X.; Gao, H. Metabolic effects of basic fibroblast growth factor in streptozotocin-induced diabetic rats: A 1H NMR-based metabolomics investigation. Sci. Rep. 2016, 6, 36474. [Google Scholar] [CrossRef] [PubMed]
- Noor, N.; Sarfraz, R.A.; Ali, S.; Shahid, M. Antitumour and antioxidant potential of some selected Pakistani honeys. Food Chem. 2014, 143, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Meda, A.; Lamien, C.E.; Romito, M.; Millogo, J.; Nacoulma, O.G. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem. 2005, 91, 571–577. [Google Scholar] [CrossRef]
- Bueno-Costa, F.M.; Zambiazi, R.C.; Bohmer, B.W.; Chaves, F.C.; da Silva, W.P.; Zanusso, J.T.; Dutra, I. Antibacterial and antioxidant activity of honeys from the state of Rio Grande do Sul, Brazil. LWT Food Sci. Technol. 2016, 65, 333–340. [Google Scholar] [CrossRef]
- Slupsky, C.M.; Rankin, K.N.; Wagner, J.; Fu, H.; Chang, D.; Weljie, A.M.; Marrie, T.J. Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. Anal. Chem. 2007, 79, 6995–7004. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Not available. |
Code | Compound | tR (min) | Ion Mode | MRM (m/z) | Cone (eV) | Collision (eV) | MS Segment Time (min) |
---|---|---|---|---|---|---|---|
1 | Gallic acid | 3.22 | ES− | 169 → 125 | 42 | 14 | 0.0–5.0 |
2 | 3,4-Dihydroxybenzoic acid | 4.31 | ES− | 153 → 109 | 54 | 14 | 0.0–5.0 |
3 | (−)-Epigallocatechin | 4.94 | ES+ | 306 → 139 | 12 | 16 | 0.0–5.0 |
4 | Chlorogenic acid | 4.99 | ES− | 353 → 191 | 40 | 26 | 4.0–6.0 |
5 | 4-Hydroxybenzoic acid | 5.26 | ES− | 137 → 93 | 30 | 15 | 4.5–6.5 |
6 | Caffeic acid | 5.63 | ES− | 179 → 135 | 42 | 18 | 5.0–6.0 |
7 | Syringic acid | 5.68 | ES+ | 199 → 140 | 2 | 16 | 5.0–6.0 |
8 | 3-Hydroxybenzoic acid | 5.86 | ES− | 137 → 93 | 30 | 15 | 4.5–6.5 |
9 | Rutin | 6.28 | ES− | 609 → 300 | 90 | 30 | 6.0–7.0 |
10 | Calycosin-7-O-β-d-glucoside | 6.32 | ES+ | 447 → 285 | 45 | 15 | 6.0–7.0 |
11 | Vitexin | 6.36 | ES+ | 433 → 415 | 30 | 18 | 6.0–7.0 |
12 | p-Coumaric acid | 6.58 | ES− | 163 → 119 | 46 | 18 | 6.0–8.0 |
13 | Genistin | 6.77 | ES+ | 433 → 271 | 40 | 10 | 6.0–7.0 |
14 | Sinapic acid | 6.78 | ES+ | 225 → 175 | 50 | 16 | 6.0–7.0 |
15 | Ferulic acid | 6.85 | ES+ | 195 → 177 | 26 | 10 | 6.0–7.5 |
16 | Isoferulic acid | 7.03 | ES+ | 195 → 177 | 26 | 10 | 6.0–7.5 |
17 | Hesperedin | 7.06 | ES− | 609 → 301 | 54 | 26 | 6.5–7.5 |
18 | Quercetrin | 7.08 | ES− | 447 → 300 | 30 | 25 | 6.5–8.0 |
19 | 2-Hydroxycinnamic acid | 7.69 | ES− | 163 → 119 | 46 | 18 | 6.0–8.0 |
20 | Fisetin | 7.72 | ES+ | 287 → 137 | 56 | 35 | 7.0–8.0 |
21 | Myricetin | 7.74 | ES+ | 319 → 153 | 16 | 24 | 7.0–8.0 |
22 | Baicalin | 7.76 | ES+ | 447 → 271 | 45 | 12 | 7.0–8.0 |
23 | Ononin | 7.78 | ES+ | 431 → 269 | 40 | 15 | 7.0–8.0 |
24 | Salicylic acid | 8.23 | ES- | 137 → 93 | 46 | 14 | 7.0–9.0 |
25 | Morin | 8.29 | ES+ | 303 → 153 | 6 | 35 | 7.8–9.0 |
26 | (±)-Abscisic acid | 8.43 | ES− | 263 → 153 | 2 | 10 | 8.0–9.0 |
27 | Luteolin | 8.76 | ES+ | 287 → 153 | 32 | 32 | 8.0–9.5 |
28 | Calycosin | 8.77 | ES+ | 285 → 270 | 30 | 25 | 8.0–9.5 |
29 | Quercetin | 8.85 | ES+ | 303 → 153 | 72 | 28 | 8.0–9.5 |
30 | Apigenin | 9.70 | ES+ | 271 → 91 | 76 | 38 | 9.0–10.0 |
31 | Naringenin | 9.75 | ES+ | 273 → 153 | 48 | 22 | 9.0–10.0 |
32 | Genistein | 9.79 | ES+ | 271 → 91 | 76 | 38 | 9.0–10.0 |
33 | Kaempferol | 9.92 | ES+ | 287 → 153 | 56 | 30 | 9.0–10.5 |
34 | Hesperetin | 10.02 | ES+ | 303 → 153 | 64 | 24 | 9.0–11.0 |
35 | Isorhamnetin | 10.03 | ES− | 315 → 300 | 64 | 22 | 9.0–11.0 |
36 | Formononein | 10.75 | ES+ | 269 → 213 | 45 | 25 | 10.0–11.0 |
37 | Chrysin | 11.87 | ES+ | 255 → 153 | 40 | 28 | 11.0–15.0 |
38 | Pinocembrin | 12.10 | ES+ | 257 → 153 | 42 | 22 | 11.0–15.0 |
Code | Compounds | Linear Range (μg L−1) | Regression Equation | R | LOD (μg L−1) | LOQ (μg L−1) | Recovery (%) (n = 3) | RSD (%) (n = 6) | |
---|---|---|---|---|---|---|---|---|---|
Intra-Day | Inter-Day | ||||||||
1 | Gallic acid | 6.29–1259 | Y = 384.9x − 1408.5 | 0.9996 | 1.01 | 6.29 | 85.86 | 5.64 | 5.08 |
2 | 3,4-Dihydroxybenzoic acid | 11.22–1122 | Y = 244.7x − 241.7 | 0.9997 | 7.01 | 11.22 | 56.07 | 4.72 | 3.67 |
3 | (−)-Epigallocatechin | 19.88–994 | Y = 27.5x − 29.8 | 0.9987 | 6.21 | 19.88 | 72.17 | 8.21 | 4.18 |
4 | Chlorogenic acid | 1.21–1217 | Y = 331.8x − 1137.0 | 0.9996 | 0.12 | 0.48 | 84.87 | 7.60 | 6.54 |
5 | 4-Hydroxybenzoic acid | 30.65–982 | Y = 126.9x + 236.5 | 0.9998 | 6.13 | 30.65 | 103.58 | 4.30 | 4.44 |
6 | Caffeic acid | 9.11–1458 | Y = 912.4x-344.0 | 0.9986 | 4.56 | 9.11 | 78.88 | 4.44 | 4.91 |
7 | Syringic acid | 5.12–1024 | Y = 672.3x + 881.8 | 0.9992 | 3.20 | 5.12 | 90.90 | 3.20 | 6.85 |
8 | 3-Hydroxybenzoic acid | 113.97–1139 | Y = 44.9x + 49.1 | 0.9980 | 28.49 | 113.97 | 89.87 | 4.51 | 6.48 |
9 | Rutin | 5.40–1081 | Y = 82.3x − 270.3 | 0.9999 | 1.08 | 5.40 | 94.51 | 7.36 | 1.50 |
10 | Calycosin-7-O-β-d-glucoside | 1.02–1019 | Y = 5920.2x + 5595.9 | 0.9988 | 0.01 | 0.03 | 89.85 | 7.28 | 6.98 |
11 | Vitexin | 2.55–1018 | Y = 1702.1x + 1415.0 | 0.9989 | 0.51 | 2.55 | 96.86 | 7.07 | 7.71 |
12 | p-Coumaric acid | 3.81–1524 | Y = 555.8x + 450.2 | 0.9995 | 1.27 | 3.81 | 81.75 | 2.58 | 5.87 |
13 | Genistin | 1.01–1016 | Y = 2230.6x + 2080.8 | 0.9995 | 0.02 | 0.05 | 85.84 | 5.88 | 3.85 |
14 | Sinapic acid | 34.22–1369 | Y = 171.2x + 252.5 | 0.9988 | 11.41 | 34.22 | 88.39 | 6.86 | 5.78 |
15 | Ferulic acid | 26.67–1067 | Y = 1416.4x + 1173.9 | 0.9991 | 8.89 | 26.67 | 81.66 | 2.70 | 5.27 |
16 | Isoferulic acid | 28.41–1153 | Y = 2096.76x + 17,848.8 | 0.9993 | 7.10 | 28.41 | 90.48 | 2.77 | 3.36 |
17 | Hesperedin | 4.07–1304 | Y = 227.8x + 1535.5 | 0.9994 | 0.22 | 0.65 | 93.31 | 7.58 | 2.62 |
18 | Quercetrin | 7.65–1020 | Y = 153.2x − 301.1 | 0.9998 | 5.10 | 7.65 | 90.14 | 6.30 | 6.36 |
19 | 2-Hydroxycinnamic acid | 14.54–1454 | Y = 151.8x + 244.5 | 0.9997 | 4.54 | 14.54 | 97.04 | 2.97 | 3.46 |
20 | Fisetin | 0.24–1184 | Y = 3236.1x − 7687.7 | 0.9990 | 0.12 | 0.24 | 106.76 | 8.05 | 5.92 |
21 | Myricetin | 1.02–1019 | Y = 877.6x − 4330.5 | 0.9968 | 0.41 | 1.02 | 74.15 | 8.55 | 5.27 |
22 | Baicalin | 1.12–1195 | Y = 2314.3x − 3403.1 | 0.9985 | 0.02 | 0.06 | 100.78 | 5.76 | 3.21 |
23 | Ononin | 0.89–892 | Y = 6642.5x + 12,287.6 | 0.9979 | 0.01 | 0.03 | 89.64 | 5.17 | 4.34 |
24 | Salicylic acid | 11.23–1123 | Y = 413.6x + 1044.2 | 0.9991 | 0.90 | 11.23 | 99.96 | 1.43 | 8.68 |
25 | Morin | 0.66–1108 | Y = 1371.3x − 91.9 | 0.9998 | 0.22 | 0.66 | 80.95 | 3.61 | 4.32 |
26 | (±)-Abscisic acid | 1.17–1166 | Y = 192.9x + 117.0 | 0.9995 | 0.12 | 1.17 | 104.04 | 3.56 | 6.74 |
27 | Luteolin | 0.28–1387 | Y = 6169.6x − 7098.0 | 0.9972 | 0.14 | 0.28 | 102.43 | 3.73 | 3.47 |
28 | Calycosin | 0.03–917 | Y = 5110.9x + 10,922 | 0.9978 | 0.01 | 0.03 | 93.58 | 4.68 | 5.22 |
29 | Quercetin | 1.04–1042 | Y = 1260.5x − 3603.3 | 0.9988 | 0.10 | 0.62 | 78.42 | 6.34 | 4.58 |
30 | Apigenin | 0.39–970 | Y = 2276.1x + 2335.7 | 0.9988 | 0.09 | 0.39 | 91.11 | 7.66 | 8.05 |
31 | Naringenin | 0.12–1201 | Y = 8620.0x + 15367 | 0.9970 | 0.04 | 0.12 | 83.08 | 4.32 | 3.56 |
32 | Genistein | 0.10–1018 | Y = 2902.9x + 3037.9 | 0.9992 | 0.04 | 0.10 | 105.20 | 9.31 | 5.77 |
33 | Kaempferol | 3.18–1017 | Y = 2343.7x − 1116.31 | 0.9992 | 0.05 | 0.40 | 99.73 | 6.81 | 6.57 |
34 | Hesperetin | 0.13–1319 | Y = 7416.7x + 10,744.2 | 0.9988 | 0.04 | 0.13 | 93.31 | 4.20 | 2.87 |
35 | Isorhamnetin | 0.39–988 | Y = 1309.5x − 346.1 | 0.9995 | 0.10 | 0.39 | 67.55 | 7.23 | 5.42 |
36 | Formononein | 0.03–1166 | Y = 2685.3x + 6750.1 | 0.9977 | 0.01 | 0.03 | 106.66 | 5.30 | 5.56 |
37 | Chrysin | 0.11–1081 | Y = 6481.2x + 11,968.2 | 0.9992 | 0.03 | 0.11 | 92.25 | 2.87 | 4.66 |
38 | Pinocembrin | 0.04–1028 | Y = 8341.6x + 13,889.1 | 0.9981 | 0.01 | 0.04 | 75.5 | 1.87 | 5.17 |
Compound | Acacia (n = 17) | Vitex (n = 17) | Linden (n = 17) | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Min | Max | Mean ± SD | Min | Max | Mean ± SD | Min | Max | |
Ferulic acid | 41.99 ± 13.82 | 12.08 | 70.26 | 69.75 ± 36.65 | 23.82 | 155.76 | 79.87 ± 45.81 | 9.47 | 169.16 |
Isoferulic | 35.28 ± 22.58 | 9.46 | 86.54 | 46.93 ± 29.98 | 15.19 | 121.31 | 89.85 ± 57.17 | 13.98 | 203.17 |
Syringic acid | 10.10 ± 6.54 | 3.38 | 28.05 | 15.47 ± 14.05 | 2.91 | 48.33 | 10.87 ± 7.74 | 3.82 | 38.62 |
Sinapic acid | 4.74 ± 3.57 | 1.13 | 15.30 | 3.25 ± 3.64 | ND | 15.33 | ND | ND | ND |
Chrysin | 44.64 ± 41.51 | 5.56 | 139.81 | 95.45 ± 83.36 | 13.30 | 320.00 | 50.28 ± 21.41 | 13.82 | 91.08 |
Pinocembrin | 26.64 ± 23.11 | 1.98 | 98.67 | 99.36 ± 53.36 | 20.59 | 175.25 | 92.89 ± 46.30 | 20.34 | 198.92 |
Formononetin | 2.20 ± 1.96 | ND | 6.55 | 0.17 ± 0.14 | ND | 0.39 | 0.18 ± 0.42 | ND | 1.49 |
Apigenin | 21.25 ± 17.50 | 3.96 | 66.66 | 175.63 ± 89.84 | 56.67 | 358.91 | 26.97 ± 36.34 | 2.55 | 154.79 |
Genistein | 1.30 ± 1.49 | 0.03 | 5.15 | 3.33 ± 2.58 | ND | 6.92 | 0.31 ± 0.49 | ND | 1.43 |
Naringenin | 24.66 ± 15.97 | 7.44 | 54.27 | 20.23 ± 12.14 | 2.59 | 48.48 | 9.94 ± 4.91 | 2.49 | 18.78 |
Calycosin | 1.06 ± 0.62 | ND | 2.53 | ND | ND | ND | ND | ND | ND |
Luteolin | 42.57 ± 53.90 | 3.25 | 233.03 | 146.22 ± 56.75 | 56.70 | 268.95 | 16.4 0 ± 10.65 | 2.95 | 45.97 |
Kaempferol | 174.48 ± 132.77 | 10.51 | 556.02 | 189.86 ± 119.25 | 10.27 | 387.24 | 71.27 ± 51.11 | 16.36 | 195.21 |
Hesperetin | 4.26 ± 5.59 | ND | 14.25 | 6.10 ± 6.87 | ND | 23.59 | 13.41 ± 9.89 | ND | 32.54 |
Quercetin | 77.41 ± 76.17 | ND | 249.71 | 68.81 ± 64.85 | 8.08 | 197.91 | 48.99 ± 47.07 | 11.95 | 157.27 |
(−)-Epigallocatechin | 65.29 ± 33.45 | 5.46 | 122.15 | 18.04 ± 13.21 | ND | 60.20 | 78.56 ± 67.74 | ND | 268.22 |
Myricetin | ND | ND | ND | ND | ND | ND | 4.04 ± 2.37 | ND | 8.97 |
Ononin | 0.21 ± 0.25 | ND | 0.98 | 0.24 ± 0.18 | ND | 0.61 | 0.06 ± 0.09 | ND | 0.33 |
Genistin | 0.25 ± 0.10 | ND | 0.46 | 0.17 ± 0.11 | ND | 0.36 | ND | ND | ND |
Vitexin | 1.96 ± 1.41 | ND | 5.93 | 46.97 ± 15.86 | 19.81 | 87.29 | 3.38 ± 3.90 | ND | 14.66 |
Calycosin-7-O-β-d-glucoside | 0.05 ± 0.03 | ND | 0.08 | ND | ND | ND | ND | ND | ND |
Baicalin | 0.48 ± 0.10 | 0.37 | 0.74 | 0.44 ± 0.13 | ND | 0.64 | 1.67 ± 0.11 | 1.46 | 1.89 |
4-Hydroxybenzoic acid | 402.21 ± 128.44 | 162.31 | 696.02 | 2543.25 ± 794.81 | 1229.77 | 4418.46 | 576.37 ± 178.41 | 356.80 | 1079.21 |
3-Hydroxybenzoic acid | <LOQ | <LOQ | <LOQ | 10.74 ± 5.65 | <LOQ | 18.76 | <LOQ | <LOQ | <LOQ |
Gallic acid | 10.70 ± 7.55 | 2.76 | 29.23 | 35.05 ± 30.29 | 6.52 | 137.90 | 6.42 ± 10.01 | ND | 37.93 |
p-Coumaric acid | 31.43 ± 11.37 | 8.77 | 47.01 | 119.20 ± 48.81 | 38.44 | 216.92 | 67.61 ± 27.92 | 3.67 | 127.34 |
Salicylic acid | 54.87 ± 18.46 | 25.78 | 92.00 | 50.16 ± 16.88 | 23.89 | 91.88 | 58.38 ± 26.62 | 31.59 | 144.83 |
Caffeic acid | 58.37 ± 25.43 | 19.62 | 119.87 | 772.60 ± 366.94 | 134.31 | 1758.10 | 338.40 ± 272.01 | 29.06 | 1116.66 |
(±)-Abscisic acid | 510.86 ± 158.42 | 212.75 | 741.68 | 192.60 ± 165.20 | 65.09 | 746.47 | 357.77 ± 171.94 | 9.54 | 770.10 |
Isorhamnetin | 29.94 ± 29.47 | ND | 101.83 | 22.13 ± 13.14 | ND | 46.20 | 2.55 ± 1.55 | ND | 6.80 |
3,4-Dihydroxybenzoic acid | 49.49 ± 15.05 | 24.01 | 76.83 | 233.63 ± 60.63 | 137.06 | 369.53 | 822.22 ± 516.47 | 177.86 | 2424.19 |
Chlorogenic acid | 80.84 ± 34.25 | 37.62 | 163.24 | 3171.45 ± 1462.30 | 1398.61 | 6635.87 | 13.89 ± 18.46 | ND | 58.59 |
Rutin | 4.46 ± 2.47 | 1.44 | 9.24 | 7.09 ± 8.22 | 1.07 | 33.38 | 3.10 ± 1.81 | 1.13 | 7.86 |
Quercetrin | 0.65 ± 0.41 | 0.30 | 1.66 | 4.99 ± 12.63 | 0.38 | 52.03 | 1.85 ± 2.90 | 0.42 | 12.85 |
Hesperedin | 17.22 ± 24.08 | 0.03 | 75.95 | 2.19 ± 1.75 | ND | 5.89 | 0.74 ± 0.57 | ND | 1.89 |
Fisetin | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Morin | ND | ND | ND | ND | ND | ND | ND | ND | ND |
2-Hydroxybenzoic acid | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Compound | Rapeseed (n = 4) | Astragalus (n = 5) | Codonopsis (n = 6) | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Min | Max | Mean ± SD | Min | Max | Mean ± SD | Min | Max | |
Ferulic acid | 23.99 ± 15.44 | 14.59 | 47.05 | 27.53 ± 10.25 | 17.52 | 42.68 | 38.71 ± 21.13 | 20.63 | 65.74 |
Isoferulic | 20.29 ± 12.35 | 12.33 | 38.53 | 27.37 ± 15.01 | 5.94 | 41.83 | 25.76 ± 12.22 | 4.79 | 39.72 |
Syringic acid | 73.29 ± 45.62 | 44.48 | 140.82 | 11.31 ± 5.30 | 5.04 | 19.36 | 23.87 ± 10.45 | 14.08 | 43.51 |
Sinapic acid | 4.92 ± 2.67 | 2.41 | 7.94 | 1.97 ± 0.79 | 0.69 | 2.85 | 2.61 ± 1.66 | 1.02 | 5.33 |
Chrysin | 65.05 ± 28.72 | 43.51 | 107.39 | 80.72 ± 29.51 | 62.97 | 133.11 | 118.73 ± 63.67 | 73.06 | 245.76 |
Pinocembrin | 33.88 ± 37.16 | 6.61 | 86.46 | 63.39 ± 21.02 | 41.10 | 94.04 | 79.61 ± 28.16 | 45.89 | 128.01 |
Formononetin | ND | ND | ND | 12.66 ± 6.80 | 5.35 | 19.52 | 8.86 ± 5.83 | 3.15 | 19.52 |
Apigenin | 25.63 ± 30.08 | 6.54 | 70.47 | 226.60 ± 372.61 | 28.70 | 887.47 | 260.07 ± 86.76 | 174.00 | 403.28 |
Genistein | ND | ND | ND | 3.79 ± 2.30 | 1.24 | 6.27 | 2.29 ± 2.86 | ND | 7.46 |
Naringenin | 21.67 ± 9.00 | 11.64 | 31.58 | 30.54 ± 17.97 | 12.92 | 55.47 | 16.44 ± 2.42 | 13.51 | 20.21 |
Calycosin | ND | ND | ND | 23.80 ± 18.40 | 6.58 | 45.95 | 9.17 ± 8.11 | 0.90 | 20.11 |
Luteolin | 3.79 ± 0.97 | 3.00 | 5.09 | 61.17 ± 17.50 | 43.47 | 87.23 | 46.21 ± 29.59 | 20.58 | 104.08 |
Kaempferol | 665.28 ± 192.31 | 504.93 | 941.61 | 675.47 ± 525.43 | 263.00 | 1570.31 | 637.91 ± 645.06 | 129.15 | 1867.88 |
Hesperetin | 0.28 ± 0.40 | 0.02 | 0.87 | 8.50 ± 8.03 | 1.85 | 19.32 | 6.00 ± 4.33 | 3.55 | 14.71 |
Quercetin | 362.00 ± 370.27 | ND | 874.94 | 441.28 ± 416.47 | 15.91 | 1054.61 | 347.14 ± 178.68 | 66.39 | 534.60 |
(−)-Epigallocatechin | ND | ND | ND | ND | ND | ND | 11.77 ± 12.96 | ND | 25.69 |
Myricetin | 4.91 ± 1.17 | 3.21 | 5.80 | 7.52 ± 3.82 | 3.70 | 12.84 | 14.06 ± 5.20 | 8.06 | 20.95 |
Ononin | 0.14 ± 0.20 | ND | 0.44 | 0.35 ± 0.05 | 0.29 | 0.43 | 0.54 ± 0.14 | 0.43 | 0.77 |
Genistin | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Vitexin | 2.20 ± 3.55 | ND | 7.44 | 3.15 ± 2.01 | 1.31 | 6.36 | 4.64 ± 7.04 | ND | 18.67 |
Calycosin-7-O-β-d-glucoside | ND | ND | ND | 0.31 ± 0.69 | ND | 1.54 | 0.04 ± 0.09 | ND | 0.21 |
Baicalin | 0.92 ± 0.02 | 0.90 | 0.94 | 0.93 ± 0.03 | 0.90 | 0.97 | 0.85 ± 0.06 | 0.77 | 0.94 |
4-Hydroxybenzoic acid | 1211.08 ± 703.69 | 774.67 | 2255.48 | 863.44 ± 156.21 | 620.75 | 988.20 | 924.22 ± 172.17 | 652.33 | 1159.95 |
3-Hydroxybenzoic acid | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Gallic acid | 14.23 ± 18.22 | 2.41 | 41.25 | 40.62 ± 34.52 | 18.89 | 100.55 | 111.84 ± 61.10 | 45.21 | 214.12 |
p-Coumaric acid | 107.74 ± 70.29 | 57.39 | 206.72 | 66.90 ± 28.57 | 33.33 | 112.58 | 111.50 ± 49.50 | 55.37 | 199.70 |
Salicylic acid | 91.91 ± 58.38 | 52.12 | 177.00 | 86.24 ± 23.46 | 53.31 | 118.07 | 95.07 ± 23.93 | 52.14 | 116.31 |
Caffeic acid | 23.63 ± 22.47 | 6.52 | 56.54 | 107.88 ± 30.05 | 60.78 | 142.53 | 166.13 ± 125.49 | 56.49 | 407.22 |
(±)-Abscisic acid | 160.04 ± 126.25 | 88.00 | 348.49 | 253.81 ± 164.57 | 90.34 | 487.75 | 426.48 ± 182.31 | 246.66 | 690.30 |
Isorhamnetin | 54.89 ± 30.66 | 28.88 | 92.97 | 124.46 ± 87.62 | 20.15 | 229.85 | 90.99 ± 29.99 | 35.63 | 115.84 |
3,4-Dihydroxybenzoic acid | 150.52 ± 66.51 | 61.37 | 218.47 | 126.77 ± 46.68 | 60.90 | 185.77 | 370.52 ± 195.02 | 155.20 | 686.77 |
Chlorogenic acid | 3.85 ± 2.57 | ND | 5.19 | 67.38 ± 77.60 | ND | 156.86 | 76.56 ± 90.42 | ND | 224.27 |
Rutin | 0.94 ± 1.11 | ND | 2.54 | 3.97 ± 3.18 | ND | 7.64 | 22.62 ± 17.19 | 8.54 | 53.58 |
Quercetrin | 0.99 ± 1.37 | 0.25 | 3.04 | 2.17 ± 1.20 | 0.63 | 3.40 | 5.33 ± 3.65 | 1.44 | 11.56 |
Hesperedin | 0.95 ± 1.10 | ND | 1.91 | 6.25 ± 6.87 | ND | 17.11 | 4.72 ± 8.82 | ND | 22.15 |
Fisetin | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Morin | ND | ND | ND | ND | ND | ND | ND | ND | ND |
2-Hydroxybenzoic acid | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Parameter | Acacia (n = 17) | Vitex (n = 17) | Linden (n = 17) | Rapeseed (n = 4) | Astragalus (n = 5) | Codonopsis (n = 6) |
---|---|---|---|---|---|---|
TPC (mg GAE/100g) | 11.04 ± 1.33 | 16.01 ± 2.76 | 17.26 ± 3.00 | 14.62 ± 1.29 | 15.77 ± 1.84 | 24.31 ± 2.32 |
DPPH-RSA (%) | 10.56 ± 2.18 | 26.40 ± 9.73 | 32.76 ± 10.27 | 11.40 ± 4.18 | 22.19 ± 7.23 | 34.95 ± 6.98 |
DPPH-AEAC (mg AA/100 g) | 4.61 ± 1.02 | 12.03 ± 4.41 | 14.85 ± 4.80 | 5.06 ± 2.11 | 8.97 ± 3.42 | 16.43 ± 2.95 |
ABTS-RSA (%) | 66.10 ± 2.47 | 75.34 ± 4.60 | 80.62 ± 4.47 | 68.01 ± 6.08 | 70.84 ± 4.12 | 80.82 ± 5.22 |
ABTS-AEAC (mg AA/100 g) | 29.52 ± 1.47 | 33.13 ± 2.04 | 34.70 ± 2.29 | 30.39 ± 1.69 | 31.28 ± 1.40 | 36.13 ± 1.22 |
Botanical Origin | Probability of Fitting the Models of Class Membership | |||||
---|---|---|---|---|---|---|
Acacia | Vitex | Linden | Rape | Astragalus | Codonopsis | |
acacia | 1.04 | −0.06 | −0.01 | −0.04 | −0.06 | 0.15 |
acacia | 1.02 | 0.02 | −0.05 | 0.04 | −0.19 | 0.15 |
acacia | 0.70 | 0.08 | 0.29 | −0.13 | 0.22 | −0.16 |
Vitex | −0.08 | 0.98 | 0.12 | 0.02 | −0.02 | 0.02 |
Vitex | 0.12 | 0.75 | 0.17 | −0.06 | −0.20 | 0.22 |
linden | 0.02 | −0.02 | 1.07 | −0.02 | 0.04 | −0.08 |
linden | −0.18 | 0.09 | 0.95 | 0.06 | 0.19 | 0.11 |
linden | −0.13 | 0.08 | 0.85 | −0.00 | 0.21 | −0.01 |
rape | 0.19 | 0.02 | 0.16 | 0.42 | 0.31 | −0.11 |
Astragalus | −0.01 | 0.05 | −0.10 | −0.05 | 0.98 | 0.14 |
Codonopsis | −0.01 | 0.18 | −0.17 | 0.03 | 0.43 | 0.62 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, S.; Wang, J.; Zhuo, Q.; Chen, X.; Liu, T.; Zhang, S.-Q. Quantitative and Discriminative Evaluation of Contents of Phenolic and Flavonoid and Antioxidant Competence for Chinese Honeys from Different Botanical Origins. Molecules 2018, 23, 1110. https://doi.org/10.3390/molecules23051110
Shen S, Wang J, Zhuo Q, Chen X, Liu T, Zhang S-Q. Quantitative and Discriminative Evaluation of Contents of Phenolic and Flavonoid and Antioxidant Competence for Chinese Honeys from Different Botanical Origins. Molecules. 2018; 23(5):1110. https://doi.org/10.3390/molecules23051110
Chicago/Turabian StyleShen, Shi, Jingbo Wang, Qin Zhuo, Xi Chen, Tingting Liu, and Shuang-Qing Zhang. 2018. "Quantitative and Discriminative Evaluation of Contents of Phenolic and Flavonoid and Antioxidant Competence for Chinese Honeys from Different Botanical Origins" Molecules 23, no. 5: 1110. https://doi.org/10.3390/molecules23051110
APA StyleShen, S., Wang, J., Zhuo, Q., Chen, X., Liu, T., & Zhang, S.-Q. (2018). Quantitative and Discriminative Evaluation of Contents of Phenolic and Flavonoid and Antioxidant Competence for Chinese Honeys from Different Botanical Origins. Molecules, 23(5), 1110. https://doi.org/10.3390/molecules23051110