Next Article in Journal
Preliminary Characterization, Antioxidant and Hepatoprotective Activities of Polysaccharides from Taishan Pinus massoniana Pollen
Previous Article in Journal
Curcumin Analog CH-5 Suppresses the Proliferation, Migration, and Invasion of the Human Gastric Cancer Cell Line HGC-27
Article Menu
Issue 2 (February) cover image

Export Article

Open AccessArticle
Molecules 2018, 23(2), 280;

Efficient OLEDs Fabricated by Solution Process Based on Carbazole and Thienopyrrolediones Derivatives

Research Group of Optical Properties of Materials (GPOM), Centro de Investigaciones en Óptica, 37000 León, Guanajuato, Mexico
Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, 25280 Saltillo, Coahuila, Mexico
CONACYT-Laboratorio de Polímeros, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Complejo de Ciencias, ICUAP, 72570 Puebla, Puebla, Mexico
Curret address: CONACYT-Centro de Investigación en Química Aplicada, Unidad Monterrey, Alianza Sur No. 204 Parque de Innovación e Investigación Tecnológica (PIIT), 66600 Apodaca, Nuevo León, Mexico.
Author to whom correspondence should be addressed.
Received: 14 December 2017 / Revised: 26 January 2018 / Accepted: 26 January 2018 / Published: 30 January 2018
(This article belongs to the Section Organic Chemistry)
Full-Text   |   PDF [6070 KB, uploaded 30 January 2018]   |  


Four low molecular weight compounds—three of them new, two of them with carbazole (Cz) as functional group and the other two with thienopyrroledione (TPD) group—were used as emitting materials in organic light emitting diodes (OLEDs). Devices were fabricated with the configuration ITO/PEDOT:PSS/emitting material/LiF/Al. The hole injector layer (HIL) and the emitting sheet were deposited by spin coating; LiF and Al were thermally evaporated. OLEDs based on carbazole derivatives show luminances up to 4130 cd/m2, large current efficiencies about 20 cd/A and, cautiously, a very impressive External Quantum Efficiency (EQE) up to 9.5%, with electroluminescence peaks located around 490 nm (greenish blue region). Whereas, devices manufactured with TPD derivatives, present luminance up to 1729 cd/m2, current efficiencies about 4.5 cd/A and EQE of 1.5%. These results are very competitive regarding previous reported materials/devices. View Full-Text
Keywords: OLEDs; small organic molecules; carbazole; thienopyrroledione; solution process OLEDs; small organic molecules; carbazole; thienopyrroledione; solution process

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material


Share & Cite This Article

MDPI and ACS Style

Lozano-Hernández, L.-A.; Maldonado, J.-L.; Garcias-Morales, C.; Espinosa Roa, A.; Barbosa-García, O.; Rodríguez, M.; Pérez-Gutiérrez, E. Efficient OLEDs Fabricated by Solution Process Based on Carbazole and Thienopyrrolediones Derivatives. Molecules 2018, 23, 280.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top