Precursor Phenomena of Barium Titanate Single Crystals Grown Using a Solid-State Single Crystal Growth Method Studied with Inelastic Brillouin Light Scattering and Birefringence Measurements
Abstract
1. Introduction
2. Results
2.1. Dielectric Properties
2.2. Brillouin Scattering Results
2.2.1. Acoustic Phonon Modes
2.2.2. Quasi-Elastic Central Peaks
2.3. Birefringence and Piezo-Response
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Jona, F.; Shirane, G. Ferroelectric Crystals, 1st ed.; Pergamon: Oxford, UK, 1962. [Google Scholar]
- Lines, M.E.; Glass, A.M. Principles and Applications of Ferroelectrics and Related Materials, 1st ed.; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Harada, J.; Axe, J.D.; Shirane, G. Neutron-scattering study of soft modes in cubic BaTiO3. Phys. Rev. B 1971, 4, 155. [Google Scholar] [CrossRef]
- Comes, R.; Lambert, M.; Guinier, A. The chain structure of BaTiO3 and KNbO3. Solid State Commun. 1968, 6, 715–719. [Google Scholar] [CrossRef]
- Luspin, Y.; Servoin, J.L.; Gervais, F. Soft mode spectroscopy in barium titanate. J. Phys. C Solid State Phys. 1980, 13, 3761–3774. [Google Scholar] [CrossRef]
- Burns, G.; Dacol, F.H. Polarization in the cubic phase of BaTiO3. Solid State Commun. 1982, 42, 9–12. [Google Scholar] [CrossRef]
- Wada, S.; Suzuki, T.; Osada, M.; Kakihana, M.; Noma, T. Change of macroscopic and microscopic symmetry of barium titanate single crystal around curie temperature. Jpn. J. Appl. Phys. 1998, 37, 5385–5393. [Google Scholar] [CrossRef]
- Zalar, B.; Laguta, V.V.; Blinc, R. NMR evidence for the coexistence of order-disorder and displacive components in barium titanate. Phys. Rev. Lett. 2003, 90, 037601. [Google Scholar] [CrossRef] [PubMed]
- Zalar, B.; Lebar, A.; Seliger, J.; Blinc, R.; Laguta, V.V.; Itoh, M. NMR study of disorder in BaTiO3 and SrTiO3. Phys. Rev. B 2005, 71, 064107. [Google Scholar] [CrossRef]
- Itoh, K.; Zeng, L.Z.; Nakamura, E.; Mishima, N. Crystal structure of BaTiO3 in the cubic phase. Ferroelectrics 1985, 63, 29–37. [Google Scholar] [CrossRef]
- Yamada, Y.; Shirane, G.; Linz, A. Study of critical fluctuations in BaTiO3 by neutron scattering. Phys. Rev. 1969, 177, 848. [Google Scholar] [CrossRef]
- Ravel, B.; Stern, E.A.; Vedrinskii, R.I.; Kraizman, V. Local structure and the phase transitions of BaTiO3. Ferroelectrics 1998, 206, 407–430. [Google Scholar] [CrossRef]
- Vogt, H.; Sanjurjo, J.A.; Rossbroich, G. Soft-mode spectroscopy in cubic BaTiO3 by hyper-Raman scattering. Phys. Rev. B 1982, 26, 5904. [Google Scholar] [CrossRef]
- Ponomareva, I.; Bellaiche, L.; Ostapchuk, T.; Hlinka, J.; Petzelt, J. Terahertz dielectric response of cubic BaTiO3. Phys. Rev. B 2008, 77, 012102. [Google Scholar] [CrossRef]
- Sokoloff, J.P.; Chase, L.L.; Rytz, D. Direct observation of relaxation modes in KNbO3 and BaTiO3 using inelastic light scattering. Phys. Rev. B 1988, 38, 597. [Google Scholar] [CrossRef]
- Ko, J.-H.; Kojima, S.; Koo, T.-Y.; Jung, J.H.; Won, C.J.; Hur, J. Elastic softening and central peaks in BaTiO3 single crystals above the cubic-tetragonal phase-transition temperature. Appl. Phys. Lett. 2008, 93, 102905. [Google Scholar] [CrossRef]
- Ko, J.-H.; Kim, T.H.; Roleder, K.; Rytz, D.; Kojima, S. Precursor dynamics in the ferroelectric phase transition of barium titanate single crystals studied by Brillouin light scattering. Phys. Rev. B 2011, 84, 094123. [Google Scholar] [CrossRef]
- Wieczorek, K.; Ziebińska, A.; Ujma, Z.; Szot, K.; Górny, M.; Franke, I.; Koperski, J.; Soszyński, A.; Roleder, K. Electrostrictive and piezoelectric effect in BaTiO3 and PbZrO3. Ferroelectrics 2006, 336, 61–67. [Google Scholar] [CrossRef]
- Takagi, M.; Ishidate, T. Anomalous birefringence of cubic BaTiO3. Solid State Commun. 2000, 113, 423–426. [Google Scholar] [CrossRef]
- Ziebińska, A.; Rytz, D.; Szot, K.; Górny, M.; Roleder, K. Birefringence above TC in single crystals of barium titanate. J. Phys. Condens. Mater. 2008, 20, 142202. [Google Scholar]
- Yan, R.; Guo, Z.; Tai, R.; Xu, H.; Zhao, X.; Lin, D.; Li, X.; Luo, H. Observation of long range correlation dynamics in BaTiO3 near TC by photon correlation spectroscopy. Appl. Phys. Lett. 2008, 93, 192908. [Google Scholar] [CrossRef]
- Quittet, A.M.; Lambert, M. Temperature dependence of the Raman cross section and light absorption in cubic BaTiO3. Solid State Commun. 1973, 12, 1053–1055. [Google Scholar] [CrossRef]
- Li, L.-M.; Jiang, Y.-J.; Zeng, L.-Z. Temperature dependence of Raman spectra in BaTiO3. J. Raman Spectrosc. 1996, 27, 503–506. [Google Scholar] [CrossRef]
- Pugachev, A.M.; Kovalevskii, V.I.; Surovtsev, N.V.; Kojima, S.; Prosandeev, S.A.; Raevski, I.P.; Raevskaya, S.I. Broken local symmetry in paraelectric BaTiO3 proved by second harmonic generation. Phys. Rev. Lett. 2012, 108, 247601. [Google Scholar] [CrossRef] [PubMed]
- Namikawa, K.; Kishimoto, M.; Nasu, K.; Matsushita, E.; Tai, R.Z.; Sukegawa, K.; Yamatani, H.; Hasegawa, H.; Nishikino, M.; Tanaka, M.; et al. Direct observation of the critical relaxation of polarization clusters in BaTiO3 using a pulsed X-ray laser technique. Phys. Rev. Lett. 2009, 103, 197401. [Google Scholar] [CrossRef] [PubMed]
- Rusek, K.; Kruczek, J.; Szot, K.; Rytz, D.; Górny, M.; Roleder, K. Non-linear properties of BaTiO3 above TC. Ferroelectrics 2008, 375, 165–169. [Google Scholar] [CrossRef]
- Dong, L.; Stone, D.S.; Lakes, R.S. Anelastic anomalies and negative Poisson’s ratio in tetragonal BaTiO3 ceramics. Appl. Phys. Lett. 2010, 96, 141904. [Google Scholar] [CrossRef]
- Salje, E.K.H.; Carpenter, M.A.; Nataf, G.F.; Picht, G.; Webber, K.; Weerasinghe, J.; Lisenkov, S.; Bellaiche, L. Elastic excitations in BaTiO3 single crystals and ceramics: Mobile domain boundaries and polar nanoregions observed by resonant ultrasonic spectroscopy. Phys. Rev. B 2013, 87, 014106. [Google Scholar] [CrossRef]
- Laabidi, K.; Fontana, M.D.; Maglione, M.; Jannot, B.; Müller, K.A. Indications of two separate relaxators in the subphonon region of tetragonal BaTiO3. Europhys. Lett. 1994, 26, 309–314. [Google Scholar] [CrossRef]
- Hlinka, J.; Ostapchuk, T.; Nuzhnyy, D.; Petzelt, J.; Kuzel, P.; Kadlec, C.; Vanek, P.; Ponomareva, I.; Bellaiche, L. Coexistence of the phonon and relaxation soft modes in the terahertz dielectric response of tetragonal BaTiO3. Phys. Rev. Lett. 2008, 101, 167402. [Google Scholar] [CrossRef]
- Burns, G.; Dacol, F.H. Glassy polarization behavior in ferroelectric compounds Pb(Mg1/3Nb2/3)O3 and Pb(Zn1/3Nb2/3)O3. Solid State Commun. 1983, 48, 853–856. [Google Scholar] [CrossRef]
- Dul’kin, E.; Petzelt, J.; Kamba, S.; Mojaev, E.; Roth, M. Relaxor-like behavior of BaTiO3 crystals from acoustic emission study. Appl. Phys. Lett. 2010, 97, 032903. [Google Scholar] [CrossRef]
- Aktas, O.; Carpenter, M.A.; Salje, E.K.H. Polar precursor ordering in BaTiO3 detected by resonant piezoelectric spectroscopy. Appl. Phys. Lett. 2013, 103, 142902. [Google Scholar] [CrossRef]
- Bersuker, I.B. Pseudo Jahn–Teller effect in the origin of enhanced flexoelectricity. Appl. Phys. Lett. 2015, 106, 022903. [Google Scholar] [CrossRef]
- Narvaez, J.; Saremi, S.; Hong, J.; Stengel, M.; Catalan, G. Large flexoelectric anisotropy in paraelectric barium titanate. Phys. Rev. Lett. 2015, 115, 037601. [Google Scholar] [CrossRef] [PubMed]
- Bussmann-Holder, A.; Beige, H.; Völkel, G. Precursor effects, broken local symmetry, and coexistence of order-disorder and displacive dynamics in perovskite ferroelectrics. Phys. Rev. B 2009, 79, 184111. [Google Scholar] [CrossRef]
- Bussmann-Holder, A.; Roleder, K.; Ko, J.-H. What makes the difference in perovskite titanates? J. Phys. Chem. Solids 2018, 117, 148–157. [Google Scholar] [CrossRef]
- Geneste, G. Local free energy in the paraelectric phase of barium titanate. Phys. Rev. B 2009, 79, 144104. [Google Scholar] [CrossRef]
- Clarke, R. Phase transition studies of pure and flux-grown barium titanate crystals. J. Appl. Cryst. 1976, 9, 335–338. [Google Scholar] [CrossRef]
- Höfer, A.; Fechner, M.; Duncker, K.; Hölzer, M.; Mertig, I.; Widdra, W. Persistence of surface domain structures for a bulk ferroelectric above TC. Phys. Rev. Lett. 2012, 108, 087602. [Google Scholar] [CrossRef]
- Lee, H.Y. Development of high-performance piezoelectric single crystals by using solid-state single crystal growth(SSCG) method. In Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials, 1st ed.; Ye, Z.-G., Ed.; Woodhead Publishing Ltd.: Cambridge, UK, 2008; pp. 158–172. [Google Scholar]
- Lee, J.-Y.; Oh, H.-T.; Lee, H.-Y. Dielectric and piezoelectric properties of “lead-free” piezoelectric rhombohedral Ba(Ti0.92Zr0.08)O3 single crystals. J. Korean Ceram. Soc. 2016, 53, 171–177. [Google Scholar] [CrossRef]
- Ishidate, T.; Niwa, K. Coupled acoustic modes in tetragonal BaTiO3: Temperature dependence. Ferroelectrics 1992, 137, 39–44. [Google Scholar] [CrossRef]
- Tsukada, S.; Hiraki, Y.; Akishige, Y.; Kojima, S. Enhanced polarization fluctuation in KF-substituted BaTiO3 single crystals. Phys. Rev. B 2009, 80, 012102. [Google Scholar] [CrossRef]
- Kashida, S.; Hatta, I.; Ikushima, A.; Yamada, Y. Ultrasonic velocities in BaTiO3. J. Phys. Soc. Jpn. 1973, 34, 997–1001. [Google Scholar] [CrossRef]
- Vacher, R.; Boyer, L. Brillouin scattering: A tool for the measurement of elastic and photoelastic constants. Phys. Rev. B 1972, 6, 639. [Google Scholar] [CrossRef]
- Cummins, H.Z. Brillouin scattering spectroscopy of ferroelectric and ferroelastic phase transitions. Phil. Trans. R. Soc. Lond. A 1979, 293, 393–405. [Google Scholar] [CrossRef]
- Kojima, S. Gigahertz acoustic spectroscopy by micro-brillouin scattering. Jpn. J. Appl. Phys. 2010, 49, 07HA01. [Google Scholar] [CrossRef]
- Cordero, F. Elastic properties and enhanced piezoelectric response at morphotropic phase boundaries. Materials 2015, 8, 8195–8245. [Google Scholar] [CrossRef]
- Geday, M.A.; Glazer, A.M. Birefringence of SrTiO3 at the ferroelastic phase transition. J. Phys. Condens. Mater. 2004, 16, 3303–3310. [Google Scholar]
- Bokov, A.A.; Ye, Z.-G. Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 2006, 41, 31–52. [Google Scholar] [CrossRef]
- Rehwald, W. The study of structural phase transitions by means of ultrasonic experiments. Adv. Phys. 1973, 22, 721–755. [Google Scholar] [CrossRef]
- Koreeda, A.; Taniguchi, H.; Saikan, S.; Itoh, M. Fractal dynamics in a single crystal of a relaxor ferroelectric. Phys. Rev. Lett. 2012, 109, 197601. [Google Scholar] [CrossRef]
- Ko, J.-H.; Kim, D.H.; Tsukada, S.; Kojima, S.; Bokov, A.A.; Ye, Z.-G. Crossover in the mechanism of ferroelectric phase transition of Pb[(Mg1/3Nb2/3)1−xTix]O3 single crystals studied by Brillouin light scattering. Phys. Rev. B 2010, 82, 104110. [Google Scholar] [CrossRef]
- Roleder, K.; Franke, I.; Glazer, A.M.; Thomas, P.A.; Miga, S.; Suchanicz, J. The piezoelectric effect in Na0.5Bi0.5TiO3 ceramics. J. Phys. Condens. Mater. 2002, 14, 5399–5406. [Google Scholar] [CrossRef]
- Cowley, R.A. Acoustic phonon instabilities and structural phase transitions. Phys. Rev. B 1976, 13, 4877. [Google Scholar] [CrossRef]
- Grabovsky, S.V.; Shnaidshtein, I.V.; Takesada, M. Calorimetric study of ferroelectric BaTiO3 in cubic phase. J. Adv. Dielectr. 2013, 3, 1350032. [Google Scholar] [CrossRef]
- Phaktapha, P.; Jutimoosik, J.; Bootchanont, A.; Kidkhunthod, P.; Rujirawat, S.; Yimnirun, R. Temperature dependent local structure in BaTiO3 single crystal. Integr. Ferroelectr. 2017, 177, 74–78. [Google Scholar] [CrossRef]
- Ko, J.-H.; Jeong, M.-S.; Lee, B.W.; Kim, J.H.; Ko, Y.H.; Kim, K.J.; Kim, T.H.; Kojima, S.; Ahart, M. Pressure dependence of acoustic properties of liquid ethanol by using high-pressure Brillouin spectroscopy. Korean J. Opt. Photonics 2013, 24, 279–286. [Google Scholar] [CrossRef]
- Oh, S.H.; Cho, B.J.; Jeong, M.S.; Ko, J.-H. Evaluation of the isothermal curing process of UV-cured resin in terms of elasticity studied through micro-Brillouin light scattering. J. Inf. Disp. 2016, 17, 87–91. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds BaTiO3 (SSCG) are available from the authors. |
Fitted T Range | T0 (°C) | |
---|---|---|
≈TC–TC + 60 °C | 7374 | 103 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, S.H.; Ko, J.-H.; Lee, H.-Y.; Lazar, I.; Roleder, K. Precursor Phenomena of Barium Titanate Single Crystals Grown Using a Solid-State Single Crystal Growth Method Studied with Inelastic Brillouin Light Scattering and Birefringence Measurements. Molecules 2018, 23, 3171. https://doi.org/10.3390/molecules23123171
Oh SH, Ko J-H, Lee H-Y, Lazar I, Roleder K. Precursor Phenomena of Barium Titanate Single Crystals Grown Using a Solid-State Single Crystal Growth Method Studied with Inelastic Brillouin Light Scattering and Birefringence Measurements. Molecules. 2018; 23(12):3171. https://doi.org/10.3390/molecules23123171
Chicago/Turabian StyleOh, Soo Han, Jae-Hyeon Ko, Ho-Yong Lee, Iwona Lazar, and Krystian Roleder. 2018. "Precursor Phenomena of Barium Titanate Single Crystals Grown Using a Solid-State Single Crystal Growth Method Studied with Inelastic Brillouin Light Scattering and Birefringence Measurements" Molecules 23, no. 12: 3171. https://doi.org/10.3390/molecules23123171
APA StyleOh, S. H., Ko, J.-H., Lee, H.-Y., Lazar, I., & Roleder, K. (2018). Precursor Phenomena of Barium Titanate Single Crystals Grown Using a Solid-State Single Crystal Growth Method Studied with Inelastic Brillouin Light Scattering and Birefringence Measurements. Molecules, 23(12), 3171. https://doi.org/10.3390/molecules23123171