Effects of Dried Blood Spot Storage on Lipidomic Analysis
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. Materials
3.2. Paper Cards for Blood Collection
3.3. Fatty Acid Methyl Ester (FAME) Synthesis with MeOH·BF3
3.4. Fatty Acid Analysis
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Marangoni, F.; Colombo, C.; Galli, C. A method for the direct evaluation of the fatty acid status in a drop of blood from a fingertip in humans: Applicability to nutritional and epidemiological studies. Anal. Biochem. 2004, 326, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Rise, P.; Marangoni, F.; Martiello, A.; Colombo, C.; Manzoni, C.; Marconi, C.; Cattabeni, F.; Galli, C. Fatty acid profiles of blood lipids in a population group in Tibet: Correlations with diet and environmental conditions. Asia Pac. J. Clin. Nutr. 2008, 17, 80–85. [Google Scholar] [PubMed]
- Fratesi, J.A.; Hogg, R.C.; Young-Newton, G.S.; Patterson, A.C.; Charkhzarin, P.; Block, T.K.; Sharratt, M.T.; Stark, K.D. Direct quantitation of omega-3 fatty acid intake of Canadian residents of a long-term care facility. Appl. Physiol. Nutr. Metab. 2009, 34, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Agostoni, C.; Galli, C.; Riva, E.; Rise, P.; Colombo, C.; Giovannini, M.; Marangoni, F. Whole blood fatty acid composition at birth: From the maternal compartment to the infant. Clin. Nutr. 2011, 30, 503–505. [Google Scholar] [CrossRef] [PubMed]
- Agostoni, C.; Galli, C.; Riva, E.; Colombo, C.; Giovannini, M.; Marangoni, F. Reduced docosahexaenoic acid synthesis may contribute to growth restriction in infants born to mothers who smoke. J. Pediat. 2005, 147, 854–856. [Google Scholar] [CrossRef] [PubMed]
- Metherel, A.H.; Armstrong, J.M.; Stark, K.D. Weekly changes in finger-tip prick blood highly unsaturated fatty acid (HUFA) composition with acute fish oil supplementation and washout in men and women. FASEB J. 2007, 21, A338–A339. [Google Scholar]
- Metherel, A.H.; Armstrong, J.M.; Patterson, A.C.; Stark, K.D. Assessment of blood measures of n-3 polyunsaturated fatty acids with acute fish oil supplementation and washout in men and women. Prostaglandins Leukot. Essent. Fatty Acids 2009, 81, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Marangoni, F.; Colombo, C.; Martiello, A.; Poli, A.; Paoletti, R.; Galli, C. Levels of the n-3 fatty acid eicosapentaenoic acid in addition to those of alpha linolenic acid are significantly raised in blood lipids by the intake of four walnuts a day in humans. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, J.M.; Kennedy, J.H. Analysis of dried blood spots using DESI mass spectrometry. Methods Mol. Biol. 2014, 1198, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Takats, Z. Analysis of dried blood spot samples by high resolution mass spectrometry from newborn screening to cancer diagnostics. Clin. Biochem. 2014, 47, 699. [Google Scholar] [CrossRef] [PubMed]
- Holen, T.; Norheim, F.; Gundersen, T.E.; Mitry, P.; Linseisen, J.; Iversen, P.O.; Drevon, C.A. Biomarkers for nutrient intake with focus on alternative sampling techniques. Genes Nutr. 2016, 11, 12–31. [Google Scholar] [CrossRef] [PubMed]
- Magnusardottir, A.R.; Skuladottir, G.V. Effects of storage time and added antioxidant on fatty acid composition of red blood cells at −20 degrees C. Lipids 2006, 41, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Di Marino, L.; Maffettone, A.; Cipriano, P.; Celentano, E.; Galasso, R.; Iovine, C.; Berrino, F.; Panico, S. Assay of erythrocyte membrane fatty acids. Effects of storage time at low temperature. Int. J. Clin. Lab. Res. 2000, 30, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Min, Y.; Ghebremeskel, K.; Geppert, J.; Khalil, F. Effect of storage temperature and length on fatty acid composition of fingertip blood collected on filter paper. Prostaglandins Leukot. Essent. Fatty Acids 2011, 84, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Stark, K.D. The percentage of n-3 highly unsaturated fatty acids in total HUFA as a biomarker for omega-3 fatty acid status in tissues. Lipids 2008, 43, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S.; von Schacky, C. The Omega-3 Index: A new risk factor for death from coronary heart disease? Prev. Med. 2004, 39, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Cutillo, F.; DellaGreca, M.; Gionti, M.; Previtera, L.; Zarrelli, A. Phenols and lignans from Chenopodium album. Phytochem. Anal. 2006, 17, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Di Fabio, G.; Romanucci, V.; Zarrelli, M.; Giordano, M.; Zarrelli, A. C-4 gem-dimethylated oleanes of Gymnema sylvestre and their pharmacological activities. Molecules 2013, 18, 14892–14919. [Google Scholar] [CrossRef] [PubMed]
- Di Fabio, G.; Romanucci, V.; De Marco, A.; Zarrelli, A. Triterpenoids from Gymnema sylvestre and their pharmacological activities. Molecules 2014, 19, 10956–10981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarrelli, A.; Romanucci, V.; Tuccillo, C.; Federico, A.; Loguercio, C.; Gravante, R.; Di Fabio, G. New silibinin glyco-conjugates: Synthesis and evaluation of antioxidant properties. Bioorg. Med. Chem. Lett. 2014, 24, 5147–5149. [Google Scholar] [CrossRef] [PubMed]
- Romanucci, V.; Milardi, D.; Campagna, T.; Gaglione, M.; Messere, A.; D’Urso, A.; Crisafi, E.; La Rosa, C.; Zarrelli, A.; Balzarini, J.; et al. Synthesis, biophysical characterization and anti-HIV activity of d(TG3AG) Quadruplexes bearing hydrophobic tails at the 5’-end. Bioorg. Med. Chem. 2014, 22, 960–966. [Google Scholar] [CrossRef] [PubMed]
- Di Fabio, G.; Malgieri, G.; Isernia, C.; D'Onofrio, J.; Gaglione, M.; Messere, A.; Zarrelli, A.; De Napoli, L. A novel synthetic strategy for mono-substituted cyclodextrin derivatives. Chem. Commun. 2012, 3875–3877. [Google Scholar] [CrossRef] [PubMed]
- Bernini, R.; Crisante, F.; Ginnasi, M.C. A convenient and safe O-methylation of flavonoids with dimethyl carbonate (DMC). Molecules 2011, 16, 1418–1425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DellaGreca, M.; Fiorentino, A.; Monaco, P.; Previtera, L.; Temussi, F.; Zarrelli, A. New dimeric phenanthrenoids from the rhizomes of Juncus acutus. Structure determination and antialgal activity. Tetrahedron 2003, 59, 2317–2324. [Google Scholar] [CrossRef]
- Fiorentino, A.; DellaGreca, M.; D’Abrosca, B.; Oriano, P.; Golino, A.; Izzo, A.; Zarrelli, A.; Monaco, P. Lignans, neolignans and sesquilignans from Cestrum parqui l’Her. Biochem. Syst. Ecol. 2007, 35, 392–396. [Google Scholar] [CrossRef]
- Zarrelli, A.; Sgambato, A.; Petito, V.; De Napoli, L.; Previtera, L.; Di Fabio, G. New C-23 modified of silybin and 2,3-dehydrosilybin: Synthesis and preliminary evaluation of antioxidant properties. Bioorg. Med. Chem. Lett. 2011, 21, 4389–4392. [Google Scholar] [CrossRef] [PubMed]
- Gambacorta, A.; Tofani, D.; Bernini, R.; Migliorini, A. High yielding preparation of a stable precursor of hydroxytyrosol by total synthesis and from the natural glucoside oleuropein. J. Agric. Food Chem. 2007, 55, 3386–3391. [Google Scholar] [CrossRef] [PubMed]
- DellaGreca, M.; Fiorentino, A.; Izzo, A.; Napoli, F.; Purcaro, R.; Zarrelli, A. Phytotoxicity of secondary metabolites from Aptenia cordifolia. Chem. Biodivers. 2007, 4, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Metherel, A.H.; Hogg, R.C.; Buzikievich, L.M.; Stark, K.D. Butylated hydroxytoluene can protect polyunsaturated fatty acids in dried blood spots from degradation for up to 8 weeks at room temperature. Lipids Health Dis. 2013, 12, 22–30. [Google Scholar] [CrossRef] [PubMed]
- DellaGreca, M.; Zarrelli, A.; Fergola, P.; Cerasuolo, M.; Pollio, A.; Pinto, G. Fatty acids released by Chlorella vulgaris and their role in interference with Pseudokirchneriella subcapitata: Experiments and modeling. J. Chem. Ecol. 2010, 36, 339–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romanucci, V.; Gaglione, M.; Messere, A.; Potenza, N.; Zarrelli, A.; Noppen, S.; Liekens, S.; Balzarini, J.; Di Fabio, G. Hairpin oligonucleotides forming G-quadruplexes: New aptamers with anti-HIV activity. Eur. J. Med. Chem. 2015, 89, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Crescenzo, R.; Bianco, F.; Mazzoli, A.; Giacco, A.; Cancelliere, R.; Liverini, G.; Iossa, S.; Di Fabio, G.; Zarrelli, A. Fat quality influences the obesogenic effect of high fat diets. Nutrients 2015, 7, 9475–9491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Samples of the compounds are not available from the authors. |
Entry | Conditions or Antioxidants Used |
---|---|
T0 | Sample freshly harvested and immediately freeze-dried in the dark |
A | Stored in the dark and without antioxidant treatment |
B | Trolox (3 mg/L, wt/v) |
C | Gallic acid (15 mg/L, wt/v) |
D | Sodium citrate (15 mg/L, wt/v) |
E | Tartaric acid (15 mg/L, wt/v) |
F | Sodium sulphite (25 mg/L, wt/v) |
G | Ascorbic acid (15 mg/L, wt/v) |
H | Butylated hydroxytoluene (BHT) (15 mg/L, wt/v) |
I | Orto-phosphoric acid (3 mg/mL, wt/v) |
L | BHT/Ascorbic acid 1/1 (v/v) |
M | BHT/Gallic acid 1/1 (v/v) |
N | BHT/Tartaric acid 1/1 (v/v) |
O | Sodium sulphite/Ascorbic acid 1/1 (v/v) |
P | BHT/Sodium sulphite 1/1 (v/v) |
Q | Sodium sulphite/Gallic acid 1/1 (v/v) |
SFA (Saturated Fatty Acids) | Sum of percentage of myristic (1), palmitic (2), stearic (5) and lignoceric (16) acids. |
UFA (Unsaturated Fatty Acids) | Sum of the percentage of trans palmitoleic (3), palmitoleic (4), trans oleic (6), oleic (7), trans linoleic (8), linoleic (9), alpha linolenic (10), gamma linolenic (11), eicosenoic (12), eicosadienoic (13), dihomo-gamma linolenic (14), arachidonic (15), eicosapentaenoic (17), nervonic (18), docosatetraenoic (19), docosapentaenoic (20), docosapentaenoic (21) and docosahexaenoic (22/DHA) acids. |
W-3 Index | Sum of the percentage of alpha linolenic (10), EPA (17), docosapentaenoic (21) and docosahexaenoic (22) acids. |
TFA (Trans Fatty Acids) | Sum of the percentage of trans oleic (6) and trans linoleic (8) acids. |
MUFA (Monounsaturated Fatty Acids) | Sum of the percentage of trans palmitoleic (3), palmitoleic (4), trans oleic (6), oleic (7), eicosenoic (12) and nervonic (18) acids. |
Entry | SFA | UFA | SFA/UFA | AA/EPA | W-3 index | TFI | SFA/MUFA |
---|---|---|---|---|---|---|---|
T0 | 38.23 ± 0.49 | 61.77 ± 1.78 | 0.62 ± 0.01 | 21.02 ± 0.05 | 2.96 ± 0.11 | 0.54 ± 0.03 | 1.34 ± 0.02 |
A | 40.64 ± 0.53 | 59.36 ± 1.63 | 0.68 ± 0.01 | 53.21 ± 2.85 | 1.87 ± 0.05 | 0.36 ± 0.01 | 1.26 ± 0.02 |
B | 40.81 ± 0.53 | 59.19 ± 1.71 | 0.69 ± 0.01 | 34.82 ± 0.13 | 2.25 ± 0.06 | 0.63 ± 0.05 | 1.26 ± 0.02 |
C | 41.14 ± 0.64 | 58.86 ± 1.65 | 0.70 ± 0.009 | 37.61 ± 0.05 | 2.28 ± 0.07 | 0.33 ± 0.02 | 1.34 ± 0.01 |
D | 41.02 ± 0.68 | 58.98 ± 1.98 | 0.70 ± 0.01 | 25.07 ± 0.08 | 2.18 ± 0.07 | 0.83 ± 0.03 | 1.25 ± 0.01 |
E | 41.59 ± 0.80 | 58.41 ± 1.70 | 0.71 ± 0.007 | 48.12 ± 2.22 | 2.28 ± 0.08 | 0.18 ± 0.01 | 1.25 ± 0.02 |
F | 38.72 ± 0.75 | 61.28 ± 1.76 | 0.63 ± 0.006 | 38.07 ± 0.70 | 2.46 ± 0.08 | 1.51 ± 0.005 | 1.23 ± 0.008 |
G | 39.58 ± 0.75 | 60.42 ± 1.71 | 0.66 ± 0.005 | 78.68 ± 2.85 | 1.97 ± 0.05 | 0.90 ± 0.05 | 1.12 ± 0.02 |
H | 35.25 ± 0.81 | 64.75 ± 0.91 | 0.54 ± 0.003 | 11.16 ± 0.05 | 4.41 ± 0.09 | 17.10 ± 0.50 | 2.23 ± 0.004 |
I | 40.64 ± 0.72 | 59.36 ± 2.07 | 0.68 ± 0.01 | 41.83 ± 3.47 | 2.11 ± 0.12 | 0.82 ± 0.02 | 1.28 ± 0.003 |
L | 40.09 ± 0.64 | 59.91 ± 1.86 | 0.67 ± 0.01 | 44.18 ± 1.58 | 2.12 ± 0.07 | 0.82 ± 0.03 | 1.26 ± 0.02 |
M | 41.80 ± 0.67 | 58.20 ± 2.03 | 0.72 ± 0.02 | 41.40 ± 1.17 | 2.07 ± 0.06 | 0.81 ± 0.04 | 1.32 ± 0.02 |
N | 39.60 ± 0.61 | 60.40 ± 1.66 | 0.66 ± 0.007 | 23.00 ± 0.31 | 2.74 ± 0.07 | 0.57 ± 0.01 | 1.22 ± 0.009 |
O | 37.36 ± 0.63 | 62.64 ± 1.67 | 0.60 ± 0.006 | 40.69 ± 1.25 | 2.05 ± 0.09 | 9.48 ± 0.06 | 1.02 ± 0.009 |
P | 38.31 ± 0.60 | 61.69 ± 1.64 | 0.62 ± 0.007 | 37.78 ± 0.47 | 2.72 ± 0.06 | 0.35 ± 0.01 | 1.25 ± 0.18 |
Q | 39.76 ± 0.57 | 60.24 ± 1.65 | 0.66 ± 0.009 | 45.11 ± 1.45 | 2.27 ± 0.07 | 0.45 ± 0.02 | 1.24 ± 0.17 |
Entry | SFA/UFA | Δ% |
---|---|---|
T0 | 0.62 | - |
A | 0.68 | +9.7 |
M | 0.72 | +16.1 |
E | 0.71 | +14.5 |
C | 0.70 | +12.9 |
D | 0.70 | +12.9 |
B | 0.69 | +11.3 |
I | 0.68 | +9.7 |
L | 0.67 | +8.1 |
N | 0.66 | +6.5 |
Q | 0.66 | +6.5 |
G | 0.66 | +6.5 |
F | 0.63 | +1.6 |
P | 0.62 | +0.0 |
O | 0.60 | −3.2 |
H | 0.54 | −12.9 |
Entry | AA/EPA | W-3 Index | TFI | SFA/MUFA |
---|---|---|---|---|
T0 | 21.02 | 2.96 | 0.54 | 1.34 |
A | 53.21 (153%) | 1.87 (−37%) | 0.36 (−33%) | 1.26 (−6%) |
L | 44.18 (44%) | 2.12 (−28%) | 0.82 (52%) | 1.26 (−6%) |
N | 23.00 (9%) | 2.74 (−7%) | 0.57 (6%) | 1.22 (−9%) |
Q | 45.11 (77%) | 2.27 (−23%) | 0.45 (−17%) | 1.24 (−7%) |
G | 78.68 (128%) | 1.97 (−33%) | 0.90 (67%) | 1.12 (−16%) |
F | 38.07 (22%) | 2.46 (−17%) | 1.51 (180%) | 1.23 (−8%) |
P | 37.78 (44%) | 2.72 (−8%) | 0.35 (−35%) | 1.25 (−7%) |
O | 40.69 (52%) | 2.05 (−31%) | 9.48 (>>100%) | 1.02 (−24%) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Marino, C.; De Marco, A.; Pisanti, A.; Romanucci, V. Effects of Dried Blood Spot Storage on Lipidomic Analysis. Molecules 2018, 23, 403. https://doi.org/10.3390/molecules23020403
Di Marino C, De Marco A, Pisanti A, Romanucci V. Effects of Dried Blood Spot Storage on Lipidomic Analysis. Molecules. 2018; 23(2):403. https://doi.org/10.3390/molecules23020403
Chicago/Turabian StyleDi Marino, Cinzia, Anna De Marco, Antonio Pisanti, and Valeria Romanucci. 2018. "Effects of Dried Blood Spot Storage on Lipidomic Analysis" Molecules 23, no. 2: 403. https://doi.org/10.3390/molecules23020403
APA StyleDi Marino, C., De Marco, A., Pisanti, A., & Romanucci, V. (2018). Effects of Dried Blood Spot Storage on Lipidomic Analysis. Molecules, 23(2), 403. https://doi.org/10.3390/molecules23020403