Impact of Storage Conditions on the Stability of Predominant Phenolic Constituents and Antioxidant Activity of Dried Piper betle Extracts
Abstract
:1. Introduction
2. Results
2.1. Effect of Storage Temperature and Light on the Stability of Retained Total Phenolic Content (TPC)
2.2. Impact of Storage Conditions on Retained DPPH• Antioxidant Activity
2.3. Impact of Storage Conditions on Individual Phenolic Compounds
2.4. Detection of a Phenolic Compound during Stability Study
2.5. Degradation Kinetic Studies
3. Materials and Methods
3.1. Chemical and Reagents
3.2. Plant Sample Preparation
3.3. Ultrasound-Assisted Extraction (UAE) of Bioactive Compounds from Piper betle
3.4. Sample Storage Conditions
3.5. Total Phenolic Content
3.6. DPPH• Radical Scavenging Assay
3.7. Gas Chromatography/Mass Spectroscopy Assay
3.8. Degradation Kinetic Studies
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Farooqui, M.; Hassali, M.A.; Shatar, A.K.A.; Farooqui, M.A.; Saleem, F.; Haq, N.U.; Othman, C.N. Use of complementary and alternative medicines among Malaysian cancer patients: A descriptive study. J. Tradit. Complement. Med. 2016, 6, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, V.; Tripathi, S. Review study on potential activity of Piper betle. J. Pharmacogn. Phytochem. 2014, 3, 93–98. [Google Scholar]
- Rekha, V.P.B.; Kollipara, M.; Gupta, S.; Bharath, Y.; Pulicherla, K.K. A review on Piper betle L.: Nature’s promising medicinal reservoir. Am. J. Ethnomed. 2014, 1, 276–289. [Google Scholar]
- Pin, K.Y.; Chuah, A.L.; Rashih, A.A.; Rasadah, M.A.; Law, C.L.; Choong, T.S.Y. Solid-liquid extraction of betel leaves (Piper betle L.). J. Food Process Eng. 2009, 34, 549–565. [Google Scholar] [CrossRef]
- Deshpande, S.N.; Kadam, D.G. GCMS analysis and antibacterial activity of Piper betle (Linn) leaves against Streptococcus mutans. Asian J. Pharm. Clin. Res. 2013, 6, 99–101. [Google Scholar]
- Chang, M.; Uang, B.; Wu, H.; Lee, J.; Hahn, L.; Jeng, J. Inducing the cell cycle arrest and apoptosis of oral KB carcinoma cells by hydroxychavicol: Roles of glutathione and reactive oxygen species. Br. J. Pharmacol. 2002, 135, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-L.; Zhang, L.-F.; Xu, J.-G.; Huc, Q.-P. Comparison study on antioxidant, DNA damage protective and antibacterial activities of eugenol and isoeugenol against several foodborne pathogens. Food Nutr. Res. 2017, 61, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Atsumi, T.; Fujisawa, S.; Tonosaki, K. A comparative study of the antioxidant/prooxidant activities of eugenol and isoeugenol with various concentrations and oxidation conditions. Toxicol. In Vitro 2005, 19, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Khan, I.A.; Ali, I.; Ali, F.; Kumar, M.; Kumar, A.; Johri, R.K.; Abdullah, S.T.; Bani, S.; Pandey, A.; et al. Evaluation of the antimicrobial, antioxidant, and anti-inflammatory activities of hydroxychavicol for its potential use as an oral care agent. Antimicrob. Agents Chemother. 2009, 53, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Watson, R.R.; Preedy, V.R.; Zibadi, S. Polyphenols in Human Health and Disease, 1st ed.; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Bajaj, S.; Singla, D.; Sakhuja, N. Stability testing of pharmaceutical products. J. Appl. Pharm. Sci. 2012, 2, 129–138. [Google Scholar]
- Chaaban, H.; Ioannou, I.; Paris, C.; Charbonne, C.; Ghoul, M. The photostability of flavanones, flavonols and flavones and evolution of their antioxidant activity. J. Photochem. Photobiol. A Chem. 2017, 336, 131–139. [Google Scholar] [CrossRef]
- Koyu, H.; Zeki Haznedaroglu, M. Investigation of impact of storage conditions on Hypericum perforatum L. dried total extract. J. Food Drug Anal. 2015, 23, 545–551. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. WHO Expert Committee on Specifications for Pharmaceutical Preparations—WHO Technical Report Series, No. 863; WHO: Geneva, Switzerland, 1996. [Google Scholar]
- Heigl, D.; Gerhard, F. Stability testing on typical flavonoid containing herbal drug. Pharm. Biol. 2003, 58, 881–885. [Google Scholar]
- Ioannou, I.; Hafsaa, I.; Hamdi, S.; Charbonne, C.; Ghoul, M. Review of the effects of food processing and formulation on flavonol and anthocyanin behaviour. J. Food Eng. 2012, 111, 208–217. [Google Scholar] [CrossRef]
- Mediani, A.; Abas, F.; Tan, C.P.; Khatib, A. Effects of different drying methods and storage time on free radical scavenging activity and total phenolic content of Cosmos caudatus. Antioxidants 2014, 3, 358–370. [Google Scholar] [CrossRef] [PubMed]
- Pin, K.Y.; Chuah, A.L.; Rashih, A.A.; Law, C.L.; Rasadah, M.A.; Choong, T.S.Y. Drying of betel leaves (Piper betle L.): Quality and drying kinetics. Dry. Technol. 2009, 27, 149–155. [Google Scholar] [CrossRef]
- Sharma, R.J.; Gupta, R.C.; Singh, S.; Bansal, A.K.; Singh, I.P. Stability of anthocyanins- and anthocyanidins-enriched extracts, and formulations of fruit pulp of Eugenia jambolana (“jamun”). Food Chem. 2016, 190, 808–817. [Google Scholar] [CrossRef] [PubMed]
- Kearsley, M.W.; Rodriguez, N. The stability and use of natural colours in foods: Anthocyanin, β-carotene and riboflavin. Int. J. Food Technol. 1981, 16, 421–431. [Google Scholar] [CrossRef]
- Kotsiou, K.; Tasioula-Margari, M. Monitoring the phenolic compounds of Greek extra-virgin olive oils during storage. Food Chem. 2016, 200, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Del-Toro-Sánchez, C.L.; Gutiérrez-Lomelí, M.; Lugo-Cervantes, E.; Zurita, F.; Robles-García, M.A.; Ruiz-Cruz, S.; Aguilar, J.A.; Rio, J.A.M.-D.; Guerrero-Medina, P.J. Storage effect on phenols and on the antioxidant activity of extracts from Anemopsis californica and inhibition of elastase enzyme. J. Chem. 2015, 2015, 1–8. [Google Scholar] [CrossRef]
- Qu, W.; Breksa, A.P., III; Pan, Z.; Ma, H.; Mchugh, T.H. Storage stability of sterilized liquid extracts from pomegranate peel. J. Food Sci. 2012, 77, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Zamora, A.; Delgado-Andrade, C.; Rufián-Henares, J.A. Antioxidant capacity, total phenols and color profile during the storage of selected plants used for infusion. Food Chem. 2016, 199, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Zorić, Z.; Pelaić, Z.; Pedisić, S.; Garofulić, I.E.; Kovačević, D.B.; Dragović–Uzelac, V. Effect of storage conditions on phenolic content and antioxidant capacity of spray dried sour cherry powder. LWT-Food Sci. Technol. 2017, 79, 251–259. [Google Scholar] [CrossRef]
- Guimarães, R.; Barreira, J.C.M.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Effects of oral dosage form and storage period on the antioxidant properties of four species used in traditional herbal medicine. Phyther. Res. 2011, 25, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Gião, M.S.; Pereira, C.I.; Pintado, M.E.; Malcata, F.X. Effect of technological processing upon the antioxidant capacity of aromatic and medicinal plant infusions: From harvest to packaging. LWT-Food Sci. Technol. 2013, 50, 320–325. [Google Scholar] [CrossRef]
- Nicholson, R.; Vermerris, W. Phenolic Compound Biochemistry, 1st ed.; Springer: Berlin, Germany, 2008. [Google Scholar]
- Lin, C.-F.; Hwang, T.-L.; Chien, C.-C.; Tu, H.-Y.; Lay, H.-L. A new hydroxychavicol dimer from the roots of Piper betle. Molecules 2013, 18, 2564–2570. [Google Scholar] [CrossRef] [PubMed]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Bakowska-Barczak, A. Acylated anthocyanins as stable, natural food colorants—A review. Polish J. Food Nutr. Sci. 2005, 14, 107–116. [Google Scholar]
- Devi, P.S.; Marappan, S.; Mohandas, S. The effects of temperature and pH on stability of anthocyanins from red sorghum (Sorghum bicolor) bran. Afric. J. Food Sci. 2012, 6, 567–573. [Google Scholar]
- De Oliveira, K.G.; Queiroz, V.A.V.; Carlos, L.D.A.; Cardoso, L.D.M.; Ana, H.M.P.-S.; Anunciação, P.C.; de Menezes, C.B.; da Silva, E.C.; Barros, F. Effect of the storage time and temperature on phenolic compounds of sorghum grain and flour. Food Chem. 2017, 216, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Qi, Y.-T.; Yuan, X.-D.; Shen, J. Synthesis of 2,4-di-tert-butylphenol over TPA-SBA-15 catalyst. Pet. Sci. Technol. 2006, 24, 587–594. [Google Scholar] [CrossRef]
- Choi, S.J.; Kim, J.K.; Kim, H.K.; Harris, K.; Kim, C.-J.; Park, G.G.; Park, C.-S.; Shi, D.-H. 2,4-Di-tert-butylphenol from sweet potato protects against oxidative stress in PC12 Cells and in mice. J. Med. Food 2013, 16, 977–983. [Google Scholar] [CrossRef] [PubMed]
- Thomas, V. Phenylpropanoid biosynthesis. Mol. Plant 2010, 3, 2–20. [Google Scholar]
- Herrmann, K.M. The shikimate pathway: Early steps in the biosynthesis of aromatic compounds. Plant Cell 1995, 7, 907–919. [Google Scholar] [CrossRef] [PubMed]
- Dudareva, N.; Klempien, A.; Mühlemann, J.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Mei, Z.; Tang, Y.; Ding, L.; Jiang, G.; Zhang, C.; Sun, A.; Bai, W. Stability, antioxidant capacity and degradation kinetics of pelargonidin-3-glucoside exposed to ultrasound power at low temperature. Molecules 2016, 21, 1. [Google Scholar] [CrossRef] [PubMed]
- Sui, X.; Dong, X.; Zhou, W. Combined effect of pH and high temperature on the stability and antioxidant capacity of two anthocyanins in aqueous solution. Food Chem. 2014, 163, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Varsha, K.K.; Devendra, L.; Shilpa, G.; Priya, S.; Pandey, A.; Nampoothiri, K.M. 2,4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. Int. J. Food Microbiol. 2015, 211, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Buckow, R.; Kastell, A.; Terefe, N.S.; Versteeg, C. Pressure and temperature effects on degradation kinetics and storage stability of total anthocyanins in blueberry juice. J. Agric. Food Chem. 2010, 58, 10076–10084. [Google Scholar] [CrossRef] [PubMed]
- Sapei, L.; Hwa, L. Study on the kinetics of vitamin C degradation in fresh strawberry juices. Procedia Chem. 2014, 9, 62–68. [Google Scholar] [CrossRef]
- Xu, D.-P.; Zheng, J.; Zhou, Y.; Li, Y.; Li, S.; Li, H.-B. Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: Optimization and comparison with conventional methods. Food Chem. 2017, 217, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Lim, X.Y.; Chong, C.H.; Mah, S.H.; Chua, B.L. Optimization of ultrasound-assisted extraction of natural antioxidants from Piper betle using response surface methodology. LWT-Food Sci. Technol. 2018, 89, 681–688. [Google Scholar] [CrossRef]
- World Health Organization. Stability Testing of Active Pharmaceutical Ingredients and Finished Pharmaceutical Products—WHO Technical Report Series, No. 953; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- Medina, M.B. Determination of the total phenolics in juices and superfruits by a novel chemical method. J. Funct. Foods 2011, 3, 79–87. [Google Scholar] [CrossRef]
- Pin, K.Y.; Chuah, A.L.; Rashih, A.A.; Mazura, M.; Fadzureena, J.; Vimala, S.; Rasadah, M. Antioxidant and anti-inflammatory activities of extracts of betel leaves (Piper betle) from solvents with different polarities. J. Trop. For. Sci. 2010, 22, 448–455. [Google Scholar]
- Foo, L.W.; Salleh, E.; Mamat, S.N.H. Extraction and qualitative analysis of Piper betle leaves for antimicrobial activities. Int. J. Eng. Sci. Res. 2015, 2, 1–8. [Google Scholar]
Sample Availability: Samples of the compounds not available from the authors. |
Temperature (°C) | Storage Time (Days) | % Retention | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 15 | 30 | 45 | 60 | 75 | 90 | 105 | 120 | 135 | 150 | 165 | 180 | |||
5 | Light | 311.28 ± 0.14 | 316.01 ± 0.25 | 312.98 ± 0.31 | 311.61 ± 0.37 | 312.35 ± 0.29 | 304.35 ± 0.27 | 314.82 ± 0.15 | 312.55 ± 0.31 | 313.45 ± 0.25 | 313.51 ± 0.14 | 314.38 ± 0.15 | 311.15 ± 0.20 | 310.95 ± 0.18 | 99.89 |
Dark | 311.28 ± 0.42 | 313.35 ± 0.32 | 320.65 ± 0.27 | 319.45 ± 0.15 | 315.78 ± 0.47 | 316.15 ± 0.37 | 315.35 ± 0.19 | 319.21 ± 0.36 | 320.41 ± 0.32 | 316.15 ± 0.09 | 316.21 ± 0.31 | 312.11 ± 0.36 | 311.51 ± 0.26 | 99.08 | |
25 | Light | 311.28 ± 0.36 | 303.51 ± 0.26 | 302.71 ± 0.22 | 302.05 ± 0.24 | 305.71 ± 0.20 | 301.81 ± 0.42 | 310.81 ± 0.32 | 314.45 ± 0.22 | 295.45 ± 0.33 | 308.35 ± 0.26 | 306.01 ± 0.17 | 291.85 ± 0.15 | 289.63 ± 0.15 | 93.05 |
Dark | 311.28 ± 0.21 | 307.15 ± 0.46 | 303.28 ± 0.15 | 303.38 ± 0.17 | 302.51 ± 0.11 | 310.25 ± 0.26 | 306.78 ± 0.15 | 308.01 ± 0.24 | 304.78 ± 0.25 | 308.61 ± 0.24 | 305.88 ± 0.15 | 303.98 ± 0.20 | 302.43 ± 0.13 | 97.16 |
Temperature (°C) | Storage Time (Days) | % Retention | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 15 | 30 | 45 | 60 | 75 | 90 | 105 | 120 | 135 | 150 | 165 | 180 | |||
5 | Light | 95.79 ± 0.12 | 95.41 ± 0.08 | 94.56 ± 0.07 | 92.84 ± 0.13 | 93.64 ± 0.16 | 92.21 ± 0.13 | 93.41 ± 0.26 | 93.24 ± 0.15 | 91.47 ± 0.26 | 92.04 ± 0.23 | 91.55 ± 0.24 | 91.69 ± 0.16 | 91.59 ± 0.15 | 95.72 |
Dark | 95.79 ± 0.04 | 94.22 ± 0.13 | 94.13 ± 0.04 | 94.42 ± 0.16 | 94.42 ± 0.25 | 94.30 ± 0.17 | 94.39 ± 0.21 | 95.16 ± 0.13 | 95.32 ± 0.21 | 95.85 ± 0.18 | 96.40 ± 0.06 | 95.77 ± 0.12 | 95.72 ± 0.12 | 99.98 | |
25 | Light | 95.79 ± 0.24 | 95.57 ± 0.24 | 94.27 ± 0.15 | 93.93 ± 0.05 | 93.19 ± 0.21 | 90.83 ± 0.05 | 93.65 ± 0.16 | 91.54 ± 0.07 | 90.28 ± 0.14 | 89.66 ± 0.15 | 86.26 ± 0.18 | 86.06 ± 0.15 | 86.12 ± 0.10 | 89.91 |
Dark | 95.79 ± 0.17 | 95.40 ± 0.14 | 94.56 ± 0.18 | 94.37 ± 0.22 | 92.89 ± 0.18 | 94.81 ± 0.19 | 91.24 ± 0.05 | 91.76 ± 0.15 | 92.62 ± 0.08 | 92.90 ± 0.15 | 92.08 ± 0.06 | 91.84 ± 0.25 | 91.64 ± 0.20 | 95.67 |
Temperature (°C) | Storage Time (Days) | % Retention | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 15 | 30 | 45 | 60 | 75 | 90 | 105 | 120 | 135 | 150 | 165 | 180 | |||
5 | Light | 81.97 ± 1.12 | 85.41 ± 0.83 | 94.04 ± 0.48 | 94.02 ± 0.61 | 84.92 ± 0.46 | 85.57 ± 0.35 | 85.14 ± 0.95 | 86.42 ± 0.86 | 87.58 ± 0.35 | 88.57 ± 0.59 | 89.35 ± 0.75 | 89.32 ± 0.33 | 89.3 ± 0.37 | 108.94 |
Dark | 81.97 ± 0.62 | 83.40 ± 0.77 | 91.40 ± 0.66 | 92.31 ± 0.74 | 88.71 ± 0.84 | 90.02 ± 0.36 | 90.25 ± 0.37 | 91.97 ± 0.74 | 91.82 ± 0.73 | 91.56 ± 0.55 | 91.75 ± 0.36 | 91.81 ± 0.43 | 91.79 ± 0.33 | 111.98 | |
25 | Light | 81.97 ± 0.83 | 85.44 ± 0.41 | 96.51 ± 0.42 | 96.87 ± 0.55 | 96.67 ± 0.37 | 92.75 ± 0.57 | 92.94 ± 0.41 | 95.81 ± 0.32 | 97.84 ± 0.70 | 97.94 ± 0.51 | 98.05 ± 0.64 | 97.94 ± 0.36 | 97.74 ± 0.93 | 119.24 |
Dark | 81.97 ± 0.51 | 86.65 ± 0.63 | 96.42 ± 0.53 | 96.47 ± 0.57 | 94.45 ± 0.42 | 94.28 ± 0.42 | 94.79 ± 0.79 | 95.92 ± 0.31 | 94.98 ± 0.85 | 95.53 ± 0.43 | 95.64 ± 0.76 | 95.63 ± 0.78 | 95.61 ± 0.85 | 116.64 |
Temperature (°C) | Storage Time (Days) | % Retention | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 15 | 30 | 45 | 60 | 75 | 90 | 105 | 120 | 135 | 150 | 165 | 180 | |||
5 | Light | 11.92 ± 0.35 | 11.83 ± 0.85 | 3.60 ± 0.65 | 3.86 ± 0.71 | 5.45 ± 0.71 | 4.84 ± 0.74 | 4.71 ± 0.93 | 4.43 ± 0.36 | 4.86 ± 0.56 | 4.86 ± 0.49 | 5.27 ± 0.74 | 5.22 ± 0.52 | 5.224 ± 0.67 | 56.23 |
Dark | 11.92 ± 0.52 | 11.17 ± 0.44 | 4.14 ± 0.36 | 3.93 ± 0.35 | 4.32 ± 0.84 | 5.36 ± 0.62 | 5.25 ± 0.42 | 4.58 ± 0.35 | 5.24 ± 0.69 | 5.48 ± 0.44 | 5.30 ± 0.77 | 5.26 ± 0.41 | 5.22 ± 0.65 | 55.87 | |
25 | Light | 11.92 ± 0.74 | 12.81 ± 0.37 | 3.49 ± 0.36 | 3.13 ± 0.57 | 3.33 ± 0.47 | 5.53 ± 0.85 | 5.22 ± 0.39 | 2.13 ± 0.52 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Dark | 11.92 ± 0.35 | 11.83 ± 0.85 | 3.60 ± 0.65 | 3.86 ± 0.71 | 5.45 ± 0.71 | 4.84 ± 0.74 | 4.71 ± 0.93 | 4.43 ± 0.36 | 4.86 ± 0.56 | 4.86 ± 0.49 | 5.27 ± 0.74 | 5.22 ± 0.52 | 5.224 ± 0.67 | 63.31 |
Temperature (°C) | Storage Time (Days) | % Retention | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 15 | 30 | 45 | 60 | 75 | 90 | 105 | 120 | 135 | 150 | 165 | 180 | |||
5 | Light | 2.90 ± 0.45 | 2.76 ± 0.35 | 2.37 ± 0.62 | 2.12 ± 0.69 | 5.73 ± 0.67 | 4.28 ± 0.53 | 4.58 ± 0.74 | 3.41 ± 0.76 | 2.27 ± 0.64 | 1.31 ± 0.45 | 0.00 | 0.00 | 0.00 | 0.00 |
Dark | 2.90 ± 0.65 | 2.89 ± 0.55 | 2.75 ± 0.47 | 2.71 ± 0.74 | 5.95 ± 0.47 | 4.63 ± 0.73 | 4.51 ± 0.63 | 3.45 ± 0.78 | 2.94 ± 0.42 | 2.96 ± 0.53 | 2.96 ± 0.37 | 2.93 ± 0.59 | 2.932 ± 0.46 | 100.90 | |
25 | Light | 2.90 ± 0.63 | 1.75 ± 0.48 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Dark | 2.90 ± 0.57 | 1.89 ± 0.46 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Temperature (°C) | Storage Time (Days) | % Retention | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 15 | 30 | 45 | 60 | 75 | 90 | 105 | 120 | 135 | 150 | 165 | 180 | |||
5 | Light | 3.21 ± 0.52 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Dark | 3.21 ± 0.36 | 2.55 ± 0.47 | 1.71 ± 0.63 | 1.05 ± 0.65 | 1.01 ± 0.36 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
25 | Light | 3.21 ± 0.46 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Dark | 3.21 ± 0.37 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Temperature (°C) | Storage Time (Days) | % Retention | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 15 | 30 | 45 | 60 | 75 | 90 | 105 | 120 | 135 | 150 | 165 | 180 | |||
5 | Light | 0.00 | 0.00 | 0.00 | 0.00 | 3.90 ± 0.47 | 5.32 ± 0.33 | 5.57 ± 0.55 | 5.74 ± 0.94 | 5.29 ± 0.47 | 5.27 ± 0.59 | 5.38 ± 0.67 | 5.46 ± 0.93 | 5.41 ± 0.95 | 38.68 |
Dark | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
25 | Light | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.72 ± 0.42 | 1.85 ± 0.36 | 2.06 ± 0.48 | 2.16 ± 0.48 | 2.06 ± 0.68 | 1.95 ± 0.35 | 2.06 ± 0.49 | 2.04 ± 0.53 | 18.81 |
Dark | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Storage Temperature (°C) | Light | Zero-Order Kinetic Model | First-Order Kinetic Model | |||||
---|---|---|---|---|---|---|---|---|
k1 | R2 | RMSE | t1/2 | K2 | R2 | RMSE | ||
5 | Present | 0.023 | 0.7895 | 0.710 | 30.77 | −1.18 × 10−4 | 0.7908 | 2.89 × 10−3 |
5 | Absent | −0.011 | 0.8545 | 0.275 | 61.78 | 2.41 × 10−4 | 0.8549 | 7.57 × 10−3 |
25 | Present | 0.057 | 0.9046 | 1.129 | 12.17 | 6.27 × 10−4 | 0.903 | 1.27 × 10−3 |
25 | Absent | 0.022 | 0.6873 | 0.913 | 31.24 | 2.37 × 10−4 | 0.6859 | 9.79 × 10−3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Chong, C.H.; Mah, S.H.; Abdullah, L.C.; Choong, T.S.Y.; Chua, B.L. Impact of Storage Conditions on the Stability of Predominant Phenolic Constituents and Antioxidant Activity of Dried Piper betle Extracts. Molecules 2018, 23, 484. https://doi.org/10.3390/molecules23020484
Ali A, Chong CH, Mah SH, Abdullah LC, Choong TSY, Chua BL. Impact of Storage Conditions on the Stability of Predominant Phenolic Constituents and Antioxidant Activity of Dried Piper betle Extracts. Molecules. 2018; 23(2):484. https://doi.org/10.3390/molecules23020484
Chicago/Turabian StyleAli, Ameena, Chien Hwa Chong, Siau Hui Mah, Luqman Chuah Abdullah, Thomas Shean Yaw Choong, and Bee Lin Chua. 2018. "Impact of Storage Conditions on the Stability of Predominant Phenolic Constituents and Antioxidant Activity of Dried Piper betle Extracts" Molecules 23, no. 2: 484. https://doi.org/10.3390/molecules23020484
APA StyleAli, A., Chong, C. H., Mah, S. H., Abdullah, L. C., Choong, T. S. Y., & Chua, B. L. (2018). Impact of Storage Conditions on the Stability of Predominant Phenolic Constituents and Antioxidant Activity of Dried Piper betle Extracts. Molecules, 23(2), 484. https://doi.org/10.3390/molecules23020484