Phytochemical Profile and Biological Activities of Satureja hortensis L.: A Review of the Last Decade
Abstract
:1. Introduction
2. Composition of Satureja hortensis L.
3. Biological Activities of Satureja hortensis L.
3.1. Antioxidant Properties
3.2. Antimicrobial Properties
3.3. Antiparasitic and Pesticidal Properties
3.4. Anti-Inflammatory and Antinociceptive Properties
3.5. Hepatoprotective Properties
3.6. Anticancer Properties
3.7. Other Biological Properties
4. Dosage, Toxicology, Popular and Emerging Uses
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bojor, O. Guide of Medicinal and Aromatic Plants from A to Z. (In Romanian: Ghidul Plantelor Medicinale Şi Aromatice De La A la Z.); Fiat Lux: Bucharest, Romania, 2003; pp. 94–95. [Google Scholar]
- Ravindran, P.N.; Pillai, G.S.; Divakaran, M. Other Herbs and Spices: Mango Ginger to Wasabi. In Handbook of Herbs and Spices; Peter, K.V., Ed.; Woodhead Publishing: Cambridge, UK, 2012; Volume 2, pp. 557–582. [Google Scholar]
- Hamidpour, R.; Hamidpour, S.; Hamidpour, M.; Shahlari, M.; Sohraby, M. Summer Savory: From the Selection of Traditional Applications to the Novel Effect in Relief, Prevention, and Treatment of a Number of Serious Illnesses such as Diabetes, Cardiovascular Disease, Alzheimer’s Disease, and Cancer. J Tradit. Complement. Med. 2014, 4, 140–144. [Google Scholar] [CrossRef] [PubMed]
- De Vos, P. European Materia Medica in Historical Texts: Longevity of a Tradition and Implications for Future Use. J. Ethnopharmacol. 2010, 132, 28–47. [Google Scholar] [CrossRef] [PubMed]
- Momtaz, S.; Abdollahi, M. A Systematic Review of the Biological Activities of Satureja L. Species. Pharmacologyonline 2008, 2, 34–54. [Google Scholar]
- Momtaz, S.; Abdollahi, M. An Update on Pharmacology of Satureja Species; From Antioxidant, Antimicrobial, Antidiabetes and Anti-hyperlipidemic to Reproductive Stimulation. Int. J. Pharmacol. 2010, 6, 346–353. [Google Scholar] [CrossRef]
- Tepe, B.; Cilkiz, M. A pharmacological and phytochemical overview on Satureja. Pharmaceut. Biol. 2015, 54, 375–412. [Google Scholar]
- Scopus Data Base. Available online: https://www.scopus.com/search/ (accessed on 18 August 2018).
- Mihajilov-Krstev, T.; Radnović, D.; Kitić, D.; Zlatković, B.; Ristić, M.; Branković, S. Chemical composition and antimicrobial activity of Satureja hortensis L. essential oil. Open Life Sci. 2009, 4, 411–416. [Google Scholar] [CrossRef]
- Mahboubi, M.; Kazempour, N. Chemical composition and antimicrobial activity of Satureja hortensis and Trachyspermum copticum essential oil. Iran J. Microbiol. 2011, 3, 194–200. [Google Scholar] [PubMed]
- Farzaneh, M.; Kiani, H.; Sharifi, R.; Reisi, M.; Hadian, J. Chemical composition and antifungal effects of three species of Satureja (S. hortensis, S. spicigera, and S. khuzistanica) essential oils on the main pathogens of strawberry fruit. Postharvest Biol. Technol. 2015, 109, 145–151. [Google Scholar] [CrossRef]
- Saeidnia, S.; Gohari, A.R.; Manayi, A.; Kourepaz-Mahmoodabadi, M. Satureja: Ethnomedicine, Phytochemical Diversity and Pharmacological Activities; Springer: Cham, Switzerland, 2016; pp. 31–40. [Google Scholar]
- Katar, D.; Kacar, O.; Kara, N.; Aytaç, Z.; Göksu, E.; Kara, S.; Katar, N.; Erbaş, S.; Telci, I.; Elmastaş, M. Ecological variation of yield and aroma components of summer savory (Satureja hortensis L.). J. Appl. Res. Med. Arom. Plants 2017, 7, 131–135. [Google Scholar] [CrossRef]
- Boroja, T.; Katanić, J.; Rosić, G.; Selaković, D.; Joksimović, J.; Mišić, D.; Stanković, V.; Jovičić, N.; Mihailović, V. Summer savory (Satureja hortensis L.) extract: Phytochemical profile and modulation of cisplatin-induced liver, renal and testicular toxicity. Food Chem. Toxicol. 2018, 118, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Mašković, P.; Veličković, V.; Mitić, M.; Đurović, S.; Zeković, Z.; Radojković, M.; Cvetanović, A.; Švarc-Gajić, J.; Vujić, J. Summer savory extracts prepared by novel extraction methods resulted in enhanced biological activity. Ind. Crop Prod. 2017, 109, 875–881. [Google Scholar] [CrossRef]
- Moghadam, S.E.; Ebrahimi, S.N.; Gafner, F.; Ochola, J.B.; Marubu, R.M.; Lwande, W.; Haller, B.F.; Salehi, P.; Hamburger, M. Metabolite profiling for caffeic acid oligomers in Satureja biflora. Ind. Crop Prod. 2015, 76, 892–899. [Google Scholar] [CrossRef]
- Mohtashami, S.; Rowshan, V.; Tabrizi, L.; Babalar, M.; Ghani, A. Summer savory (Satureja hortensis L.) essential oil constituent oscillation at different storage conditions. Ind. Crop Prod. 2018, 111, 226–231. [Google Scholar] [CrossRef]
- Estaji, A.; Roosta, H.R.; Rezaei, S.A.; Hosseini, S.S.; Niknam, F. Morphological, physiological and phytochemical response of different Satureja hortensis L. accessions to salinity in a greenhouse experiment. J. Appl. Res. Med. Aromat. Plants 2018, 10, 25–33. [Google Scholar] [CrossRef]
- Fathi, A.; Sahari, M.; Barzegar, M.; Naghdi Badi, H. Antioxidant activity of Satureja hortensis L. essential oil and its application in safflower oil. J. Med. Plants 2013, 1, 51–67. [Google Scholar]
- Feyzioglu, G.C.; Tornuk, F. Development of chitosan nanoparticles loaded with summer savory (Satureja hortensis L.) essential oil for antimicrobial and antioxidant delivery applications. LWT Food Sci. Technol. 2016, 70, 104–110. [Google Scholar] [CrossRef]
- Shojaee-Aliabadi, S.; Hosseini, H.; Mohammadifar, M.A.; Mohammadi, A.; Ghasemlou, M.; Ojagh, S.M.; Hosseini, S.M.; Khaksar, R. Characterization of antioxidant-antimicrobial κ-carrageenan films containing Satureja hortensis essential oil. Int. J. Biol. Macromol. 2013, 52, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Samadi, N.; Masoum, S.; Mehrara, B.; Hosseini, H. Application of linear multivariate calibration techniques to identify the peaks responsible for the antioxidant activity of Satureja hortensis L. and Oliveria decumbens Vent. essential oils by gas chromatography–mass spectrometry. J. Chromatogr. B 2015, 1001, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Bahramikia, S.; Yazdanparast, R.; Nosrati, N. A comparision of antioxidant capacities of ethanol extracts of Satureja hortensis and Artemisia dracunculus leaves. Pharmacologyonline 2008, 2, 694–704. [Google Scholar]
- Ramos, M.; Beltrán, A.; Peltzer, M.; Valente, A.J.M.; del Carmen Garrigós, M. Release and antioxidant activity of carvacrol and thymol from polypropylene active packaging films. LWT Food Sci. Technol. 2014, 58, 470–477. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Gan, Z.; Zhao, J.; Wang, Y.; Zhang, S.; Li, J.; Ni, Y. In vitro comparison of antioxidant capacity of cumin (Cuminum cyminum L.) oils and their main components. LWT Food Sci. Technol. 2014, 55, 632–637. [Google Scholar] [CrossRef]
- Chua, L.S.; Lau, C.H.; Chew, C.Y.; Ismail, N.I.M.; Soontorngun, N. Phytochemical profile of Orthosiphon aristatus extracts after storage: Rosmarinic acid and other caffeic acid derivatives. Phytomedicine 2018, 39, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, T.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Food 2018, 40, 68–75. [Google Scholar] [CrossRef]
- Aksu, M.I.; Ozer, H. Effects of lyophilized water extract of Satureja hortensis on the shelf life and quality properties of ground beef. J. Food Process. Preserv. 2013, 37, 777–783. [Google Scholar] [CrossRef]
- Vahidyan, H.; Sahari, M.A.; Barzegar, M.; Naghdi Badi, H. Application of Zataria multiflora Boiss. and Satureja hortensis L. essential oils as two natural antioxidants in Mayonnaise formulated with linseed oil. J. Med. Plants 2012, 11, 69–79. [Google Scholar]
- Jafari, F.; Ghavidel, F.; Zarshenas, M.M. A Critical Overview on the Pharmacological and Clinical Aspects of Popular Satureja Species. J. Acupunct. Meridian Stud. 2016, 9, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.M.; Hosseini, H.; Mohammadifar, M.A.; Mortazavian, A.M.; Mohammadi, A.; Khosravi-Darani, K.; Shojaee-Aliabadi, S.; Dehghan, S.; Khaksar, R. Incorporation of essential oil in alginate microparticles by multiple emulsion/ionic gelation process. Int. J. Biol. Macromol. 2013, 62, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Shirzad, H.; Hassani, A.; Abdollahi, A.; Ghosta, Y.; Finidokht, S.R. Assessment of the Preservative Activity of Some Essential Oils to Reduce Postharvest Fungal Rot on Kiwifruits (Actinidia deliciosa). J. Essent. Oil Bear. Plants 2011, 14, 175–184. [Google Scholar] [CrossRef]
- Iturriaga, L.; Olabarrieta, I.; de Marañón, I.M. Antimicrobial assays of natural extracts and their inhibitory effect against Listeria innocua and fish spoilage bacteria, after incorporation into biopolymer edible films. Int. J. Food Microbiol. 2012, 1, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Dikbas, N.; Dadasoglu, F.; Kotan, R.; Cakir, A. Influence of Summer Savory Essential Oil (Satureja hortensis) on Decay of Strawberry and Grape. J. Essent. Oil Bear. Plants 2011, 14, 151–160. [Google Scholar] [CrossRef]
- Abdolahi, A.; Hassani, A.; Ghosta, Y.; Bernousi, I.; Meshkatalsadat, M. Study on the potential use of essential oils for decay control and quality preservation of Tabarzeh table grape. J. Plant Prot. Res. 2010, 50, 45–52. [Google Scholar] [CrossRef]
- Abdollahi, A.; Hassani, A.; Ghosta, Y.; Meshkatalsadat, M.H.; Shabani, R. Screening of antifungal properties of essential oils extracted from sweet basil, fennel, summer savory and thyme against postharvest phytopathogenic fungi. J. Food Saf. 2011, 31, 350–356. [Google Scholar] [CrossRef]
- Nabigol, A. Chemical composition and anti-fungal activities of three essential oils from Satureja spp. on four post-harvest pathogens of strawberry fruit. J. Hortic. Sci. Biotechnol. 2011, 86, 371–376. [Google Scholar] [CrossRef]
- Alizadeh, A.; Zamani, E.; Sharaifi, R.; Javan-Nikkhah, M.; Nazari, S. Antifungal activity of some essential oils against toxigenic Aspergillus species. Commun Agric. Appl. Biol. Sci. 2010, 75, 761–767. [Google Scholar] [PubMed]
- Alizadeh-Salteh, S.; Arzani, K.; Omidbeigi, R.; Safaie, N. Essential oils inhibit mycelial growth of Rhizopus stolonifer. Eur. J. Hortic. Sci. 2010, 75, 278–282. [Google Scholar]
- Saharkhiz, M.J.; Zomorodian, K.; Rezaei, M.R.; Saadat, F.; Rahimi, M.J. Influence of growth phase on the essential oil composition and antimicrobial activities of Satureja hortensis. Nat. Prod. Commun. 2011, 6, 1173–1178. [Google Scholar] [PubMed]
- Djenane, D.; Yangüela, J.; Roncalés, P.; Aider, M. Use of essential oils as natural food preservatives: Effect on the growth of Salmonella enteritidis in liquid whole eggs stored under abuse refrigerated conditions. J. Food Res. 2013, 2, 65–78. [Google Scholar] [CrossRef]
- Sagdic, O.; Ozturk, I.; Tornuk, F. Inactivation of non-toxigenic and toxigenic Escherichia coli O157:H7 inoculated on minimally processed tomatoes and cucumbers: Utilization of hydrosols of Lamiaceae spices as natural food sanitizers. Food Control 2013, 30, 7–14. [Google Scholar] [CrossRef]
- Kačániová, M.; Terentjeva, M.; Vukovic, N.; Puchalski, C.; Roychoudhury, S.; Kunová, S.; Klūga, A.; Tokár, M.; Kluz, M.; Ivanišová, E. The antioxidant and antimicrobial activity of essential oils against Pseudomonas spp. isolated from fish. Saud Pharmaceut. J. 2017, 25, 1108–1116. [Google Scholar] [CrossRef] [PubMed]
- Gursoy, U.K.; Gursoy, M.; Gursoy, O.V.; Cakmakci, L.; Könönenb, E.; Uitto, V.K. Anti-biofilm properties of Satureja hortensis L. essential oil against periodontal pathogens. Anaerobe 2009, 15, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Sharifzadeh, A.; Khosravi, A.R.; Ahmadian, S. Chemical composition and antifungal activity of Satureja hortensis L. essentiall oil against planktonic and biofilm growth of Candida albicans isolates from buccal lesions of HIV+ individuals. Microb. Pathogen. 2016, 96, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gumus, T. Determination of the changes of antifungal properties of Satureja hortensis, Thymus vulgaris and Thymbra spicata exposed to gamma irradiation. Radiat. Phys. Chem. 2010, 79, 109–114. [Google Scholar] [CrossRef]
- Kotan, R.; Dadasoglu, F.; Karagoz, K.; Cakir, A.; Ozer, H.; Kordali, S.; Cakmakci, R.; Dikbas, N. Antibacterial activity of the essential oil and extracts of Satureja hortensis against plant pathogenic bacteria and their potential use as seed disinfectants. Sci. Hortic. 2013, 153, 34–41. [Google Scholar] [CrossRef]
- Hezarjaribi, H.Z.; Elmi, T.; Dayer, M.S.; Gholami, S.; Fakhar, M.; Akbariqomi, M.; Ghaffarifar, F. A Systematic review of the effects of Iranian pharmaceutical plant extracts on Giardia lamblia. Asian Pac. J. Trop. Dis. 2015, 5, 925–929. [Google Scholar] [CrossRef]
- Safarnejad Tameshkel, F.; Khatami Nejad, M.R.; Nasrollahi, A.; Rahdari, P.; Gholam Hossein Poor, F.; Kazemi Afarmejani, S.; Rahnavard, A. The antimicrobial effect of methanol extracts of Eucalyptus, Satureia hortensis and Heracleum glabrescens on Giardia cysts. Med. Lab. J. 2012, 6, 21–27. [Google Scholar]
- Soosaraei, M.; Fakhar, M.; Teshnizi, S.H.; Hezarjaribi, H.Z.; Banimostafavi, E.S. Medicinal plants with promising antileishmanial activity in Iran: A systematic review and meta-analysis. Ann. Med. Surg. (Lond.) 2017, 21, 63–80. [Google Scholar] [CrossRef] [PubMed]
- Pirali, K.K.; Dehghani, S.A.; Adel, M.; Hoseinpour, F. The effect of essential oil of Nigella sativa and Satureja hortensis on promastigot stage of Leishmania major. Armaghan-e-Danesh 2013, 18, 687–698. [Google Scholar]
- Pavela, R. Larvicidal property of essential oils against Culex quinquefasciatus Say (Diptera: Culicidae). Ind. Crop Prod. 2009, 30, 311–315. [Google Scholar] [CrossRef]
- Tozlu, E.; Cakir, A.; Kordali, S.; Tozlu, G.; Ozer, H.; Aytas Akcin, T. Chemical Compositions and Insecticidal Effects of Essential Oils Isolated from Achillea gypsicola, Satureja hortensis, Origanum acutidens and Hypericum scabrum Against Broadbean Weevil (Bruchus, Dentipes). Sci. Hortic. 2011, 130, 9–17. [Google Scholar] [CrossRef]
- Yildirim, E.; Kordali, S.; Yazici, G. Insecticidal effects of essential oils of eleven plant species from Lamiaceae on Sitophilus granarius (L.) (Coleoptera: Curculionidae). Rom. Biotech. Lett. 2011, 16, 6702–6709. [Google Scholar]
- Sajfrtova, M.; Sovova, H.; Karban, J.; Rochova, K.; Pavela, R.; Barnet, M. Effect of separation method on chemical composition and insecticidal activity of Lamiaceae isolates. Ind. Crop Prod. 2013, 47, 69–77. [Google Scholar] [CrossRef]
- Ahmadi, A.; Saber, M.; Akbari, A.; Mahdavinia, G.R. Encapsulation of Satureja hortensis L. (Lamiaceae) in chitosan/TPP nanoparticles with enhanced acaricide activity against Tetranychus urticae Koch (Acari: Tetranychidae). Ecotoxicol. Environ. Saf. 2018, 161, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Hazrati, H.; Saharkhiz, M.J.; Niakousari, M.; Moein, M. Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotoxicol. Environ. Saf. 2017, 142, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Hajhashemi, V.; Zolfaghari, B.; Yousefi, A. Antinociceptive and anti-inflammatory activities of Satureja hortensis seed essential oil, hydroalcoholic and polyphenolic extracts in animal models. Med. Princ. Pract. 2012, 21, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Vafaei, A.A.; Miladi-Gorji, H.; Taherian, A.A.; Bagerian, M. Effects of Valeriane officinalis, Satureja hortensis, and Mentha piperita extracts on the withdrawal syndrome signs in mice. Koomesh 2011, 12, 342–347. [Google Scholar]
- Bahmani, M.; Shirzad, H.; Majlesi, M.; Shahinfard, N.; Rafieian-Kopaei, M. A review study on analgesic applications of Iranian medicinal plants. Asian Pac. J. Trop Dis. 2014, 7, S43–S53. [Google Scholar] [CrossRef]
- Misharina, T.A.; Burlakova, E.B.; Fatkullina, L.D.; Terenina, M.B.; Krikunova, N.I.; Vorobeva, A.K.; Erokhin, V.N.; Goloshchapov, A.N. Changes in fatty acid composition in the brain and liver in aging mice of high cancer risk AKR strain and effect of savory essential oil administration on leukemic process. Biomed. Khim 2011, 57, 604–614. [Google Scholar] [CrossRef] [PubMed]
- Caillet, S.; Lessard, S.; Lamoureux, G.; Lacroix, M. Umu test applied for screening natural antimutagenic agents. Food Chem. 2011, 124, 1699–1707. [Google Scholar] [CrossRef]
- Ceker, S.; Agar, G.; Alpsoy, L.; Nardemir, G.; Kizil, H.E. Antagonistic effects of Satureja hortensis essential oil against AFB1 on human lymphocytes in vitro. Tsitol. Genet. 2014, 48, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Carvalho Costa, D.; Costa, H.S.; Gonçalves Albuquerque, T.; Ramos, F.; Castilho, M.C.; Sanches-Silva, A. Advances in phenolic compounds analysis of aromatic plants and their potential applications. Trends Food Sci. Technol. 2015, 45, 336–354. [Google Scholar] [CrossRef]
- Hassanzadeh, M.K.; Najaran, Z.T.; Nasery, M.; Emami, S.A. Summer Savory (Satureja hortensis L.) Oils. In Essential Oils in Food Preservation, Flavor and Safety; Preedy, V.R., Ed.; Academic Press: Cambridge/London, UK, 2016; pp. 757–764. [Google Scholar]
- Neves, J.M.; Matos, C.; Moutinho, C.; Queiroz, G.; Gomes, L.R. Ethnopharmacological notes about ancient uses of medicinal plants in Trás-os-Montes (northern of Portugal). J. Ethnopharmacol. 2009, 124, 270–283. [Google Scholar] [CrossRef] [PubMed]
- Jarića, S.; Mačukanović-Jocić, M.; Djurdjević, L.; Mitrović, M.; Kostić, O.; Karadžić, B.; Pavlović, P. An ethnobotanical survey of traditionally used plants on Suva planina mountain (south-eastern Serbia). J. Ethnopharmacol. 2015, 174, 93–108. [Google Scholar]
- Carrio, E.; Valles, J. Ethnobotany of medicinal plants used in Eastern Mallorca (Balearic Islands, Mediterranean Sea). J. Ethnopharmacol. 2012, 141, 1021–1040. [Google Scholar] [CrossRef] [PubMed]
- Tuzlacı, E.; Isbilen, D.F.A.; Bulut, G. Turkish folk medicinal plants, VIII: Lalapaşa (Edirne). Marmara Pharm. J. 2010, 14, 47–52. [Google Scholar] [CrossRef]
- Shakeri, F.; Boskabady, M.H. A review of the relaxant effect of various medicinal plants on tracheal smooth muscle, their possible mechanism(s) and potency. J. Ethnopharmacol. 2015, 175, 528–548. [Google Scholar] [CrossRef] [PubMed]
- Vladimir-Knežević, S.; Blažeković, B.; Kindl, M.; Vladić, J.; Lower-Nedza, A.D.; Brantner, A.H. Acetylcholinesterase Inhibitory, Antioxidant and Phytochemical Properties of Selected Medicinal Plants of the Lamiaceae Family. Molecules 2014, 19, 767–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tepe, B. Inhibitory effect of Satureja on certain types of organisms. Rec. Nat. Prod. 2015, 9, 1–18. [Google Scholar]
- Bosi, G.; Mazzanti, M.B.; Montecchi, M.C.; Torri, P.; Rinaldi, R. The life of a Roman colony in Northern Italy: Ethnobotanical information from archaeobotanical analysis. Quatern. Int. 2017, 460, 135–156. [Google Scholar] [CrossRef]
- Ravindran, P.N. The Encyclopedia of Herbs and Spices; CABI: Wallingford, UK, 2017; pp. 926–928. [Google Scholar]
- CFR-Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm?fr=182.20 (accessed on 18 August 2018).
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crop Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- The Good Scents Company Information System. Available online: http://www.thegoodscentscompany.com/data/es1034571.html (accessed on 18 August 2018).
- Buckle, J. Essential Oil Toxicity and Contraindications. In Clinical Aromatherapy (Third Edition) Essential Oils in Healthcare; Churchill Livingstone: London, UK, 2016; pp. 73–94. [Google Scholar]
- Chiej, R. Encyclopaedia of Medicinal Plants; Little, Brown: New York, NY, USA, 1984; ISBN 0-356-10541-5. [Google Scholar]
- Panesar, P.S.; Joshi, V.K.; Panesar, R.; Abrol, G.S. Vermouth: Technology of Production and Quality Characteristics. Adv. Food Nutr. Res. 2011, 63, 251–283. [Google Scholar] [PubMed]
- Tajkarimi, M.M.; Ibrahim, S.A.; Cliver, D.O. Antimicrobial herb and spice compounds in food. Food Control 2010, 21, 1199–1218. [Google Scholar] [CrossRef]
- Kraśniewska, K.; Gniewosz, M.; Synowiec, A.; Przybył, J.L.; Bączek, K.; Węglarz, Z. The use of pullulan coating enriched with plant extracts from Satureja hortensis L. to maintain pepper and apple quality and safety. Postharvest Biol. Technol. 2014, 90, 63–72. [Google Scholar] [CrossRef]
- Peretto, G.; Du, W.X.; Avena-Bustillos, R.J.; Sarreal, S.B.L.; Hua, S.H.T.; Sambo, P.; McHugh, T.H. Increasing strawberry shelf-life with carvacrol and methyl cinnamate antimicrobial vapors released from edible films. Postharvest Biol. Technol. 2014, 89, 11–18. [Google Scholar] [CrossRef]
- Khaneghah, A.M.; Hashemi, S.M.B.; Limbo, S. Antimicrobial agents and packaging systems in antimicrobial active food packaging: An overview of approaches and interactions. Food Bioprod. Process. 2018, 111, 1–19. [Google Scholar] [CrossRef]
- Rasaee, I.; Ghannadnia, M.; Baghshahi, S. Biosynthesis of silver nanoparticles using leaf extract of Satureja hortensis treated with NaCl and its antibacterial properties. Microporous Mesoporous Mat. 2018, 264, 240–247. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Origin | Harvesting | Material | Composition (Main Components) | Analysis Method | Ref. |
---|---|---|---|---|---|
Serbia, cultivated | Beginning of flowering stage | Aerial parts—Essential oil | Carvacrol (67.00%), γ-terpinene (15.30%), p-cymene (6.73%), α-terpinene (1.29%), β-caryophyllene (1.90%) β-bisabolene (1.01%) | GC-FID, GC-MS | [9] |
Iran, Cultivated | - | Aerial parts—Essential oil | Thymol (28.2%), p-cymene (19.6%), γ-terpinene (16%), carvacrol (11%), β-pinene (4.5%), sabinene (4.4%), α-pinene (2.7%), 4-terpineole (1.6%) | GC-MS | [10] |
Lorestan province, Iran, wild-growing | Summer | Aerial parts—Essential oil | Carvacrol (48%), γ-terpinene (24.2%), p-cymene (11.7%), α-thujene (2.3%), α-pinene (2.5%), myrcene (2.5%), β-pinene (1.6%) | GC-FID and GC-MS | [11] |
Isparta, Turkey, cultivated | Beginning of flowering stage | Aerial parts—essential oil | Carvacrol (50.5%), γ-terpinene (32.7%), p-cymene (3.4%), α-terpinene (4.1%), β–myrcene (2.1%) α–thujene (2.1%), α-pinene (1.5%) | GC and GC-MS | [13] |
Kütahya, Turkey, cultivated | Beginning of flowering stage | Aerial parts—essential oil | Carvacrol (46.9%), γ-terpinene (38.7%), p-cymene (3.6%), α-terpinene (3.8%), β–myrcene (1.9%) α–thujene (1.3%), α-pinene (0.7%) | GC and GC-MS | [13] |
Eskişehir, Turkey, cultivated | Beginning of flowering stage | Aerial parts—essential oil | Carvacrol (47.7%), γ-terpinene (34.5%), p-cymene (4.0%), α-terpinene (4.1%), β-myrcene (2.4%) α-thujene (2.1%), α-pinene (1.6%) | GC and GC-MS | [13] |
Bursa, Turkey, cultivated | Beginning of flowering stage | Aerial parts—essential oil | Carvacrol (42.3%), γ-terpinene (36.7%), p-cymene (4.0%), α-terpinene (4.9%), β-myrcene (2.8%) α-thujene (2.9%), α-pinene (2.2%) | GC and GC-MS | [13] |
Tokat, Turkey, cultivated | Beginning of flowering stage | Aerial parts—essential oil | Carvacrol (41.4%), γ-terpinene (36.6%), p-cymene (5.5%), α–terpinene (4.7%), β-myrcene (2.7%) α-thujene (2.5%), α-pinene (2.3%) | GC and GC-MS | [13] |
Serbia, wild-growing | Flowering season (August) | Aerial parts—methanolic extract | Rosmarinic acid (2.49%), caffeic acid (0.129%), naringenin (0.106%), isoferulic acid (0.022%), apigenin (0.016%) | UHPLC | [14] |
Serbia, wild-growing | August | Aerial parts—Soxhlet extraction, ethanol | TPC: 119.28 mg GAE/g, TFC: 5.23 mg RU/g, CT: 41.74 mg GAE/g, GA: 12.32 mg GAE/g, TAC: 103 mg CGE/g, rosmarinic acid 301 µg/g, quercetin 155 µg/g, luteolin 40 µg/g, kaempferol 46 µg/g, apigenin 52 µg/g, chlorogenic acid 36 µg/g, rutin 33 µg/g, apigenin-glycoside 24 µg/g | Colori-metric, HPLC | [15] |
Serbia, wild-growing | August | Aerial parts—Maceration-ethanol | TPC: 125.34 mg GAE/g, TFC: 16.27 mg RU/g, CT: 47.2 mg GAE/g, GA: 18.54 mg GAE/g, TAC: 115.21 mg CGE/g, rosmarinic acid 287 µg/g, quercetin 1.7 µg/g, luteolin 1.2 µg/g, kaempferol 11 µg/g, apigenin 3 µg/g, chlorogenic acid 17 µg/g, rutin 10 µg/g, apigenin-glycoside 2 µg/g | Colori-metric, HPLC | [15] |
Serbia, wild-growing | August | Aerial parts—Ultrasounds extraction-ethanol | TPC: 132.4 mg GAE/g, TFC: 19.68 mg RU/g, CT: 52.65 mg GAE/g, GA: 21.87 mg GAE/g, TAC: 121.59 mg CGE/g, rosmarinic acid 1.3 µg/g, quercetin 6.4 µg/g, luteolin 0.8 µg/g, kaempferol 1.2 µg/g, apigenin 1.4 µg/g, rutin 24 µg/g, apigenin-glycoside 0.8 µg/g | Colori-metric, HPLC | [15] |
Serbia, wild-growing | August | Aerial parts—Microwave extraction-ethanol | TPC: 147.21 mg GAE/g, TFC: 23.1 mg RU/g, CT: 64.43 mg GAE/g, GA: 25.35 mg GAE/g, TAC: 135.32 mg CGE/g, rosmarinic acid 9.6 µg/g, quercetin 41.2 µg/g, luteolin 1.1 µg/g, kaempferol 1.9 µg/g, apigenin 2.3 µg/g, rutin 28.4 µg/g, apigenin-glycoside 2.6 µg/g | Colori-metric, HPLC | [15] |
Serbia, wild-growing | August | Aerial parts—Subcritical water extraction | TPC: 151.54 mg GAE/g, TFC: 28.2 mg RU/g, CT: 73.2 mg GAE/g, GA: 31.5 mg GAE/g, TAC: 144.57 mg CGE/g rosmarinic acid 2.6 µg/g, quercetin 11 µg/g, luteolin 0.4 µg/g, kaempferol 1.1 µg/g, apigenin 0.8 µg/g, rutin 16.6 µg/g, apigenin-glycoside 0.88 µg/g | Colori-metric, HPLC | [15] |
Switzerland, Cultivated | - | Aerial parts—methanolic extract | Rosmarinic acid 4.2 mg/g, clinopodic acid i 1.8 mg/g, clinopodic acid O—1.1 mg/g, clinopodic acid P—0.5 mg/g | HPLC | [16] |
Iran, cultivated | Full flowering stage | Aerial part—essential oil | α-Pinene (0.81%), α-thujene (1.3%), α-phellandrene (0.33%), β-pinene (0.45%), α-terpinene (3.79%), myrcene (2.05%), β-phellandrene (0.26%), p-cymene (2.53%), γ-terpinene (35.4%), carvacrol (50.69%) | GC-MS | [17] |
Iran, cultivated | Flowering stage | Leaves—ethanol extract | 0.26–0.32 mg/g, depending on the accession | Colori-metric | [18] |
Iran, cultivated | Flowering stage | Aerial part—essential oil | Carvacrol (26–45.6%), γ-terpinene (14.9–22.33%), p-cymene (9.84–32.31%), myrcene (2.23–2.78%), β-pinene (1.20–1.73%) depending on the accession | GC-MS | [18] |
Origin | Part of Plant/Product | Activity | Tests Performed | Main involved Components | Ref. |
---|---|---|---|---|---|
Iran, cultivated | Aerial parts/EO | Antimicrobial | Micro broth dilution assay. | Thymol, carvacrol, p-cymene, other minor components | [10] |
Serbia, wild-growing | Aerial parts/extract | Antioxidant, Hepatoprotective | In vivo assay–determination of SOD, CAT, GSH and TBARS/biochemical analyses, histopathological analyses | Rosmarinic and caffeic acids | [14] |
Serbia, wild-growing | Aerial parts/extract | Antioxidant, Cytotoxic, Antibacterial | Total antioxidant capacity, lipid peroxidation, hydroxyl radical scavenging, DPPH/MTT assay/MIC determination by microdilution method | Total phenolics, total flavonoids, condensed tannins, gallotannins, total anthocyanins | [15] |
Iran, commercially available | EO | Antioxidant | DPPH, ABTS, Ferric thiocyanate, β-carotene bleaching, Tiobarbituric acid assays | Total phenolic compounds: 293.7 mg GAE/mL EO | [19] |
Turkey, Cultivated | Leaves/EO loaded in chitosan nanoparticles | Antioxidant, Antimicrobial | DPPH assay, Broth dilution method | Carvacrol | [20] |
Iran, commercially available | EO in κ-carrageenan films | Antioxidant, Antimicrobial | DPPH assay, Disc diffusion method, Disc volatilization method | Carvacrol, γ-terpinene and p-cymene | [21] |
Iran, wild-growing | Aerial parts, EO | Antioxidant | DPPH assay | p-Cymene, carvacrol β-bisabolene | [22] |
Iran, wild-growing | Aerial parts, extract | Antioxidant | DPPH, ABTS, FRAP assays | Total phenolic content, Total flavonoid content | [23] |
Turkey | Leaves/extract | Antioxidant, Antimicrobial | TBARS assay/Total aerobic mesophilic, psychrotrophic, Pseudomonas and enterobacteriaceae counts | NA | [28] |
Iran, commercially available | EO | Antioxidant | Peroxide value, Conjugated diene hydroperoxides, Thiobarbituric acid value | NA | [29] |
Iran, commercially available | EO loaded in chitosan microparticles | Antioxidant, Antimicrobial | DPPH assay/Agar diffusion assay | Carvacrol, γ-terpinene, p-cymene | [31] |
Iran, wild-growing | Aerial parts/EO | Antifungal | Evaluation of the decay of treated kiwi fruits | Thymol, other minor components | [32] |
Belgium, commercially available | EO and EO-containing biopolymers | Antimicrobial | Disc diffusion method, Vapor-phase antimicrobial activity, MIC determination | Phenolic compounds | [33] |
Turkey, wild growing | Aerial parts/EO | Antifungal | Evaluation of the treated fruits decay | Carvacrol and thymol | [34] |
Iran, wild growing | Aerial parts/EO | Antifungal | In vitro antifungal test, Evaluation of the treated grapes decay | Phenolic compounds | [35] |
Iran, cultivated | Aerial parts/EO | Antifungal | Poison food medium and vapor phase assay methods | Phenolic components (thymol, carvacrol), synergetic effects | [36] |
Iran, wild-growing | Aerial parts/EO | Antifungal | Determination of MIC and MFC, Evaluation of the treated strawberry decay | Carvacrol, thymol | [37] |
Iran, cultivated | Leaves and flowers/EO | Antifungal | Poisonous medium technique | Phenolic compounds | [38] |
Iran | EO | Antifungal | Agar dilution method, vapor phase assay | Phenolic compounds (thymol and carvacrol) | [39] |
Iran | Aerial parts/EO | Antimicrobial | Broth dilution method | γ-Terpinene, carvacrol | [40] |
Algeria, wild-growing | Aerial parts/EO | Antibacterial | Agar diffusion, Determination of MIC, liquid whole eggs inoculated with S. enteritidis and exposed to EO | Synergetic effects between major components (carvacrol, p-cymene, γ-terpinene) and minor constituents | [41] |
Turkey, cultivated | Leaves/hydrosol | Antimicrobial | Inhibition effect on E. coli inoculated tomato and cucumber | Carvacrol, thymol, o-cymene, linalool, borneol | [42] |
Slovakia, commercially available | EO | Antioxidant, Antimicrobial | DPPH assay/Agar disc diffusion method, detection of MIC | Carvacrol, γ-terpinene, α-terpinene, p-cymene | [43] |
Turkey, wild-growing | Leaves and flowers/EO | Antimicrobial | Determination of MIC, effect on biofilm formation | Carvacrol | [44] |
Iran, cultivated | Leaves/EO | Antimicrobial | Microdilution broth susceptibility method, determination of MIC and MFC, antibiofilm–MTT reduction assay | Thymol, γ-terpinene, carvacrol, p-cymene | [45] |
Turkey, wild-growing | Flowers and leaves/Extracts | Antifungal | Inhibition of fungal growth, effect on mycelium weight | NA | [46] |
Turkey, wild-growing | Aerial parts/EO, extracts | Antibacterial/germination inhibition | Disc diffusion method, MIC determination/Pot assay | Carvacrol and thymol | [47] |
Iran | Leaves/extract | Antiparasitic | Evaluation of cysts fatality placed near extract | NA | [48,49] |
Iran | Aerial parts/EO | Antiparasitic | Evaluation of Leishmania parasites survival after exposure to EO | NA | [50,51] |
Czech Republic, wild-growing | Aerial parts/EO | Larvicidal | Mosquito larvicidal assay, effect of lethal doses on larval development, oviposition deterrent effect | Carvacrol, γ-terpinene, p-cymene, α-terpinene, myrcene, β-bisabolene | [52] |
Turkey, wild-growing | Aerial parts/EO | Insecticidal | Evaluation of mortality of B. dentipes exposed to EO | Carvacrol, thymol, p-cymene | [53] |
Turkey, wild-growing | Aerial parts/EO | Insecticidal | Evaluation of the mortality rate of adults of S. granaries exposed to EO | NA | [54] |
Czech Republic, cultivated | Aerial parts/EO, extracts | Insecticidal | Mortality determined by topical application to Spodoptera littoralis, Musca domestica, Culex quinquefasciatus, Leptinotarsa decemlineata | Carvacrol, γ-terpinene, p-cymene/volatile components in isolates | [55] |
Iran, wild-growing | Aerial parts/EO | Acaricidal | Evaluation of fumigant toxicity against adults and eggs of Tetranychus urticae Koch | Monoterpenes and monoterpene hydrocarbons | [56] |
Iran, wild-growing | Aerial parts/EO | Herbicidal/germination inhibition | Evaluation of weed control properties/evaluation of germination percentage upon exposure to EO nanoemulsion | Carvacrol, γ-terpinene, minor components | [57] |
Iran, wild-growing | Seeds/EO, extract, polyphenolic fraction | Antinociceptive, Anti-inflammatory | Mice and rats tests-Acetic acid-induced writhing, Formalin test/carrageenan-induced rat paw edema | γ-Terpinene, thymol/flavonoids, polyphenoli ccompounds | [58] |
Iran | Aerial parts/extract | Detoxification | Diminishing the morphine withdrawal syndrome signs | NA | [59] |
Great Britain, commercially available | EO | Anticancer, Chemopreventive | In vivo assay on mice with cancer risk; biochemical analyses, histopathological analyses | NA | [61] |
Canada, cultivated | Aerial parts/Extract | Antimutagenic | Umu test | NA | [62] |
Turkey, wild-growing | Aerial parts/EO | Protective effect against AFB1 mutagen, Antioxidant | Measurement of SCE and MN frequencies, biochemical analyses (SOD, GPx, MDA). | Carvacrol, thymol, α-terpinene, γ-terpinene, p-cymene | [63] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fierascu, I.; Dinu-Pirvu, C.E.; Fierascu, R.C.; Velescu, B.S.; Anuta, V.; Ortan, A.; Jinga, V. Phytochemical Profile and Biological Activities of Satureja hortensis L.: A Review of the Last Decade. Molecules 2018, 23, 2458. https://doi.org/10.3390/molecules23102458
Fierascu I, Dinu-Pirvu CE, Fierascu RC, Velescu BS, Anuta V, Ortan A, Jinga V. Phytochemical Profile and Biological Activities of Satureja hortensis L.: A Review of the Last Decade. Molecules. 2018; 23(10):2458. https://doi.org/10.3390/molecules23102458
Chicago/Turabian StyleFierascu, Irina, Cristina Elena Dinu-Pirvu, Radu Claudiu Fierascu, Bruno Stefan Velescu, Valentina Anuta, Alina Ortan, and Viorel Jinga. 2018. "Phytochemical Profile and Biological Activities of Satureja hortensis L.: A Review of the Last Decade" Molecules 23, no. 10: 2458. https://doi.org/10.3390/molecules23102458