Effect of the New Plant Growth Biostimulants Based on Amino Acids on Yield and Grain Quality of Winter Wheat
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Tested Preparations Based on Amino Acids
3.2. Field Experiment
3.3. Laboratory Experiments
3.4. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Michalak, I.; Chojnacka, K. Use of extract from Baltic seaweeds produced by chemical hydrolysis in plant cultivation. Przem. Chem. 2013, 92, 1046–1049. [Google Scholar]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hort. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Radkowski, A.; Radkowska, I. Effect of foliar application of growth biostimulant on quality and nutritive value of meadow sward. Ecol. Chem. Eng. A 2013, 20, 1205–1211. [Google Scholar]
- Colla, G.; Rouphael, Y.; Canaguier, R.; Svecova, E.; Cardarelli, M. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front. Plant Sci. 2014, 5, 448. [Google Scholar] [CrossRef] [PubMed]
- Ertani, A.; Cavani, L.; Pizzeghello, D.; Brandellero, E.; Altissimo, A.; Ciavatta, C.; Nardi, S. Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. J. Plant Nutr. Soil Sci. 2009, 172, 237–244. [Google Scholar] [CrossRef]
- Chojnacka, K.; Michalak, I.; Dmytryk, A.; Wilk, R.; Górecki, H. Innovative Natural Plant Growth Biostimulants. In Advances in Fertilizer Technology; Shishir Sinha, Pant, K.K., Eds.; Studium Press LLC: Houston, TX, USA, 2014; Volume 21, pp. 451–489. [Google Scholar]
- Subbarao, S.B.; Aftab Hussain, I.S.; Ganesh, P.T. Bio stimulant activity of protein hydrolysate: influence on plant growth and yield. J. Plant Sci. Res. 2015, 2, 125. [Google Scholar]
- Colla, G.; Nardi, S.; Cardarelli, M.; Ertani, A.; Lucini, L.; Canaguier, R.; Rouphael, Y. Protein hydrolysates as biostimulants in horticulture. Sci. Hort. 2015, 196, 28–38. [Google Scholar] [CrossRef]
- Nardi, S.; Pizzeghello, D.; Schiavon, M.; Ertani, A. Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Sci. Agric. 2016, 73, 18–23. [Google Scholar] [CrossRef]
- Jakubke, H.D.; Jeschkeit, H. Aminokwasy, peptydy, białka, 2nd ed.; Polskie Wydawnictwo Naukowe: Warsaw, Poland, 1989. [Google Scholar]
- Popko, M.; Wilk, R.; Górecki, H. New amino acid biostimulators based on protein hydrolysate of keratin. Przem. Chem. 2014, 93, 1012–1015. [Google Scholar]
- Kucińska, J.K.; Magnucka, E.G.; Oksińska, M.P.; Pietr, S.J. Bioefficacy of hen feather keratin hydrolysate and compost on vegetable plant growth. Compost Sci. Utiliz. 2014, 22, 179–187. [Google Scholar] [CrossRef]
- Paleckiene, R.; Sviklas, A.; Šlinkšiene, R. Physicochemical properties of a microelement fertilizer with amino acids. Russ. J. Appl. Chem. 2007, 80, 352–357. [Google Scholar] [CrossRef]
- ALBION. Industry moves to regulate the term”metal amino acid chelate”. Res. Notes 1994, 3, 1–4. [Google Scholar]
- Maini, P. The experience of the first biostimulant based on amino acids and peptides: A short retrospective review. Fertilitas. Agrorum 2006, 1, 29–43. [Google Scholar]
- Seadh, S.E.; EL-Abady, M.I.; Farouk, S.; EL-Saidy Amal, E.A. Effect of foliar nutrition with humic and amino acids under N-levels on wheat productivity and quality of grains and seeds. Egypt. J. Appl. Sci. 2008, 23, 543–558. [Google Scholar]
- ALBION. What exactly are the Metalosate® products? Plant Nutr. Newsl. 2000, 1, 1–4. [Google Scholar]
- Johansson, A. Conversations on chelation and mineral nutrition. Aust. J. Grape Wine Res. 2008, 583, 53–56. [Google Scholar]
- Potarzycki, J. The role of copper in winter wheat fertilization, Part I: Yield and grain quality. Zesz. Probl. Post. Nauk Roln. 2004, 502, 953–959. [Google Scholar]
- Sawicka, B.; Krochmal-Marczak, B. Relationship between physiacal and chemical properties of soil and iron, manganese and zinc content in a grain of winter wheat. Pol. J. Environ. Stud. 2008, 17, 278–283. [Google Scholar]
- Brown, C. Agronomy guide for field crops. Ministry of Agriculture: Toronto, 2009; p. 811. Available online: http://www.omafra.gov.on.ca/english/crops/pub811/introduction.htm (accessed on 15 June 2016).
- Grzebisz, W. Nawożenie roślin uprawnych, Podstawy nawożenia; Państwowe Wydawnictwo Rolnicze i Leśne: Poznań, Poland, 2008. [Google Scholar]
- Borowiec, M. Nowe Biodegradowalne Związki Chelatujące w Płynnych Nawozach Mikroelementowych. Ph.D. Thesis, Wrocław University of Technology, Wrocław, Poland, 2009. [Google Scholar]
- Wang, X.T.; Below, F.E. Tillering, nutrient accumulation, and yield of winter wheat as influenced by nitrogen form. J. Plant Nutr. 1995, 18, 1177–1189. [Google Scholar] [CrossRef]
- Jan, S.; Parray, J.A. Heavy Metal Uptake in Plants. In Approaches to Heavy Metal Tolerance in Plants; Jan, S., Parray, J.A., Eds.; Springer: Singapore, 2016; pp. 1–18. [Google Scholar]
- Pontieri, P.; Troisi, J.; Di Fiore, R.; Di Maro, A.; Bean, S.R.; Tuinstra, M.R.; Roemer, E.; Boffa, A.; Del Giudice, A.; Pizzolante, G.; et al. Mineral contents in grains of seven food-grade sorghum hybrids grown in a Mediterranean environment. AJCS 2014, 8, 1550–1559. [Google Scholar]
- Eckert, B.; Amend, T.; Belitz, H.D. The course of the Sds and Zeleny sedimentation tests for gluten quality and related phenomena studied using the light-microscope. Z. Lebensm. Unters. Forschung. 1993, 196, 122–125. [Google Scholar] [CrossRef]
- Woźniak, A.; Gontarz, D. Evaluation of selected quality features of grain of durum wheat cv. Floradur depending on tillage and nitrogen fertilisation. Acta Agrophys. 2011, 18, 481–489. [Google Scholar]
- Broberg, M.C.; Feng, Z.; Xin, Y.; Pleijel, H. Ozone effects on wheat grain quality-A summary. Environ. Poll. 2015, 197, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Parađiković, N.; Vinković, T.; Vinković Vrček, I.; Tkalec, M. Natural biostimulants reduce the incidence of BER in sweet yellow pepper plants (Capsicum annuum L.). Agricult. Food Sci. 2013, 22, 307–317. [Google Scholar]
- Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives, OJEU, L 312. 2008. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008L0098 (accessed on 2 September 2014).
- Popko, M.; Górecki, H. Fertilizers with microelements on the basis of the protein hydrolyzate from utilization of poultry feathers. Przem. Chem. 2013, 92, 1155–1158. [Google Scholar]
- European Parliament. Regulation (EC) No. 2003/2003 of the European Parliament and of the Council of 13 October 2003 relating to fertilizers. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008L0098 (accessed on 2 September 2014).
- Górecki, H.; Hoffmann, J.; Chojnacka, K.; Chojnacki, A.; Górecka, H.; Hoffmann, K. A Method for Producing a Mineral-Organic Suspension Fertilizer. Patent No. 205666, 31 May 2010. [Google Scholar]
- Górecka, H.; Dobrzański, Z.; Górecki, H.; Chojnacka, K.; Aksamska, I.; Aksamski, M.; Mironiuk, M. A Method for Producing a Mineral-Organic Suspension Fertilizer. Patent No. 216318, 31 March 2014. [Google Scholar]
- Wilk, R.; Kardasz, H.; Karpiński, K.; Ambroziak, K.; Górecki, H. Stimulant of Plant Growth and Development based on Protein Hydrolysates. Patent Application No. P. 415593, 10 December 2015. [Google Scholar]
- Wilk, R.; Kardasz, H.; Karpiński, K.; Ambroziak, K.; Górecki, H. Method of Producing a Plant Growth Stimulant. Patent Application No. P.415595, 10 December 2015. [Google Scholar]
- Wilk, R.; Górecki, H.; Chojnacka, K.; Michalak, I.; Górecka, H.; Dmytryk, A. 2 in 1: Micronutrient fertilizer and biostimulant for cereals and fruits. In Proceedings of the 5th International Conference on Engineering for Waste and Biomass Valorisation, Rio de Janeiro, Brazil, August 2014; pp. 1388–1400. [Google Scholar]
- Petersen, R.G. Agricultural Field Experiments: Design and Analysis; Marcel Dekker, Inc.: New York, NY, USA, 1994. [Google Scholar]
- PN-EN ISO 520:2011: Cereals and pulses – Determination of the mass of 1000 grains. Polish Committee for Standardization: Warsaw, Poland, 2011. Available online: https://www.iso.org/standard/52270.html (accessed on 2 September 2014).
- PN-EN ISO 2171:2010: Cereals, pulses and by-products. Determination of ash yield by incineration. Polish Committee for Standardization: Warsaw, Poland, 2010. Available online: https://www.iso.org/standard/37264.html (accessed on 2 September 2014).
Sample Availability: Samples of the compounds are not available from the authors. |
Function | Amino Acid |
---|---|
Anti-stress agent | Hyp, Pro |
Chelating agent | Cys, Glu, Gly, His, Lys |
Cold weather resistance | Ala, Arg |
Generative development of plants and improvement of the plant pollen fertility | Hyp, Pro |
Growth stimulator | Glu |
Precursor of auxin | Ser, Trp, Val |
Precursor of chlorophyll | Gly |
Precursor of polyamines: necessary to start the cell division | Arg |
Precursor to the formation of lignin and woody tissues | Phe |
Regulation of the water balance | Hyp, Pro, Ser |
Reserve of organic nitrogen necessary for the synthesis of other amino acids and proteins | Glu |
Stimulation of the chlorophyll synthesis | Ala, Lys, Ser |
Stimulation of the ethylene synthesis | Met |
Stimulation of the germination | Asp, Glu, Lys, Met, Phe, Thr |
Stimulation of the hormone metabolism | Ala |
Stimulation of the resistance mechanism to viruses | Ala |
Component | AminoPrim | AminoHort |
---|---|---|
Macroelement (%) | ||
Ntotal | 2.8 | 3.5 |
P2O5 | 0.8 | 1.1 |
K2O | 3.9 | 4.5 |
CaO | 0.2 | 0.2 |
MgO | 2.0 | 2.0 |
SO3 | 6.8 | 9.2 |
Microelement (%) | ||
B | 0.02 | 0.2 |
Cu | 0.05 | 0.1 |
Fe | 0.1 | 1.0 |
Mn | 0.05 | 0.3 |
Mo | 0.001 | 0.005 |
Zn | 0.05 | 0.5 |
Amino acid (%) | ||
Asp | 1.4 | 1.7 |
Thr | 0.5 | 0.7 |
Ser | 1.5 | 1.9 |
Glu | 1.6 | 2.3 |
Pro | 1.7 | 2.0 |
Gly | 1.4 | 1.9 |
Ala | 0.8 | 1.1 |
Val | 1.2 | 1.5 |
Ile | 0.6 | 0.8 |
Leu | 1.4 | 1.7 |
Tyr | 0.5 | 0.6 |
Phe | 0.7 | 0.9 |
His | 0.2 | 0.4 |
Lys | 0.2 | 0.5 |
Arg | 1.0 | 1.3 |
Cys | 0.5 | 0.8 |
Met | 0.04 | 0.2 |
Trp | 0.01 | 0.01 |
Variant | Dose (L/ha) | Application time/Crop growth stage (BBCH scale) | |
---|---|---|---|
30 May 2013/43–45 | 25 June 2013/75 | ||
Average plant height (cm) (n = 4) ± SD | |||
Control | - | 35.6 ± 0.7 | 43.7 ± 0.9 |
AminoPrim | 1.0 | 35.9 ± 0.9 | 43.4 ± 1.0 |
AminoHort | 1.0 | 36.6 ± 1.6 | 44.3 ± 1.4 |
1.25 | 35.7 ± 0.9 | 43.3 ± 0.9 | |
Asahi SL | 0.6 | 36.8 ± 1.6 | 43.1 ± 0.6 |
Variant | Dose (L/ha) | Application time/Crop growth stage (BBCH scale) | ||
---|---|---|---|---|
25 June 2013/75 | ||||
The average tillers number (n = 25 plants per plot) ± SD | ||||
1 | 2 | 3 | ||
Control | - | 1.8 ± 0.1 | 1.3 ± 0.1 | 0.4 ± 0.1 |
AminoPrim | 1.0 | 1.9 ± 0.1 | 1.3 ± 0.1 | 0.6 ± 0.1 |
AminoHort | 1.0 | 1.9 ± 0.1 | 1.3 ± 0.1 | 0.7 ± 0.1 |
1.25 | 1.8 ± 0.1 | 1.3 ± 0.2 | 0.7 ± 0.2 | |
Asahi SL | 0.6 | 1.8 ± 0.1 | 1.6 ± 0.2 | 0.5 ± 0.1 |
Variant | Dose (L/ha) | Application Time/Crop Growth Stage (BBCH scale) | |
---|---|---|---|
20 August 2013/89 | |||
Average Ear Number/m2 (n = 4) ± SD | Average Grain Yield (t/ha) (n = 4) ± SD | ||
Control | - | 375 ± 39 | 4.98 ± 0.49 |
AminoPrim | 1.0 | 390 ± 53 | 5.25 ± 0.92 |
AminoHort | 1.0 | 425 ± 76 | 4.64 ± 1.07 |
1.25 | 392 ± 46 | 5.55 ± 0.48 | |
Asahi SL | 0.6 | 440 ± 28 | 5.08 ± 0.58 |
Variant | Dose (L/ha) | Moisture (%) | 1000 grains weight (g) | Ash (% d.m.) | Protein (% d.m.) | Starch (% d.m.) | Wet gluten (%) | Zeleny sedimentation index (mL) |
---|---|---|---|---|---|---|---|---|
Control | - | 14.6 ± 1.13 | 46.1 ± 0.11 | 1.53 ± 0.03 AaBb | 12.8 ± 0.98 | 68.2 ± 1.61 | 31.0 ± 4.40 | 37.3 ± 7.41 |
AminoPrim | 1.0 | 14.5 ± 0.25 | 47.1 ± 0.11 | 1.62 ± 0.05 a | 13.1 ± 1.77 | 68.0 ± 1.23 | 31.5 ± 5.19 | 38.2 ± 15.4 |
AminoHort | 1.0 | 14.6 ± 0.47 | 47.2 ± 0.07 | 1.65 ± 0.04 A | 13.1 ± 1.42 | 68.4 ± 1.32 | 30.9 ± 4.06 | 40.7 ± 13.8 |
1.25 | 14.7 ± 0.42 | 47.0 ± 0.06 | 1.64 ± 0.03 B | 13.2 ± 1.21 | 68.2 ± 1.34 | 31.5 ± 3.95 | 40.9 ± 11.3 | |
Asahi SL | 0.6 | 14.4 ± 0.70 | 46.8 ± 0.06 | 1.62 ± 0.03 b | 12.9 ± 0.84 | 68.0 ± 0.68 | 30.0 ± 2.82 | 38.4 ± 12.7 |
Variant | Dose (L/ha) | Average Content of Macroelements (g/kg d.m.; n = 4) ± SD | |||||
Ca | K | Mg | Na | P | S | ||
Control | - | 0.303 ± 0.03 | 4.14 ± 0.34 | 1.40 ± 0.04 | 0.200 ± 0.07 | 4.67 ± 0.11 | 1.63 ± 0.06 |
AminoPrim | 1.0 | 0.316 ± 0.04 | 4.22 ± 0.30 | 1.46 ± 0.04 | 0.271 ± 0.08 | 4.84 ± 0.10 | 1.68 ± 0.08 |
AminoHort | 1.0 | 0.319 ± 0.02 | 4.37 ± 0.34 | 1.46 ± 0.05 | 0.286 ± 0.02 | 4.84 ± 0.02 | 1.72 ± 0.06 |
1.25 | 0.327 ± 0.01 | 4.32 ± 0.32 | 1.44 ± 0.06 | 0.293 ± 0.02 | 4.93 ± 0.14 | 1.70 ± 0.13 | |
Asahi SL | 0.6 | 0.305 ± 0.02 | 4.08 ± 0.21 | 1.42 ± 0.04 | 0.201 ± 0.03 | 4.65 ± 0.08 | 1.65 ± 0.09 |
Variant | Dose (L/ha) | Average Content of Microelements (mg/kg d.m.; n = 4) ± SD | |||||
B | Cu | Fe | Mn | Mo | Zn | ||
Control | - | < LOD* | 4.58 ± 0.42 AaB | 29.3 ± 3.42 | 23.7 ± 1.13 | 1.52 ± 0.15 | 50.4 ± 5.62 |
AminoPrim | 1.0 | < LOD* | 6.01 ± 0.69 a | 29.6 ± 4.15 | 23.7 ± 1.68 | 1.58 ± 0.10 | 51.7 ± 5.12 |
AminoHort | 1.0 | < LOD* | 6.67 ± 0.35 Ab | 31.3 ± 3.98 | 24.7 ± 2.05 | 1.75 ± 0.25 | 53.1 ± 4.93 |
1.25 | < LOD* | 6.87 ± 0.45 BC | 32.3 ± 4.84 | 25.2 ± 1.80 | 1.76 ± 0.16 | 54.6 ± 5.20 | |
Asahi SL | 0.6 | < LOD* | 5.22 ± 0.28 bC | 32.4 ± 3.75 | 23.6 ± 2.36 | 1.60 ± 0.12 | 50.3 ± 5.37 |
Treatment No. | Product | Dose (L/ha) | Application No. * |
---|---|---|---|
1 | Control | - | - |
2 | AminoPrim | 1.0 | I, II |
3 | AminoHort | 1.0 | I, II |
4 | 1.25 | I, II | |
5 | Asahi SL | 0.6 | I, II |
Assessment time * | Date | Crop growth stage (BBCH scale) | Assessment type |
---|---|---|---|
14 days after application I | 7 May 2013 | 32–34 | Plant vigor on a 0–10 scale: 0—plant death, 5—optimum vigor (untreated), 10—most vigorous plants per plot Leaf color on a 0–10 linear scale: 0—no color, 5—optimal color (untreated), 10—most green color per plot Selectivity: visual evaluation of phytotoxicity per plot) (%) |
30 days after application I | 23 May 2013 | 39–41 | |
Before application II | 30 May 2013 | 43–45 | Plant vigor on a 0–10 scale Leaf color on a 0–10 linear scale Selectivity (%) Plant height (cm) |
Medium milk 26 days after application II | 25 June 2013 | 75 | Plant vigor on a 0–10 scale Leaf color on a 0–10 linear scale Selectivity (%) Plant height (cm) Tilleres: number of first, second and third tillers (25 plants per plot) |
Before harvest | 20 August 2013 | 89 | Ear number per m2 Lodging: area lodged (%), intensity of lodging |
Harvest | 23 August 2013 | 89 | Grain yield quantity (kg/plot) Grain moisture (%) Grain yield quantity based on a standard 14% moisture (t/ha) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popko, M.; Michalak, I.; Wilk, R.; Gramza, M.; Chojnacka, K.; Górecki, H. Effect of the New Plant Growth Biostimulants Based on Amino Acids on Yield and Grain Quality of Winter Wheat. Molecules 2018, 23, 470. https://doi.org/10.3390/molecules23020470
Popko M, Michalak I, Wilk R, Gramza M, Chojnacka K, Górecki H. Effect of the New Plant Growth Biostimulants Based on Amino Acids on Yield and Grain Quality of Winter Wheat. Molecules. 2018; 23(2):470. https://doi.org/10.3390/molecules23020470
Chicago/Turabian StylePopko, Małgorzata, Izabela Michalak, Radosław Wilk, Mateusz Gramza, Katarzyna Chojnacka, and Henryk Górecki. 2018. "Effect of the New Plant Growth Biostimulants Based on Amino Acids on Yield and Grain Quality of Winter Wheat" Molecules 23, no. 2: 470. https://doi.org/10.3390/molecules23020470
APA StylePopko, M., Michalak, I., Wilk, R., Gramza, M., Chojnacka, K., & Górecki, H. (2018). Effect of the New Plant Growth Biostimulants Based on Amino Acids on Yield and Grain Quality of Winter Wheat. Molecules, 23(2), 470. https://doi.org/10.3390/molecules23020470