Next Article in Journal
Development and Validation of a HPLC-ESI-MS/MS Method for Simultaneous Quantification of Fourteen Alkaloids in Mouse Plasma after Oral Administration of the Extract of Corydalis yanhusuo Tuber: Application to Pharmacokinetic Study
Previous Article in Journal
Digestibility of Bovine Serum Albumin and Peptidomics of the Digests: Effect of Glycation Derived from α-Dicarbonyl Compounds
Previous Article in Special Issue
A Facile One-Pot Construction of Succinimide-Fused Spiro[Pyrrolidine-2,3′-Oxindoles] via 1,3-Dipolar Cycloaddition Involving 3-Amino Oxindoles and Maleimides
Article Menu
Issue 4 (April) cover image

Export Article

Open AccessArticle
Molecules 2018, 23(4), 713; https://doi.org/10.3390/molecules23040713

Utilizing a Spiro Core with Acridine- and Phenothiazine-Based New Hole Transporting Materials for Highly Efficient Green Phosphorescent Organic Light-Emitting Diodes

1
Division of Bio-Nanochemistry, College of Natural Sciences, Wonkwang University, Iksan City, Chonbuk 570-749, Korea
2
Nano-Convergence Research Center, Korea Electronics Technology Institute, Jeonju 54853, Korea
*
Authors to whom correspondence should be addressed.
Academic Editor: László Somsák
Received: 19 February 2018 / Revised: 9 March 2018 / Accepted: 19 March 2018 / Published: 21 March 2018
(This article belongs to the Special Issue Advances in Spiro Compounds)
Full-Text   |   PDF [4063 KB, uploaded 3 May 2018]   |  

Abstract

Two new hole transporting materials, 2,7-bis(9,9-diphenylacridin-10(9H)-yl)-9,9′ spirobi[fluorene] (SP1) and 2,7-di(10H-phenothiazin-10-yl)-9,9′-spirobi[fluorene] (SP2), were designed and synthesized by using the Buchwald–Hartwig coupling reaction with a high yield percentage of over 84%. Both of the materials exhibited high glass transition temperatures of over 150 °C. In order to understand the device performances, we have fabricated green phosphorescent organic light-emitting diodes (PhOLEDs) with SP1 and SP2 as hole transporting materials. Both of the materials revealed improved device properties, in particular, the SP2-based device showed excellent power (34.47 lm/W) and current (38.41 cd/A) efficiencies when compare with the 4,4′-bis(N-phenyl-1-naphthylamino)biphenyl (NPB)-based reference device (30.33 lm/W and 32.83 cd/A). The external quantum efficiency (EQE) of SP2 was 13.43%, which was higher than SP1 (13.27%) and the reference material (11.45%) with a similar device structure. The SP2 hole transporting material provides an effective charge transporting path from anode to emission layer, which is explained by the device efficiencies. View Full-Text
Keywords: organic light-emitting diodes; spirobifluorene; hole transporting materials; green phosphorescence; phenothiazine; acridine organic light-emitting diodes; spirobifluorene; hole transporting materials; green phosphorescence; phenothiazine; acridine
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Braveenth, R.; Bae, I.-J.; Han, J.-H.; Qiong, W.; Seon, G.; Raagulan, K.; Yang, K.; Park, Y.H.; Kim, M.; Chai, K.Y. Utilizing a Spiro Core with Acridine- and Phenothiazine-Based New Hole Transporting Materials for Highly Efficient Green Phosphorescent Organic Light-Emitting Diodes. Molecules 2018, 23, 713.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top