Organotin(IV) Dithiocarbamate Complexes: Chemistry and Biological Activity
Abstract
1. Introduction
2. Chemistry of Organotin(IV) Dithiocarbamate
Thermal Decomposition Studies
3. Biological Applications of Organotin(IV) Dithiocarbamate
3.1. Antimicrobial Properties of Organotin(IV) Dithiocarbamate
3.1.1. Antibacterial Studies
3.1.2. Antifungal Studies
3.2. Anticancer/Antitumor Studies
3.3. Other Biological Studies
3.4. Limitation Associated with Toxicity of Organotin(IV) Compound
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Pattan, S.R.; Pawar, S.B.; Vetal, S.S.; Gharate, U.D.; Bhawar, S.B. The scope of metal complexes in drug design—A review. Indian Drugs 2012, 49, 5–12. [Google Scholar]
- Iqbal, H.; Ali, S.; Shahzadi, S. Antituberculosis study of organotin(IV) complexes: A review. Cogent Chem. 2015, 1, 1029039. [Google Scholar] [CrossRef]
- Davies, A.G. Organotin Chemistry; Miller, J.S., Drillon, M., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2004; Volume 3, ISBN 9783527620548. [Google Scholar]
- Jain, R.; Singh, R.; Kaushik, N.K. Synthesis, Characterization, and Thermal and Antimicrobial Activities of Some Novel Organotin(IV): Purine Base Complexes. J. Chem. 2013, 2013, 1–12. [Google Scholar] [CrossRef]
- Olushola Sunday, A.; Abdullahi Alafara, B.; Godwin Oladele, O. Toxicity and speciation analysis of organotin compounds. Chem. Speciat. Bioavailab. 2012, 24, 216–226. [Google Scholar] [CrossRef]
- Pellerito, C.; Nagy, L.; Pellerito, L.; Szorcsik, A. Biological activity studies on organotin(IV)n+ complexes and parent compounds. J. Organomet. Chem. 2006, 691, 1733–1747. [Google Scholar] [CrossRef]
- Pellerito, L.; Nagy, L. Organotin (IV)n+ complexes formed with biologically active ligands: Equilibrium and structural studies, and some biological aspects. Coord. Chem. Rev. 2002, 224, 111–150. [Google Scholar] [CrossRef]
- Buck-Koehntop, B.A.; Porcelli, F.; Lewin, J.L.; Cramer, C.J.; Veglia, G. Biological chemistry of organotin compounds: Interactions and dealkylation by dithiols. J. Organomet. Chem. 2006, 691, 1748–1755. [Google Scholar] [CrossRef]
- Gasser, G.; Metzler-Nolte, N. The potential of organometallic complexes in medicinal chemistry. Curr. Op. Chem. Biol. 2012, 16, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Szorcsik, A.; Nagy, L.; Pellerito, L.; Nagy, E.; Edelmann, F.T. Structural studies on organotin (IV) complexes formed with ligands containing {S,N,O} donor atoms. J. Radioanal. Nucl. Chem. 2002, 252, 523–530. [Google Scholar] [CrossRef]
- Chee, D.N.A.; Rodis, M.L. Synthesis, Characterization and Antibacterial Activity of Organotin (IV) Complexes with Benzoylacetone Benzhydrazone Ligand. In Proceedings of the 3rd International Conference on Biological, Chemical and Environmental Sciences (BCES-2015), Kuala Lumpur, Malaysia, 21–22 September 2015. [Google Scholar]
- Saeed, A.; Channar, P.A.; Larik, F.A.; Jabeen, F.; Muqadar, U.; Saeed, S.; Flörke, U.; Ismail, H.; Dilshad, E.; Mirza, B. Design, synthesis, molecular docking studies of organotin-drug derivatives as multi-target agents against antibacterial, antifungal, α-amylase, α-glucosidase and butyrylcholinesterase. Inorg. Chim. Acta 2017, 464, 204–213. [Google Scholar] [CrossRef]
- Sadiq-ur-Rehman; Ali, S.; Badshah, A.; Mazhar, M.; Song, X.; Eng, G.; Khan, K.M. Synthesis, spectroscopic characterization: (IR, multinuclear NMR, 119mSn mössbauer and mass spectrometry), and biological activity (antibacterial, antifungal, and cytotoxicity) of di- and triorganotin(IV) complexes of (E)-3-(4-chlorophenyl)-2-phenylpropeno. Synth. React. Inorg. Met. Chem. 2004, 34, 1379–1399. [Google Scholar] [CrossRef]
- Javed, F.; Sirajuddin, M.; Ali, S.; Khalid, N.; Tahir, M.N.; Shah, N.A.; Rasheed, Z.; Khan, M.R. Organotin(IV) derivatives of o-isobutyl carbonodithioate: Synthesis, spectroscopic characterization, X-ray structure, HOMO/LUMO and in vitro biological activities. Polyhedron 2016, 104, 80–90. [Google Scholar] [CrossRef]
- Tiekink, E.R.T. Tin dithiocarbamates: Applications and structures. Appl. Organomet. Chem. 2008, 22, 533–550. [Google Scholar] [CrossRef]
- Menezes, D.C.; de Lima, G.M.; Porto, A.O.; Donnici, C.L.; Ardisson, J.D.; Doriguetto, A.C.; Ellena, J. Synthesis, characterisation and thermal decomposition of tin(IV) dithiocarbamate derivatives—Single source precursors for tin sulfide powders. Polyhedron 2004, 23, 2103–2109. [Google Scholar] [CrossRef]
- Kadu, R.; Roy, H.; Singh, V.K. Diphenyltin(IV) dithiocarbamate macrocyclic scaffolds as potent apoptosis inducers for human cancer HEP 3B and IMR 32 cells: Synthesis, spectral characterization, density functional theory study and in vitro cytotoxicity. Appl. Organomet. Chem. 2015, 29, 746–755. [Google Scholar] [CrossRef]
- Awang, N.; Zakri, N.H.; Zain, N.M. Antimicrobial activity of organotin (IV) alkylisopropildithiocarbamate compounds. J. Chem. Pharm. Res. 2016, 8, 862–866. [Google Scholar]
- Iornumbe, E.N.; Yiase, S.G.; Sha’Ato, R. Synthesis, Characterization and Antimicrobial Activity of Some Organotin (IV) Complexes with a Potassium Hydrogen Ethanedioate Ligand. Int. J. Sci. Res. 2016, 5, 1610–1617. [Google Scholar]
- Awang, N.; Mohktar, S.M.; Zin, N.M.; Kamaludin, N.F. Evaluation of antimicrobial activities of organotin (IV) alkylphenyl dithiocarbamate compounds. Asian J. Appl. Sci. 2015, 8, 165–172. [Google Scholar] [CrossRef]
- Wilson, S.E.; Crosnoe, R.; Daniels, K. Introduction. In Economics and Human Biology; Saunders College Publishing: Philadelphia, PA, USA, 2012; Vol. 10, pp. 329–332. ISBN 9780470724514. [Google Scholar]
- Onwudiwe, D.C.; Ajibade, P.A. Thermal studies of Zn(II), Cd(II) and Hg(II) complexes of some N-alkyl-N-phenyl-dithiocarbamates. Int. J. Mol. Sci. 2012, 13, 9502–9513. [Google Scholar] [CrossRef] [PubMed]
- Katari, N.K.; Srinivas, K. A novel approach to the synthesis of aryldithiocarbamic acid esters with arylamines and CS2 in aqueous media. Adv. Appl. Sci. Res. 2014, 5, 349–355. [Google Scholar]
- Awang, N.; Baba, I.; Yamin, B.M.; Othman, M.S.; Kamaludin, N.F. Synthesis, characterization and biological activities of organotin (IV) methylcyclohexyldithiocarbamate compounds. Am. J. Appl. Sci. 2011, 8, 310–317. [Google Scholar] [CrossRef]
- Cookson, J.; Beer, P.D. Exploiting the dithiocarbamate ligand in metal-directed self-assembly. Dalton Trans. 2007, 1459–1472. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.N.; Kumar, V.; Singh, V.; Rajput, A.; Prasad, L.B.; Drew, M.G.B.; Singh, N. Influence of functionalities on the structure and luminescent properties of organotin(IV) dithiocarbamate complexes. J. Organomet. Chem. 2015, 787, 65–72. [Google Scholar] [CrossRef]
- Garg, B.S.; Dixit, R.; Singh, A.L. Mixed ugand complexes of iron(III) derived from its dithiocarbamato complexes. J. Therm. Anal. 1990, 36, 2567–2582. [Google Scholar] [CrossRef]
- Hogarth, G. Metal-dithiocarbamate: Chemistry and Biological Activity. Mini Rev. Med. Chem. 2012, 12, 1202–1215. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.J.; Kevin, P.; Bakr, O.; Muryn, C.A.; Malik, M.A.; O’Brien, P. Routes to tin chalcogenide materials as thin films or nanoparticles: A potentially important class of semiconductor for sustainable solar energy conversion. Inorg. Chem. Front. 2014, 1, 577–598. [Google Scholar] [CrossRef]
- Barbosa, A.S.L.; de Siqueira Guedes, J.; da Silva, D.R.; Meneghetti, S.M.P.; Meneghetti, M.R.; da Silva, A.E.; de Araujo, M.V.; Alexandre-Moreira, M.S.; de Aquino, T.M.; de Siqueira Junior, J.P.; et al. Synthesis and evaluation of the antibiotic and adjuvant antibiotic potential of organotin(IV) derivatives. J. Inorg. Biochem. 2018, 180, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Onwudiwe, D.C.; Ajibade, P.A. Synthesis and characterization of metal complexes of N-alkyl-N-phenyl dithiocarbamates. Polyhedron 2010, 29, 1431–1436. [Google Scholar] [CrossRef]
- Kanchi, S.; Singh, P.; Bisetty, K. Dithiocarbamates as hazardous remediation agent: A critical review on progress in environmental chemistry for inorganic species studies of 20th century. Arab. J. Chem. 2014, 7, 11–25. [Google Scholar] [CrossRef]
- Lal, N. Dithiocarbamates: A Versatile Class of Compounds in Medicinal Chemistry. Chem. Biol. Interface 2014, 4, 321–340. [Google Scholar]
- Pattanayak, R.; Sagar, R.; Pal, A. Tracing the journey of disulfiram: From an unintended discovery to a treatment option for alcoholism. J. Ment. Heal. Hum. Behav. 2015, 20, 41. [Google Scholar] [CrossRef]
- Shahvelayati, A.S.; Yavari, I.; Adhami, F.; Sanaei, S.T. An efficient synthesis of dithiocarbamates from primary amines, CS2 and maleic anhydride. J. Org. Chem. 2009, 4, 244–247. [Google Scholar]
- Movassagh, B.; Shokri, B. A facile and efficient one-pot regioselective synthesis of 2-hydroxyalkyl dithiocarbamates under catalyst-free conditions. Int. J. Org. Chem. 2012, 2, 248–253. [Google Scholar] [CrossRef]
- Singh, N.; Bhattacharya, S. Synthesis and characterization of some triorgano, diorgano, monoorganotin and a triorganolead heteroaromatic dithiocarbamate complexes. J. Organomet. Chem. 2012, 700, 69–77. [Google Scholar] [CrossRef]
- Jabbar, S.; Shahzadi, I.; Rehman, R.; Iqbal, H.; Qurat-Ul-Ain; Jamil, A.; Kousar, R.; Ali, S.; Shahzadi, S.; Choudhary, M.A.; et al. Synthesis, characterization, semi-empirical study, and biological activities of organotin(IV) complexes with cyclohexylcarbamodithioic acid as biological active ligand. J. Coord. Chem. 2012, 65, 572–590. [Google Scholar] [CrossRef]
- Shaheen, F.; Zia-Ur-Rehman; Ali, S.; Meetsma, A. Structural properties and antibacterial potency of new supramolecular organotin(IV) dithiocarboxylates. Polyhedron 2012, 31, 697–703. [Google Scholar] [CrossRef]
- Halimehjani, A.Z.; Dadras, A.; Ramezani, M.; Shamiri, E.V.; Hooshmand, S.E.; Hashemi, M.M. Synthesis of dithiocarbamates by Markovnikov addition reaction in PEG and their application in amidoalkylation of naphthols and indoles. J. Braz. Chem. Soc. 2015, 26, 1500–1508. [Google Scholar] [CrossRef]
- Manohar, A.; Venkatachalam, V.; Ramalingam, K.; Thirumaran, S.; Bocelli, G. Synthesis, spectral, and single crystal X-ray structural studies on (2,2′-bipyridyl)bis(dimethyldithiocarbamato)zinc(II) and (1,10-phenanthroline)bis(dimethyldithiocarbamato)Zinc(II). J. Chem. Crystallogr. 1998, 28, 861–866. [Google Scholar] [CrossRef]
- Aly, A.A.; Brown, A.B.; Bedair, T.M.I.; Ishak, E.A. Dithiocarbamate salts: Biological activity, preparation, and utility in organic synthesis. J. Sulfur Chem. 2012, 33, 605–617. [Google Scholar] [CrossRef]
- Roffey, A.R. Dithiocarbamate Complexes as Single Source Precursors to Metal Sulfide Nanoparticles for Applications in Catalysis. Ph.D. Thesis, University College London, London, UK, 2012. [Google Scholar]
- Garg, B.S.; Singh, A.L.; Dixit, R. Mixed ligand complexes of manganese(III) with dithiocarbamate and glycine/acetylacetone ligands: Magnetic, spectral and thermal studies. Transit. Met. Chem. 1988, 13, 351–355. [Google Scholar] [CrossRef]
- Heard, P.J. Main Group Dithiocarbamate Complexes. In Progress in Inorganic Chemistry; Karlin, K.D., Ed.; John Wiley & Sons, Inc.: London, UK, 2005; Volume 53, pp. 1–69. ISBN 9780471725589. [Google Scholar]
- Gölcü, A. Transition metal complexes of propranolol dithiocarbamate: Synthesis, characterization, analytical properties and biological activity. Transit. Met. Chem. 2006, 31, 405–412. [Google Scholar] [CrossRef]
- Sedlacek, J.; Martins, L.M.D.R.S.; Danek, P.; Pombeiro, A.J.L.; Cvek, B. Diethyldithiocarbamate complexes with metals used as food supplements show different effects in cancer cells. J. Appl. Biomed. 2014, 12, 301–308. [Google Scholar] [CrossRef]
- Ekennia, A.C.; Onwudiwe, D.C.; Olasunkanmi, L.O.; Osowole, A.A.; Ebenso, E.E. Synthesis, DFT Calculation, and Antimicrobial Studies of Novel Zn(II), Co(II), Cu(II), and Mn(II) Heteroleptic Complexes Containing Benzoylacetone and Dithiocarbamate. Bioinorg. Chem. Appl. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
- Onwudiwe, D.C.; Mugo, J.N.; Hrubaru, M.; Hosten, E. Bis diallyl dithiocarbamate Pt(II) complex: Synthesis, characterization, thermal decomposition studies, and experimental and theoretical studies on its crystal structure. J. Sulfur Chem. 2015, 36, 36–47. [Google Scholar] [CrossRef]
- Hogarth, G. Transition Metal Dithiocarbamates: 1978–2003. In Progress in Inorganic Chemistry; Karlin, K.D., Ed.; John Wiley & Sons, Inc.: London, UK, 2005; Volume 53, pp. 71–561. ISBN 9780471725589. [Google Scholar]
- Garg, B.S.; Garg, R.K.; Reddy, M.J. Synthesis and spectral studies of nickel(II), palladium(II) and platinum(II) complexes with tetrahydroquinoline and tetrahydroisoquinoline dithiocarbamato ligands. Transit. Met. Chem. 1995, 99, 97–99. [Google Scholar] [CrossRef]
- Hassan, E.A.; Zayed, S.E. Dithiocarbamates as Precursors in Organic Chemistry; Synthesis and Uses. Phosphorus Sulfur Silicon Relat. Elem. 2014, 189, 300–323. [Google Scholar] [CrossRef]
- Sainorudin, M.H.; Sidek, N.M.; Ismail, N.; Rozaini, M.Z.H.; Harun, N.A.; Sabiqah Tuan Anuar, T.N.; Abd Rahman Azmi, A.A.; Yusoff, F. Synthesis, Characterization and Biological Activity of Organotin(IV) Complexes featuring di-2-ethylhexyldithiocarbamate and N-methylbutyldithiocarbamate as Ligands. GSTF J. Chem. Sci. 2015, 2, 10–18. [Google Scholar]
- Khan, E.; Khan, U.A.; Badshah, A.; Tahir, M.N.; Altaf, A.A. Supramolecular dithiocarbamatogold(III) complex a potential DNA binder and antioxidant agent. J. Mol. Struct. 2014, 1060, 150–155. [Google Scholar] [CrossRef]
- Garg, B.S.; Dixit, R.; Signh, A.L. Thermal and Magnetic Studies of Mixed Ligand. J. Therm. 1991, 37, 2541–2554. [Google Scholar]
- Basirah, A.; Faizuddin, M.; Hasan, A.; Sidek, N.M.; Khairul, W.M.; Ismail, N. Synthesis, Characterization and Antimicrobial Activity of organotin(IV) complexes featuring Bis-2-methoxyethyl dithiocarbamate As Ligand. J. Appl. Sci. Res. 2013, 9, 5562–5567. [Google Scholar]
- Awang, N.; Kamaludin, N.F.; Baba, I.; Chan, K.M.; Rajaajab, N.F.; Hamid, A. Synthesis, characterization and antitumor activity of new organotin(IV) methoxyethyldithiocarbamate complexes. Orient. J. Chem. 2016, 32, 101–107. [Google Scholar] [CrossRef]
- Kamaludin, N.F.; Awang, N.; Baba, I.; Hamid, A.; Meng, C.K. Synthesis, characterization and crystal structure of organotin(IV) N-Butyl-N-phenyldithiocarbamate compounds and their cytotoxicity in human leukemia cell lines. Pakistan J. Biol. Sci. 2013, 16, 12–21. [Google Scholar] [CrossRef]
- Venugopal, K.; Rameshbabu, K.; Sreeramulu, J. Synthesis and Characterization of Furfuryl Amine Dithiocarbamate (Fadtc) Ligand and It’s Metal Complexes. World J. Pharm. Pharm. Sci. 2015, 4, 1116–1127. [Google Scholar]
- Onwudiwe, D.C.; Hrubaru, M.; Ebenso, E.E. Synthesis, Structural and Optical Properties of TOPO and HDA Capped Cadmium Sulphide Nanocrystals, and the Effect of Capping Ligand Concentration. J. Nanomater. 2015, 16, 305. [Google Scholar] [CrossRef]
- Cotton, F.; McCleverty, J. Dimethyl and Diethyldithiocarbamate Complexes of Some Metal Carbonyl Compounds. Inorg. Chem. 1964, 3, 1398–1402. [Google Scholar] [CrossRef]
- Shahid, M.; Ruffer, T.; Lang, H.; Awan, S.A.; Ahmad, S. Synthesis and crystal structure of a dinuclear zinc(II)-dithiocarbamate complex, bis{[(μ2-pyrrolidinedithiocarbamato-S,S′) (pyrrolidinedithiocarbamato-S,S′)zinc(II)]}. J. Coord. Chem. 2009, 62, 440–445. [Google Scholar] [CrossRef]
- Yin, H.D.; Xue, S.C. Synthesis and characterization of organotin complexes with dithiocarbamates and crystal structures of (4-NCC6H4CH2)2Sn(S2CNEt2)2 and (2-ClC6H4CH2)2 Sn(Cl)S2CNBz2. Appl. Organomet. Chem. 2006, 20, 283–289. [Google Scholar] [CrossRef]
- Bonati, F.; Ugo, R. Organotin(IV) N,N-disubstituted dithiocarbamates. J. Organomet. Chem. 1967, 10, 257–268. [Google Scholar] [CrossRef]
- Adli, H.K.; Sidek, N.M.; Ismail, N.; Khairul, W.M. Several Organotin(IV) Complexes Featuring 1-Methylpiperazinedithiocarbamate and N-Methylcyclohexyldithiocarbamate as Ligands and Their Anti-Microbial Activity Studies. Chiang Mai J. Sci. 2013, 40, 117–125. [Google Scholar]
- Sharma, R.; Kaushik, N.K. Studies on organomercury(II) complexes with piperidine and 2-aminopyridine dithiocarbamates. Indian J. Chem. Sect. A Inorganic Phys. Theor. Anal. Chem. 2004, 43, 769–772. [Google Scholar]
- Sirajuddin, M.; Ali, S.; Mckee, V. Organotin(IV) carboxylate derivatives as a new addition to anticancer and antileishmanial agents: Design, physicochemical characterization and interaction with Salmon sperm DNA. RSC Adv. 2014, 4, 57505–57521. [Google Scholar] [CrossRef]
- Lockhart, T.P.; Manders, W.F. Solid-state carbon-13 NMR probe for organotin(IV) structural polymorphism. Inorg. Chem. 1986, 25, 583–585. [Google Scholar] [CrossRef]
- Howard, W.F.; Crecely, R.W.; Nelson, W.H. Octahedral dialkyltin complexes: A multinuclear NMR spectral solution structural study. Inorg. Chem. 1985, 24, 2204–2208. [Google Scholar] [CrossRef]
- Sedaghat, T.; Goodarzi, K. Synthesis and spectroscopic studies of new organotin(IV) complexes with dithiocarbamate derivative of L-proline. Main Gr. Chem. 2005, 4, 121–126. [Google Scholar] [CrossRef]
- Sedaghat, T.; Shokohi-pour, Z. Synthesis and spectroscopic studies of new organotin(IV) complexes with tridentate N- and O-donor Schiff bases. J. Coord. Chem. 2009, 62, 3837–3844. [Google Scholar] [CrossRef]
- Otera, J. 119Sn Chemical Shifts in five- and six-coordinate organotin chelates. J. Organomet. Chem. 1981, 221, 57–61. [Google Scholar] [CrossRef]
- Sirajuddin, M.; Ali, S.; Tahir, M.N. Pharmacological investigation of mono-, di- and tri-organotin(IV) derivatives of carbodithioates: Design, spectroscopic characterization, interaction with SS-DNA and POM analyses. Inorg. Chim. Acta 2016, 439, 145–158. [Google Scholar] [CrossRef]
- Chagas, R.C.R.; da Silveira Maia, J.R.; Ferraz, V.P. Synthesis and characterisation of organotin(IV) derivatives of ambidentate ligands containing nitrogen and sulphur donor atoms. Main Gr. Met. Chem. 2011, 34, 131–137. [Google Scholar] [CrossRef]
- Picknett, T.M.; Brenner, S. X-Ray Crystallography. In Encyclopedia of Genetics; Elsevier: Amsterdam, The Netherlands, 2001; Volume 219, p. 2154. ISBN 9780122270802. [Google Scholar]
- Rondeau, J.M.; Schreuder, H. Chapter 22—Protein Crystallography and Drug Discovery. In The Practice of Medicinal Chemistry, 4th ed.; Wermuth, C.G., Aldous, D., Raboisson, P., Rognan, D., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 511–537. ISBN 978-0-12-417205-0. [Google Scholar]
- Johansson, G. Determination of structures of complexes in solution from X-ray diffraction data. Pure Appl. Chem. 1988, 60, 1773–1784. [Google Scholar] [CrossRef]
- Muthalib, A.F.A.; Baba, I.; Farina, Y.; Samsudin, M.W. Synthesis and Characterization of Diphenyltin (IV) Dithiocarbamate Compounds. Malaysian J. Anal. Sci. 2011, 15, 106–112. [Google Scholar]
- Kim, K.; Ibers, J.A.; Jung, O.S.; Sohn, Y.S. Structure of di(tert-butyl)bis(N,N-dimethyldithioearbamato)tin(IV). Acta. Crystallogr. Sect. C 1987, 7, 2317–2319. [Google Scholar] [CrossRef]
- Khan, N.; Farina, Y.; Mun, L.K.; Rajab, N.F.; Awang, N. Syntheses, spectral characterization, X-ray studies and in vitro cytotoxic activities of triorganotin(IV) derivatives of p-substituted N-methylbenzylaminedithiocarbamates. J. Mol. Struct. 2014, 1076, 403–410. [Google Scholar] [CrossRef]
- Yadav, R.; Trivedi, M.; Chauhan, R.; Prasad, R.; Kociok-Köhn, G.; Kumar, A. Supramolecular architecture of organotin(IV) 4-hydroxypiperidine dithiocarbamates: Crystallographic, computational and Hirshfeld surface analyses. Inorg. Chim. Acta 2016, 450, 57–68. [Google Scholar] [CrossRef]
- Awang, N.; Baba, I.; Yamin, B.M. Synthesis, Characterization and Crystal Structure of Triphenyltin(IV) N-alkyl-N-cyclohexyldithiocarbamate Compounds. World Appl. Sci. J. 2011, 12, 630–635. [Google Scholar]
- Khan, N.; Farina, Y.; Mun, L.K.; Rajab, N.F.; Awang, N. Syntheses, characterization, X-ray diffraction studies and in vitro antitumor activities of diorganotin(IV) derivatives of bis(p-substituted-N-methylbenzylaminedithiocarbamates). Polyhedron 2015, 85, 754–760. [Google Scholar] [CrossRef]
- Menezes, D.C.; Vieira, F.T.; de Lima, G.M.; Porto, A.O.; Cortés, M.E.; Ardisson, J.D.; Albrecht-Schmitt, T.E. Tin(IV) complexes of pyrrolidinedithiocarbamate: Synthesis, characterisation and antifungal activity. Eur. J. Med. Chem. 2005, 40, 1277–1282. [Google Scholar] [CrossRef] [PubMed]
- Shahzadi, S.; Ali, S. Iranian Chemical Society Structural Chemistry of Organotin(IV) Complexes. J. Iran. Chem. Soc. 2008, 5, 16–28. [Google Scholar] [CrossRef]
- Adeyemi, J.O.; Onwudiwe, D.C.; Ekennia, A.C.; Uwaoma, R.C.; Hosten, E.C. Synthesis, characterization and antimicrobial studies of organotin(IV) complexes of N-methyl-N-phenyldithiocarbamate. Inorg. Chim. Acta 2018, 477, 148–159. [Google Scholar] [CrossRef]
- Zia-ur-Rehman; Muhammad, N.; Ali, S.; Butler, I.S.; Meetsma, A. Synthesis, spectroscopic properties, X-ray single crystal analysis and antimicrobial activities of organotin(IV) 4-(4-methoxyphenyl)piperazine-1-carbodithioates. Inorg. Chim. Acta 2011, 376, 381–388. [Google Scholar] [CrossRef]
- Awang, N.; Baba, I.; Mohd Yousof, N.S.A.; Kamaludin, N.F. Synthesis and characterization of organotin(IV) N-benzyl-N-isopropyldithiocarbamate compounds: Cytotoxic assay on human hepatocarcinoma cells (HepG2). Am. J. Appl. Sci. 2010, 7, 1047–1052. [Google Scholar] [CrossRef]
- Adeyemi, J.O.; Onwudiwe, D.C.; Hosten, E.C. Organotin(IV) complexes derived from N-ethyl-N-phenyldithiocarbamate: Synthesis, characterization and thermal studies. J. Saudi Chem. Soc. 2018, 22, 427–438. [Google Scholar] [CrossRef]
- Siddiqi, K.S.; Nami, S.A.A.; Chebude, Y. Template Synthesis of Symmetrical Transition Metal Dithiocarbamates. J. Braz. Chem. Soc. 2006, 17, 107–112. [Google Scholar] [CrossRef]
- Hill, J.O.; Chirawongaram, S. Thermal analysis studies of tin dithiocarbamate complexes—A short review. J. Therm. Anal. 1994, 41, 511–518. [Google Scholar] [CrossRef]
- Rozenberg, A.S.; Stepanov, V.R. Thermal Decomposition of Transition Metal Carboxylates. Rus. Chem. Bull. 1996, 45, 1336–1343. [Google Scholar] [CrossRef]
- Onwudiwe, D.C.; Ajibade, P.A. Synthesis, Characterization and Thermal Study of Phenanthroline Adducts of Zn(II) and Cd(II) Complexes of bis-N-Alkyl-N-phenyl dithiocarbamates. Asian J. Chem. 2013, 25, 10057–10061. [Google Scholar]
- Yilmaz, V.T.; Yazicilar, T.K.; Cesur, H.; Ozkanca, R.; Maras, F.Z. Metal complexes of phenylpiperazine-based dithiocarbamate ligands. Synthesis, characterization, spectroscopic, thermal, and antimicrobial activity studies. Synth. React. Inorg. Met. Chem. 2003, 33, 589–605. [Google Scholar] [CrossRef]
- Ajibade, P.A.; Onwudiwe, D.C. Synthesis, characterization and thermal studies of 2,2′-bipyridine adduct of bis-(N-alkyl-N-phenyl dithiocarbamato-S,S′)cadmium(II). J. Mol. Struct. 2013, 1034, 249–256. [Google Scholar] [CrossRef]
- Ekennia, A.C.; Onwudiwe, D.C.; Osowole, A.A. Spectral, thermal stability and antibacterial studies of copper, nickel and cobalt complexes of N-methyl-N-phenyl dithiocarbamate. J. Sulfur Chem. 2015, 36, 96–104. [Google Scholar] [CrossRef]
- Siqueira, G.O.; Porto, A.D.O.; De Lima, G.M.; Matencio, T. Phase and morphology dependence on the annealing temperature of tin sulfides and oxides prepared by thermal decomposition of organotin precursors. J. Organomet. Chem. 2012, 715, 48–53. [Google Scholar] [CrossRef]
- Ramasamy, K.; Kuznetsov, V.L.; Gopal, K.; Malik, M.A.; Raftery, J.; Edwards, P.P.; O’Brien, P. Organotin dithiocarbamates: Single-source precursors for tin sulfide thin films by aerosol-assisted chemical vapor deposition (AACVD). Chem. Mater. 2013, 25, 266–276. [Google Scholar] [CrossRef]
- Gaur, J.; Jain, S.; Chand, S.; Kaushik, N.K. Tin Sulfide Nanoparticle Synthesis from Waste Waters. Am. J. Anal. Chem. 2014, 5, 50–54. [Google Scholar] [CrossRef]
- Ali, B.F.; Al-Akramawi, W.S.; Al-Obaidi, K.H.; Al-Karboli, A.H. A thermal analysis study of dialkyldithiocarbamato nickel(II) and copper(II) complexes. Thermochim. Acta 2004, 419, 39–43. [Google Scholar] [CrossRef]
- Arul Prakasam, B.; Lahtinen, M.; Peuronen, A.; Muruganandham, M.; Kolehmainen, E.; Haapaniemi, E.; Sillanpää, M. Spectral and structural studies on Ni(II) dithiocarbamates: Nickel sulfide nanoparticles from a dithiocarbamate precursor. Inorg. Chim. Acta 2015, 425, 239–246. [Google Scholar] [CrossRef]
- Ekennia, A.C.; Onwudiwe, D.C.; Osowole, A.A.; Olasunkanmi, L.O.; Ebenso, E.E. Synthesis, Biological, and Quantum Chemical Studies of Zn(II) and Ni(II) Mixed-Ligand Complexes Derived from N,N-Disubstituted Dithiocarbamate and Benzoic Acid. J. Chem. 2016, 2016, 1–12. [Google Scholar] [CrossRef]
- Anjaneyulu, Y.; Rao, R.P. Preparation, characterization and antimicrobial activity studies on some ternary complexes of Cu(II) with acetylacetone and various salicylic acids. Synth. React. Inorg. Met. Chem. 1986, 16, 257–272. [Google Scholar] [CrossRef]
- Rehman, W.; Baloch, M.K.; Badshah, A. Synthesis, spectral characterization and bio-analysis of some organotin(IV) complexes. Eur. J. Med. Chem. 2008, 43, 2380–2385. [Google Scholar] [CrossRef] [PubMed]
- Mamba, S.M.; Mishra, A.K.; Mamba, B.B.; Njobeh, P.B.; Dutton, M.F.; Fosso-Kankeu, E. Spectral, thermal and in vitro antimicrobial studies of cyclohexylamine-N-dithiocarbamate transition metal complexes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 77, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Ming, L.J. Structure and Function of “Metalloantibiotics”. Med. Res. Rev. 2003, 23, 697–762. [Google Scholar] [CrossRef] [PubMed]
- Salas, P.F.; Herrmann, C.; Orvig, C. Metalloantimalarials. Chem. Rev. 2013, 113, 3450–3492. [Google Scholar] [CrossRef] [PubMed]
- Awang, N.; Mokhtar, N.; Zin, N.M. Research Article Antibacterial activity of organotin(IV) methyl and ethyl cylohexyldithiocarbamate compounds. J. Chem. Pharm. Res. 2015, 7, 379–383. [Google Scholar]
- Bhalodia, N.; Shukla, V. Antibacterial and antifungal activities from leaf extracts of Cassia fistula l.: An ethnomedicinal plant. J. Adv. Pharm. Technol. Res. 2011, 2, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Menezes, D.C.; Vieira, F.T.; De Lima, G.M.; Wardell, J.L.; Cortés, M.E.; Ferreira, M.P.; Soares, M.A.; Vilas Boas, A. The in vitro antifungal activity of some dithiocarbamate organotin(IV) compounds on Candida albicans—A model for biological interaction of organotin complexes. Appl. Organomet. Chem. 2008, 22, 221–226. [Google Scholar] [CrossRef]
- Ferreira, I.P.; De Lima, G.M.; Paniago, E.B.; Rocha, W.R.; Takahashi, J.A.; Pinheiro, C.B.; Ardisson, J.D. Design, structural and spectroscopic elucidation, and the in vitro biological activities of new triorganotin dithiocarbamates—Part II. Polyhedron 2014, 79, 161–169. [Google Scholar] [CrossRef]
- Nash, R.A. Metals in medicine. Altern. Ther. Health Med. 1999, 11, 18–25. [Google Scholar]
- Farrell, N. Transition Metal Complexes as Drugs and Chemotherapeutic Agents. Compr. Coord. Chem. II 2012, 11, 809–840. [Google Scholar]
- Rafique, S.; Idrees, M.; Nasim, A.; Haji, A.; Athar, A. Transition metal complexes as potential therapeutic agents. Biotechnol. Mol. Biol. Rev. Vol. 2010, 5, 38–45. [Google Scholar]
- Bagchi, A.; Mukhergee, P.; Raha, A. A Review on Transition Metal Complex-Mordern Weapon in Medicine. Int. J. Recent Adv. Pharm. Res. 2015, 5, 171–180. [Google Scholar]
- Alama, A.; Tasso, B.; Novelli, F.; Sparatore, F. Organometallic compounds in oncology: Implications of novel organotins as antitumor agents. Drug Discov. Today 2009, 14, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Selwyn, M.J. Triorganotin Compounds as Ionophores and Inhibitors of Ion Translocating ATPases. In Organotin Compounds: New Chemistry and Applications; American Chemical Society: Washinton, DC, USA, 1976; pp. 204–226. [Google Scholar]
- Cain, K.; Griffiths, D.E. Studies of energy-linked reactions. Localization of the site of action of trialkyltin in yeast mitochondria. Biochem. J. 1977, 162, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Cain, K.; Hyams, R.L.; Griffiths, D.E. Studies on energy-linked reactions: Inhibition of oxidative phosphorylation and energy-linked reactions by dibutyltin dichloride. FEBS Lett. 1977, 82, 23–28. [Google Scholar] [CrossRef]
- Niu, L.; Li, Y.; Li, Q. Medicinal properties of organotin compounds and their limitations caused by toxicity. Inorg. Chim. Acta 2014, 423, 2–13. [Google Scholar] [CrossRef]
- Amir, M.K.; Khan, S.; Zia-Ur-Rehman; Shah, A.; Butler, I.S. Anticancer activity of organotin(IV) carboxylates. Inorg. Chim. Acta 2014, 423, 14–25. [Google Scholar] [CrossRef]
- Ali, S.; Zia-Ur-Rehman; Muneeb-Ur-Rehman; Khan, I.; Shah, S.N.A.; Ali, R.F.; Shah, A.; Badshah, A.; Akbar, K.; Bélanger-Gariepy, F. New homobimetallic organotin(IV) dithiocarbamates as potent antileishmanial agents. J. Coord. Chem. 2014, 67, 3414–3430. [Google Scholar] [CrossRef]
- Eng, G.; Song, X.; Duong, Q.; Strickman, D.; Glass, J.; May, L. Synthesis, structure characterization and insecticidal activity of some triorganotin dithiocarbamates. Appl. Organomet. Chem. 2003, 17, 218–225. [Google Scholar] [CrossRef]
- Hadjikakou, S.K.; Hadjiliadis, N. Antiproliferative and anti-tumor activity of organotin compounds. Coord. Chem. Rev. 2009, 253, 235–249. [Google Scholar] [CrossRef]
- Yadav, R.; Awasthi, M.K.; Singh, A.; Kociok-Köhn, G.; Trivedi, M.; Prasad, R.; Shahid, M.; Kumar, A. Molecular structure, supramolecular association and anion sensing by chlorodiorganotin(IV) methylferrocenyldithiocarbamates. J. Mol. Struct. 2017, 1145, 197–203. [Google Scholar] [CrossRef]
- World Health Organization Global action plan on antimicrobial resistance. WHO Press 2015, 1–28.
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adeyemi, J.O.; Onwudiwe, D.C. Organotin(IV) Dithiocarbamate Complexes: Chemistry and Biological Activity. Molecules 2018, 23, 2571. https://doi.org/10.3390/molecules23102571
Adeyemi JO, Onwudiwe DC. Organotin(IV) Dithiocarbamate Complexes: Chemistry and Biological Activity. Molecules. 2018; 23(10):2571. https://doi.org/10.3390/molecules23102571
Chicago/Turabian StyleAdeyemi, Jerry O., and Damian C. Onwudiwe. 2018. "Organotin(IV) Dithiocarbamate Complexes: Chemistry and Biological Activity" Molecules 23, no. 10: 2571. https://doi.org/10.3390/molecules23102571
APA StyleAdeyemi, J. O., & Onwudiwe, D. C. (2018). Organotin(IV) Dithiocarbamate Complexes: Chemistry and Biological Activity. Molecules, 23(10), 2571. https://doi.org/10.3390/molecules23102571