Effect of Sunlight Radiation on the Growth and Chemical Constituents of Salvia plebeia R.Br.
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Appearance of S. plebeia Cultivated under Different Growth Conditions
2.2. Composition of Flavonoids and Phenolic Compounds in S. plebeia Depends on the Natural Sunlight Exposure Duration
2.3. The Radical Scavenging Activity of S. plebeia Extracts is Influenced by the Growth Conditions
2.4. HPLC Method Validation for Analyzing Oleanolic Acid and Ursolic Acid
2.4.1. Linearity
2.4.2. Limit of Detection (LOD) and Limit of Quantification (LOQ)
2.4.3. Recovery and Precision
2.5. Quantitation of Oleanolic Acid and Ursolic Acid in S. plebeia under Different Cultivation Conditions
3. Materials and Methods
3.1. Plant Material
3.2. General Procedures
3.3. Sample Preparation for HPLC Analysis
3.4. Flavonoid and Phenolic Compound Quantification
3.5. Determination of the Total Phenolic and Flavonoid Contents
3.6. Antioxidant Activity
3.7. Cell Culture
3.8. Nitric Oxide Production Measurements in Macrophage Cells
3.9. Method Validation for Analyzing Oleanolic Acid and Ursolic Acid
3.10. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lu, Y.; Foo, L.Y. Polyphenolics of Salvia—A review. Phytochemistry 2002, 59, 117–140. [Google Scholar] [CrossRef]
- Choi, J.K.; Oh, H.M.; Lee, S.; Kwon, T.K.; Shin, T.Y.; Rho, M.C.; Kim, S.H. Salvia plebeia suppresses atopic dermatitis-like skin lesions. Am. J. Chin. Med. 2014, 42, 967–985. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.K.; Oh, H.M.; Park, J.H.; Choi, J.H.; Sa, K.H.; Kang, Y.M.; Park, P.H.; Shin, T.Y.; Rho, M.C.; Kim, S.H. Salvia plebeia extract inhibits the inflammatory response in human rheumatoid synovial fibroblasts and a murine model of arthritis. Phytomedicine 2015, 22, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.J.; Song, Y.S.; Lim, C.J.; Park, E.H. Anti-inflammatory, anti-angiogenic and anti-nociceptive activities of an ethanol extract of Salvia plebeia R. Brown. J. Ethnopharmacol. 2009, 126, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Nugroho, A.; Kim, M.H.; Choi, J.B.; Baek, N.I.; Park, H.J. In vivo sedative and gastroprotective activities of Salvia plebeia extract and its composition of polyphenols. Arch. Pharm. Res. 2012, 35, 1403–1411. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.B.; Ni, Z.Y.; Shi, Q.W.; Dong, M.; Kiyota, H.; Gu, Y.C.; Cong, B. Constituents from Salvia species and their biological activities. Chem. Rev. 2012, 112, 5967–6026. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Liu, L.; Xie, G.; Chen, Y.; Qin, X.; Wang, Q.; Qin, M. Four new eudesmane-type sesquiterpenes from the basal leaves of Salvia plebeia R.Br. Fitoterapia 2014, 94, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.B.; He, B.Q.; Sun, J.B.; Zeng, B.; Shi, X.J.; Zhou, Y.; Niu, Y.; Nie, S.Q.; Feng, F.; Liang, Y.; et al. Diterpenoids from Saliva plebeia R. Br. and their antioxidant and anti-inflammatory activities. Molecules 2015, 20, 14879–14888. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Weng, X. Antioxidant activity and components of Salvia plebeia R.Br.—A Chinese herb. Food Chem. 2001, 73, 299–305. [Google Scholar] [CrossRef]
- Lee, G.T.; Duan, C.H.; Lee, J.N.; Lee, K.S.; Hong, J.T.; Lee, K.K. Phytochemical constituents from Salvia plebeia. Nat. Prod. Sci. 2010, 16, 207–210. [Google Scholar]
- Li, W.; Deng, Y.; Dai, R.; Yu, Y.; Saeed, M.K.; Li, L.; Meng, W.; Zhang, X. Chromatographic fingerprint analysis of Cephalotaxus sinensis from various sources by high-performance liquid chromatography–diodearray detection–electrospray ionization-tandem mass spectrometry. J. Pharm. Biomed. Anal. 2007, 45, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, Z.; Zhou, X.; Cai, Z.; Gong, X.; Zhou, C. Quality evaluation of Evodia rutaecarpa (Juss.) Benth by high performance liquid chromatography with photodiode-array detection. J. Pharm. Biomed. Anal. 2008, 48, 1230–1236. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.F.; Lu, Y.H.; Wei, D.Z.; Wang, Z.T. Chemical fingerprint and quantitative analysis of Salvia plebeia R.Br. by high-performance liquid hromatography. J. Pharm. Biomed. Anal. 2008, 48, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Kang, Y.H. Antioxidant and enzyme inhibitory activities of plebeian Herba (Salvia plebeia R.Br.) under different cultivation conditions. J. Agric. Food Chem. 2014, 62, 2190–2197. [Google Scholar] [CrossRef] [PubMed]
- Ballaré, C.L.; Scopel, C.L.; Sanchez, R.A. Far-red radiation reflected from adjacent leaves: An early signal of competition in plant canopies. Science 1990, 247, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Landry, L.G.; Chapple, C.C.S.; Last, R.L. Arabidopsis mutants lacking phenolic sunscreens exhibit ultraviolet-B injury and oxidative damage. Plant Physiol. 1995, 109, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Jifon, J.L.; Syvertsen, J.P. Moderate shade can increase net gas exchange and reduce photoinhibition in citrus leaves. Tree Physiol. 2003, 23, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Nicolás, E.; Torrecillas, A.; Dell’Amico, J.; Alarcón, J.J. Sap flow, gas exchange, and hydraulic conductance of young apricot trees growing under a shading net and different water supplies. J. Plant Physiol. 2005, 162, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Hakkim, F.L.; Shankar, C.G.; Girija, S. Chemical composition and antioxidant property of holy basil (Ocimum sanctum L.) leaves, stems, and inflorescence and their in vitro callus cultures. J. Agric. Food Chem. 2007, 55, 9109–9117. [Google Scholar] [CrossRef] [PubMed]
- Sanbongi, C.; Takano, H.; Osakabe, N.; Sasa, N.; Natsume, M.; Yanagisawa, R.; Inoue, K.; Sadakane, K.; Ichinose, T.; Yoshikawa, T. Rosmarinic acid in perilla extract inhibits allergic inflammation induced by mite allergen, in a mouse model. Clin. Exp. Allergy 2004, 34, 971–977. [Google Scholar] [CrossRef] [PubMed]
- Tepe, B.; Sokmen, M.; Akpulat, H.A.; Sokmen, A. Screening of the antioxidant potentials of six Salvia species from Turkey. Food Chem. 2006, 95, 200–204. [Google Scholar] [CrossRef]
- Vidović, M.; Morina, F.; Milić, S.; Zechmann, B.; Albert, A.; Winkler, J.B.; Veljović Jovanović, S. Ultraviolet-B component of sunlight stimulates photosynthesis and flavonoid accumulation in variegated Plectranthus coleoides leaves depending on background light. Plant Cell Environ. 2015, 38, 968–979. [Google Scholar]
- Farhat, M.B.; Chaouch-Hamada, R.; Sotomayor, J.A.; Landoulsi, A.; Jordán, M.J. Antioxidant properties and evaluation of phytochemical composition of Salvia verbenaca L. extracts at different developmental stages. Plant Foods Hum. Nutr. 2015, 70, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Shiga, T.; Shoji, K.; Shimada, H.; Hashida, S.N.; Goto, F.; Yoshihara, T. Effect of light quality on rosmarinic acid content and antioxidant activity of sweet basil, Ocimum basilicum L. Plant Biotechnol. 2009, 26, 255–259. [Google Scholar] [CrossRef]
- Okuda, T.; Yoshida, T.; Hatano, T. New methods of analyzing tannins. J. Nat. Prod. 1989, 52, 1–31. [Google Scholar] [CrossRef]
- Brown, B.A.; Cloix, C.; Jiang, G.H.; Kaiserli, E.; Herzyk, P.; Kliebenstein, D.J.; Jenkins, G.I. A UV-B-specific signaling component orchestrates plant UV protection. Proc. Natl. Acad. Sci. USA 2005, 102, 18225–18230. [Google Scholar] [CrossRef] [PubMed]
- Ebisawa, M.; Shoji, K.; Kato, M.; Shimomura, K.; Goto, F.; Yoshihara, T. Supplementary ultraviolet radiation B together with blue light at night increased quercetin content and flavonol synthase gene expression in leaf lettuce (Lactuca sativa L.). Environ. Control Biol. 2008, 46, 1–11. [Google Scholar] [CrossRef]
- Hideg, É.; Vass, I. UV-B induced free radical production in plant leaves and isolated thylakoid membranes. Plant Sci. 1996, 115, 251–260. [Google Scholar] [CrossRef]
- Weinig, C.; Gravuer, K.A.; Kane, N.C.; Schmitt, J. Testing adaptive plasticity to UV: Costs and benefits of stem elongation and light-induced phenolics. Evolution 2004, 58, 2645–2656. [Google Scholar] [CrossRef] [PubMed]
- Gülçin, I. Antioxidant activity of food constituents: An overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.Y.; Lee, S.; Jeong, S.; Kim, J.C.; Ahn, K.S.; Mosaddik, A.; Cho, S.K. Free radical-scavenging activities and cytoprotective effect of polyphenol-rich ethyl acetate fraction of guava (Psidium cattleianum) leaves on H2O2-treated HepG2 Cell. J. Korean Soc. Appl. Biol. Chem. 2013, 56, 687–694. [Google Scholar] [CrossRef]
- Hyun, H.B.; Shrestha, S.; Boo, K.H.; Cho, S.K. Evaluation of antioxidant potential of ethyl acetate fraction of Rosmarinus officinalis L. and its major components. J. Korean Soc. Appl. Biol. Chem. 2015, 58, 715–722. [Google Scholar] [CrossRef]
- Weng, X.C.; Wang, W. Antioxidant activity of compounds isolated from Salvia plebeia. Food Chem. 2000, 71, 489–493. [Google Scholar] [CrossRef]
- ICH Guidelines. Technical Requirements for Registration of Pharmaceuticals for Human Use: Harmonized Triplicate Guidelines on Validation of Analytical Procedures: Methodology, Recommended for Adoption at Step 4 of the ICH Process on November 1996 by the ICH Steering Committee; IFPMA: Chemin des Mines, Switzerland, 1996. [Google Scholar]
- Nordby, H.E.; McDonald, R.E. Variations in chilling injury and epicuticular wax composition of white grapefruit with canopy position and fruit development during the season. J. Agric. Food Chem. 1995, 43, 1828–1833. [Google Scholar] [CrossRef]
- Vilanova, L.; Viñas, I.; Torres, R.; Usall, J.; Buron-Moles, G.; Teixidó, N. Increasing maturity reduces wound response and lignification processes against Penicillium expansum (pathogen) and Penicillium digitatum (non-host pathogen) infection in apples. Postharvest Biol. Technol. 2014, 88, 54–60. [Google Scholar] [CrossRef]
- Shanmugam, M.K.; Dai, X.; Kumar, A.P.; Tan, B.K.; Sethi, G.; Bishayee, A. Ursolic acid in cancer prevention and treatment: Molecular targets, harmacokinetics and clinical studies. Biochem. Pharmacol. 2013, 85, 1579–1587. [Google Scholar] [CrossRef] [PubMed]
- Ardiles, A.E.; González-Rodríguez, Á.; Núñez, M.J.; Perestelo, N.R.; Pardo, V.; Jiménez, I.A.; Valverde, A.M.; Bazzocchi, I.L. Studies of naturally occurring friedelane triterpenoids as insulin sensitizers in the treatment type 2 diabetes mellitus. Phytochemistry 2012, 84, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xue, K.; Zhao, E.Y.; Li, Y.; Yao, L.; Yang, X.; Xie, X. Determination of oleanolic acid and ursolic acid in Chinese medicinal plants using HPLC with PAH polymeric C18. Pharmacogn. Mag. 2013, 9, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.H.; Kim, J.E.; Shim, J.H.; Yoon, G.; Bang, M.; Bae, C.S.; Lee, K.J.; Park, D.H.; Cho, S.S. HPLC analysis, optimization of extraction conditions and biological evaluation of Corylopsis coreana Uyeki Flos. Molecules 2016, 21, 94. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds, caffeic acid, rosmarinic acid, luteolin 7-glucoside, luteolin, homoplantaginin, and hispidulin, are available from the authors. |
Samples | Cultivation Area | Analytes (mg/g Extract) | Total | |||||
---|---|---|---|---|---|---|---|---|
Caffeic Acid | Luteolin 7-Glucoside | Rosmarinic Acid | Homoplantaginin | Luteolin | Hispidulin | |||
KSPA1 | Jeju | 1.19 ± 0.01 | 7.24 ± 0.15 | 63.98 ± 0.45 | 29.27 ± 0.20 | 1.46 ± 0.02 | 2.75 ± 0.02 | 105.88 |
KSPB1 | Gyeonggi | 1.02 ± 0.02 | 3.90 ± 0.02 | 120.65 ± 2.48 | 27.50 ± 0.68 | 0.66 ± 0.01 | 0.91 ± 0.01 | 154.63 |
KSPB2 | Gyeonggi | 0.95 ± 0.01 | 9.19 ± 0.16 | 94.06 ± 2.25 | 28.99 ± 0.55 | 0.91 ± 0.05 | 1.62 ± 0.02 | 135.72 |
KSPC1 | Kangwon | 0.58 ± 0.02 | 21.82 ± 0.02 | 60.36 ± 0.09 | 34.70 ± 0.24 | 0.70 ± 0.01 | 1.06 ± 0.01 | 119.22 |
KSPD1 | Chungcheong | 0.58 ± 0.02 | 10.30 ± 0.25 | 45.70 ± 4.19 | 28.47 ± 0.29 | 0.63 ± 0.01 | 1.02 ± 0.01 | 86.70 |
KSPD2 | Chungcheong | 0.60 ± 0.01 | 11.81 ± 0.17 | 27.81 ± 1.65 | 26.40 ± 0.73 | 0.65 ± 0.01 | 0.80 ± 0.01 | 68.08 |
KSPD3 | Chungcheong | 0.96 ± 0.04 | 4.07 ± 0.30 | 119.80 ± 8.11 | 16.36 ± 1.34 | 0.63 ± 0.01 | 0.90 ± 0.03 | 142.73 |
KSPD4 | Chungcheong | 0.89 ± 0.04 | 6.48 ± 0.06 | 138.99 ± 1.86 | 17.83 ± 0.26 | 0.62 ± 0.01 | 0.89 ± 0.03 | 165.70 |
KSPE1 | Jeolla | 0.60 ± 0.03 | 7.79 ± 1.43 | 113.81 ± 20.18 | 27.71 ± 4.97 | 0.63 ± 0.01 | 0.90 ± 0.03 | 151.43 |
KSPE2 | Jeolla | 0.63 ± 0.02 | 9.95 ± 0.17 | 106.68 ± 1.06 | 33.50 ± 0.34 | 0.71 ± 0.03 | 1.16 ± 0.01 | 152.63 |
KSPE3 | Jeolla | 0.83 ± 0.02 | 2.80 ± 0.13 | 44.35 ± 0.86 | 13.92 ± 0.57 | 0.77 ± 0.01 | 1.48 ± 0.03. | 64.15 |
KSPF1 | Gyeongsang | 1.16 ± 0.07 | 4.41 ± 0.45 | 110.61 ± 14.33 | 16.39 ± 1.86 | 0.68 ± 0.01 | 1.12 ± 0.06 | 134.36 |
KSPF2 | Gyeongsang | 0.88 ± 0.04 | 3.88 ± 0.08 | 130.89 ± 1.61 | 15.81 ± 0.65 | 0.63 ± 0.01 | 1.80 ± 0.01 | 152.89 |
KSPF3 | Gyeongsang | 0.88 ± 0.02 | 1.89 ± 0.04 | 65.09 ± 0.76 | 6.57 ± 0.25 | 0.62 ± 0.01 | 0.92 ± 0.02 | 75.97 |
KSPF4 | Gyeongsang | 0.64 ± 0.01 | 21.45 ± 1.20 | 80.48 ± 3.38 | 46.23 ± 1.74 | 0.80 ± 0.02 | 1.31 ± 0.05 | 150.91 |
KSPF5 | Gyeongsang | 0.90 ± 0.01 | 2.81 ± 0.09 | 82.34 ± 4.19 | 10.09 ± 0.42 | 0.62 ± 0.01 | 0.91 ± 0.05 | 97.68 |
KSPF6 | Gyeongsang | 0.56 ± 0.02 | 4.98 ± 0.36 | 66.56 ± 4.51 | 36.08 ± 2.39 | 1.57 ± 0.10 | 2.79 ± 0.15 | 112.54 |
KSPF7 | Gyeongsang | 0.65 ± 0.02 | 33.28 ± 2.17 | 92.21 ± 6.28 | 53.13 ± 4.66 | 0.82 ± 0.02 | 1.25 ± 0.03 | 181.33 |
Compound | tR (min) | Equation (Linear Model) a | Linear Range (mg/mL) | r2 b | LOD c (μg/mL) | LOQ d (μg/mL) |
---|---|---|---|---|---|---|
Oleanolic acid | 21.35 | y = 5417.6554x − 0.1599 | 0.005–0.05 | 0.9999 | 0.5520 | 1.6463 |
Ursolic acid | 24.04 | y = 4692.4373x + 0.1368 | 0.005–0.05 | 0.9999 | 0.5458 | 1.6783 |
Compound | Sample | Spiked Amount (mg/mL) | Recovery Test (%, n = 3) | Precision Test (n = 3) | |
---|---|---|---|---|---|
Intra-Day RSD a (%) | Inter-Day RSD (%) | ||||
Oleanolic acid | 2 Months | 0.01 | 104.8 | 0.06 | 0.60 |
0.05 | 100.4 | 0.11 | 0.29 | ||
0.1 | 100.5 | 0.06 | 0.51 | ||
3 Months | 0.01 | 99.0 | 0.00 | 0.27 | |
0.05 | 99.5 | 0.21 | 0.87 | ||
0.1 | 97.9 | 0.13 | 0.21 | ||
4 Months | 0.01 | 98.3 | 0.24 | 0.62 | |
0.05 | 99.5 | 0.21 | 0.37 | ||
0.1 | 99.7 | 0.12 | 0.47 | ||
5 Months | 0.01 | 103.0 | 0.03 | 0.24 | |
0.05 | 100.6 | 0.12 | 1.15 | ||
0.1 | 99.5 | 0.10 | 0.96 | ||
6 Months | 0.01 | 101.8 | 0.09 | 0.41 | |
0.05 | 100.3 | 0.68 | 1.00 | ||
0.1 | 100.9 | 0.05 | 0.68 | ||
7 Months | 0.01 | 97.7 | 0.09 | 0.88 | |
0.05 | 95.1 | 0.23 | 1.04 | ||
0.1 | 98.7 | 0.07 | 0.72 | ||
Ursolic acid | 2 Months | 0.01 | 101.6 | 0.30 | 0.81 |
0.05 | 100.6 | 0.01 | 0.98 | ||
0.1 | 99.4 | 0.09 | 1.51 | ||
3 Months | 0.01 | 100.3 | 0.03 | 0.14 | |
0.05 | 101.6 | 0.50 | 0.13 | ||
0.1 | 99.3 | 0.25 | 0.85 | ||
4 Month | 0.01 | 105.5 | 0.30 | 0.28 | |
0.05 | 98.1 | 0.10 | 0.86 | ||
0.1 | 100.3 | 0.23 | 0.38 | ||
5 Months | 0.01 | 102.8 | 0.07 | 0.38 | |
0.05 | 107.1 | 0.04 | 0.35 | ||
0.1 | 98.9 | 0.11 | 0.68 | ||
6 Months | 0.01 | 100.8 | 0.11 | 0.35 | |
0.05 | 99.6 | 0.30 | 0.10 | ||
0.1 | 98.3 | 0.02 | 0.57 | ||
7 Months | 0.01 | 97.9 | 0.05 | 0.53 | |
0.05 | 97.2 | 0.25 | 1.72 | ||
0.1 | 99.1 | 0.03 | 0.63 |
Samples | 2 Months | 3 Months | 4 Months | 5 Months | 6 Months | 7 Months |
---|---|---|---|---|---|---|
Contents (n = 3) | ||||||
Oleanolic Acid (mg/g) | 0.766 ± 0.003 a | 1.246 ± 0.002 | 1.433 ± 0.015 | 1.270 ± 0.019 | 1.546 ± 0.007 | 1.546 ± 0.027 |
Ursolic Acid (mg/g) | 0.915 ± 0.008 | 1.270 ± 0.006 | 1.376 ± 0.016 | 1.604 ± 0.022 | 2.066 ± 0.037 | 1.677 ± 0.003 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, H.-J.; Lee, S.-J.; Kim, C.Y.; Hwang, J.T.; Choi, J.H.; Park, J.H.; Lee, S.W.; Rho, M.-C. Effect of Sunlight Radiation on the Growth and Chemical Constituents of Salvia plebeia R.Br. Molecules 2017, 22, 1279. https://doi.org/10.3390/molecules22081279
Jang H-J, Lee S-J, Kim CY, Hwang JT, Choi JH, Park JH, Lee SW, Rho M-C. Effect of Sunlight Radiation on the Growth and Chemical Constituents of Salvia plebeia R.Br. Molecules. 2017; 22(8):1279. https://doi.org/10.3390/molecules22081279
Chicago/Turabian StyleJang, Hyun-Jae, Seung-Jae Lee, Cha Young Kim, Joo Tae Hwang, Jung Ho Choi, Jee Hun Park, Seung Woong Lee, and Mun-Chual Rho. 2017. "Effect of Sunlight Radiation on the Growth and Chemical Constituents of Salvia plebeia R.Br." Molecules 22, no. 8: 1279. https://doi.org/10.3390/molecules22081279
APA StyleJang, H.-J., Lee, S.-J., Kim, C. Y., Hwang, J. T., Choi, J. H., Park, J. H., Lee, S. W., & Rho, M.-C. (2017). Effect of Sunlight Radiation on the Growth and Chemical Constituents of Salvia plebeia R.Br. Molecules, 22(8), 1279. https://doi.org/10.3390/molecules22081279