Characterization of the Key Aroma Compounds in Chinese Syrah Wine by Gas Chromatography-Olfactometry-Mass Spectrometry and Aroma Reconstitution Studies
Abstract
:1. Introduction
2. Results
2.1. Identification of Aroma Compounds by GC-O
2.2. Quantitative Analysis of Aroma-Active Compounds
2.3. Sensory Evaluation of Syrah Wine Samples and Aroma Reconstitution Test
3. Materials and Methods
3.1. Wines
3.2. Reagents and Chemical Standards
3.3. LiChrolut-EN-SPE and Solvent-Assisted Flavor Evaporation (SAFE)
3.4. GC-MS-Olfactometry Analysis
3.5. Quantitative Analysis of the Key Aroma-Active Compounds
3.5.1. Static Headspace-GC-FID Analysis
3.5.2. SBSE-GC-MS Analysis
3.6. Sensory Evaluation of Wines and Aroma Reconstitution Test
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- García-Muñoz, S.; Muñoz-Organero, G.; Cabello, F. Sensory characterisation and factors influencing quality of wines made from 18 minor varieties (Vitis vinifera L.). Food Qual. Prefer. 2014, 32, 241–252. [Google Scholar] [CrossRef]
- Sokolowsky, M.; Rosenberger, A.; Fischer, U. Sensory impact of skin contact on white wines characterized by descriptive analysis, time–intensity analysis and temporal dominance of sensations analysis. Food Qual. Prefer. 2015, 39, 285–297. [Google Scholar] [CrossRef]
- Aznar, M.; López, R.; Cacho, J.; Ferreira, V. Prediction of aged red wine aroma properties from aroma chemical composition. Partial least squares regression models. J. Agric. Food Chem. 2003, 51, 2700–2707. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.S. Wine Science, 3rd ed.; Elsevier Academic Press: Boston, MA, USA, 2014; pp. 189–233. [Google Scholar]
- Zhu, F.; Du, B.; Li, J. Grape and Wine Biotechnology: Aroma Compounds in Wine. Agric. Biol. Sci. 2016. [Google Scholar] [CrossRef]
- Ferreira, V.; Sáenz-Navajas, M.-P.; Campo, E.; Herrero, P.; Fuente, A.; Fernández-Zurbano, P. Sensory interactions between six common aroma vectors explain four main red wine aroma nuances. Food Chem. 2016, 199, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.L.; Ebeler, S.E.; Heymann, H.; Boss, P.K.; Solomon, P.S.; Trengove, R.D. Interactions between wine volatile compounds and grape and wine matrix components influence aroma compound headspace partitioning. J. Agric. Food Chem. 2009, 57, 10313–10322. [Google Scholar] [CrossRef] [PubMed]
- Arvisenet, G.; Guichard, E.; Ballester, J. Taste-aroma interaction in model wines: Effect of training and expertise. Food Qual. Prefer. 2016, 52, 211–221. [Google Scholar] [CrossRef]
- Villamor, R.R. The Impact of Wine Components on the Chemical and Sensory Properties of Wines. Ph.D. Thesis, Washington State University, Spokane, WA, USA, May 2012. [Google Scholar]
- Panighel, A.; Flamini, R. Solid Phase Extraction and Solid Phase Microextraction in grape and wine volatile compounds analysis. Sample Prep. 2015, 2, 55–65. [Google Scholar] [CrossRef]
- Thurman, E.M.; Mills, M.S. Solid-Phase Extraction: Principles and Practice; Wiley: New York, NY, USA, 1998; pp. 99–121. [Google Scholar]
- Andujar-Ortiz, I.; Moreno-Arribas, M.V.; Martín-Alvarez, P.J.; Pozo-Bayón, M.A. Analytical performance of three commonly used extraction methods for the gas chromatography–mass spectrometry analysis of wine volatile compounds. J. Chromatogr. A 2009, 1216, 7351–7357. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, M.; Takatsu, A.; Ito, R.; Nakazawa, H. Applications of stir-bar sorptive extraction to food analysis. TrAC Trend Anal. Chem. 2013, 45, 280–293. [Google Scholar] [CrossRef]
- Zhou, Q. , Qian, Y.; Qian, M.C. Analysis of volatile phenols in alcoholic beverage by ethylene glycol-polydimethylsiloxane based stir bar sorptive extraction and gas chromatography–mass spectrometry. J. Chromatogr. A 2015, 1390, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Yunyun, N.; Albinus, T. Comparison of EG-Silicone-SBSE and Derivatization-PDMS-SBSE for the Analysis of Phenolic Compounds and Off-flavors in Water; Gerstel: Mülheim an der Ruhr, Germany, 2012. [Google Scholar]
- Ledderhof, D.; Reynolds, A.G.; Manin, L.; Brown, R. Influence of water status on sensory profiles of Ontario Pinot noir wines. Food Res. Int. 2013, 57, 881–891. [Google Scholar] [CrossRef]
- Chen, S.; Xu, Y.; Qian, M.C. Aroma characterization of Chinese rice wine by gas chromatography–olfactometry, chemical quantitative analysis, and aroma reconstitution. J. Agric. Food Chem. 2013, 61, 11295–11302. [Google Scholar] [CrossRef] [PubMed]
- Plutowska, B.; Wardencki, W. Application of gas chromatography-olfactometry (GC-O) in analysis and quality assessment of alcoholic beverages—A review. Food Chem. 2008, 107, 449–463. [Google Scholar] [CrossRef]
- Ferreira, V.; Aznar, M.; López, R.; Cacho, J. Quantitative Gas Chromatography−Olfactometry Carried out at Different Dilutions of an Extract. Key Differences in the Odor Profiles of Four High-Quality Spanish Aged Red Wines. J. Agric. Food Chem. 2001, 49, 4818. [Google Scholar] [CrossRef] [PubMed]
- Sáenz-Navajas, M.P.; Avizcuri, J.M.; Ballester, J.; Fernández-Zurbano, P.; Ferreira, V.; Peyron, D.; Valentin, D. Sensory-active compounds influencing wine experts’ and consumers’ perception of red wine intrinsic quality. LWT Food Sci. Technol. 2015, 60, 400–411. [Google Scholar] [CrossRef]
- Guisard, Y.; Blackman, J.; Clark, A.; Holzapfel, B.; Rawson, A.; Rogiers, S.; Schmidtke, L.; Smith, J.; Steel, C. Viticulture and Wine Science; Horticulture: Plants for People and Places; Springer: Amsterdam, The Netherlands, 2014; Volume 1, pp. 197–261. [Google Scholar]
- Pérez-Magariño, S.; Ortega-Heras, M.; Bueno-Herrera, M.; Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B. Grape variety, aging on lees and aging in bottle after disgorging influence on volatile composition and foamability of sparkling wines. LWT Food Sci. Technol. 2015, 61, 47–55. [Google Scholar] [CrossRef]
- Mayr, C.M.; Geue, J.P.; Holt, H.E.; Pearson, W.P.; Jeffery, D.W.; Francis, I.L. Characterization of the key aroma compounds in Shiraz wine by quantitation, aroma reconstitution, and omission studies. J. Agric. Food Chem. 2014, 62, 4528–4536. [Google Scholar] [CrossRef] [PubMed]
- Galipeau, B.A.; Simonelli, J.; Paladino, S. Balancing Income, Food Security, and Sustainability in Shangri-La: The Dilemma of Monocropping Wine Grapes in Rural China. Cult. Agric. Food Environ. 2016, 37, 74–83. [Google Scholar] [CrossRef]
- Chen, W.; Shang, H.; Zhou, J.; Feng, X.; Zhou, T. Ecological adaptability of wine grape at the eastern foot of Helan mountain. Xibei Zhiwu Xuebao 2007, 27, 1855–1860. [Google Scholar]
- González, Á.M.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Relationships between Godello white wine sensory properties and its aromatic fingerprinting obtained by GC-MS. Food Chem. 2011, 129, 890–898. [Google Scholar] [CrossRef] [PubMed]
- Sáenz-Navajas, M.P.; Martín-López, C.; Ferreira, V.; Fernández-Zurbano, P. Sensory properties of premium Spanish red wines and their implication in wine quality perception. Aust. J. Grape Wine Res. 2011, 17, 9–19. [Google Scholar] [CrossRef]
- Pozo-Bayón, M.Á.; Muñoz-González, C.; Esteban-Fernández, A. Wine Preference and Wine Aroma Perception; Springer International Publishing: Basel, Switzerland, 2016; pp. 83–103. [Google Scholar]
- Pineau, B.; Barbe, J.C.; Van, L.C.; Dubourdieu, D. Which impact for β-damascenone on red wines aroma? J. Agric. Food Chem. 2007, 55, 4103–4108. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Qian, M.C. Development of C13-norisoprenoids, carotenoids and other volatile compounds in Vitis vinifera L. Cv. Pinot noir grapes. Food Chem. 2016, 192, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Condurso, C.; Cincotta, C.F.; Tripodi, G.; Sparacio, A.; Giglio, D.M.L.; Sparla, S.; Verzera, A. Effects of cluster thinning on wine quality of Syrah cultivar (Vitis vinifera L.). Eur. Food Res. Tchnol. 2016, 242, 1–8. [Google Scholar] [CrossRef]
- Flamini, R.; Traldi, P.; Flamini, R.; Traldi, P. Mass spectrometry in grape and wine chemistry. In Volatile and Aroma Compounds in Wines; John Wiley & Sons, Inc.: New York, NY, USA, 2010; pp. 117–162. [Google Scholar]
- Souid, I.; Hassene, Z.; Palomo, E.S.; Perezcoello, M.S.; Ghorbel, A. Varietal aroma compounds of Vitis vinifera cv. Khamri grown in Tunisia. J. Food Qual. 2007, 30, 718–730. [Google Scholar] [CrossRef]
- Guth, H. Quantitation and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Parker, M.; Osidacz, P.; Baldock, G.A.; Hayasaka, Y.; Black, C.A.; Pardon, K.H.; Jeffery, D.W.; Geue, J.P.; Herderich, M.J.; Francis, I.L. Contribution of several volatile phenols and their glycoconjugates to smoke-related sensory properties of red wine. J. Agric. Food Chem. 2012, 60, 2629–2637. [Google Scholar] [CrossRef] [PubMed]
- Molina, A.M.; Swiegers, J.H.; Varela, C.; Pretorius, I.S.; Agosin, E. Influence of wine fermentation temperature on the synthesis of yeast-derived volatile aroma compounds. Appl. Microbiol. Biotechnol. 2007, 77, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Culleré, L.; Cacho, J.; Ferreira, V. An assessment of the role played by some oxidation-related aldehydes in wine aroma. J. Agric. Food Chem. 2007, 55, 876–881. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tao, Y.S.; Wang, H.; Zhang, L. Impact odorants of Chardonnay dry white wine from Changli County (China). Eur. Food Res. Tchnol. 2008, 227, 287–292. [Google Scholar] [CrossRef]
- Boutou, S.; Chatonnet, P. Rapid headspace solid-phase microextraction/gas chromatographic/mass spectrometric assay for the quantitative determination of some of the main odorants causing off-flavours in wine. J. Chromatogr. A 2007, 1141, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.; López, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Ferreira, V.; Ortín, N.; Escudero, A.; López, R.; Cacho, J. Chemical characterization of the aroma of Grenache rose wines: Aroma extract dilution analysis, quantitative determination, and sensory reconstitution studies. J. Agric. Food Chem. 2002, 50, 4048–4054. [Google Scholar] [CrossRef] [PubMed]
- La Guerche, S.; Dauphin, B.; Pons, M.; Blancard, D.; Darriet, P. Characterization of some mushroom and earthy off-odors microbially induced by the development of rot on grapes. J. Agric. Food Chem. 2006, 54, 9193–9200. [Google Scholar] [CrossRef] [PubMed]
- López, R.; Aznar, M.; Cacho, J.; Ferreira, V. Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection. J. Chromatogr. A 2002, 966, 167–177. [Google Scholar] [CrossRef]
- Návojská, J.; Brandes, W.; Nauer, S.; Eder, R.; Frančáková, H. Influence of different oak chips on aroma compounds in wine. J. Microbiol. Biotechnol. Food Sci. 2012, 1, 957. [Google Scholar]
- Peinado, R.A.; Moreno, J.; Bueno, J.E.; Moreno, J.A.; Mauricio, J.C. Comparative study of aromatic compounds in two young white wines subjected to pre-fermentative cryomaceration. Food Chem. 2004, 84, 585–590. [Google Scholar] [CrossRef]
- He, J.; Zhou, Q.; Peck, J.; Soles, R.; Qian, M.C. The effect of wine closures on volatile sulfur and other compounds during post-bottle ageing. Flavour Frag. J. 2013, 28, 118–128. [Google Scholar] [CrossRef]
- Fang, Y.; Qian, M.C. Quantification of selected aroma-active compounds in Pinot noir wines from different grape maturities. J. Agric. Food Chem. 2006, 54, 8567–8573. [Google Scholar] [CrossRef] [PubMed]
- Qian, M.C.; Fang, Y.; Shellie, K. Volatile composition of Merlot wine from different vine water status. J. Agric. Food Chem. 2009, 57, 7459–7463. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.S.; Liu, Y.-Q.; Li, H. Sensory characters of Cabernet Sauvignon dry red wine from Changli County (China). Food Chem. 2009, 114, 565–569. [Google Scholar] [CrossRef]
- State Bureau of Technical Supervision. Sensory Analysis-Methodology-Initiation and Training of Assessors in the Dection and Recongnition of Odours. Available online: http://111.26.194.81:82/fdbzfw/spgjbz/7194.jhtml (accessed on 23 June 2017).
Sample Availability: Samples of Syrah wine are available from author H.L. Standard compounds are available from M.Q. |
No. | Aroma Compounds a | RIZB-wax b | Odor Descriptions | Odor Intensity of c | |
---|---|---|---|---|---|
NS | YS | ||||
1 | 1,1-diethoxyethane | 872 | fruity, berry | 1.5 | 2.0 |
2 | ethyl acetate | 895 | fruity | 2.5 | 2.3 |
3 | ethyl propanoate | 965 | fruity | 2.7 | 2.5 |
4 | ethyl 2-methylpropanoate | 974 | fruity | 3.7 | 3.5 |
5 | 2,3-butanedione | 987 | buttery | 2.5 | 2.0 |
6 | 2-methylpropyl acetate | 1018 | fruity, lychee | 1.9 | 2.3 |
7 | ethyl butanoate | 1041 | dry fruit | 2.8 | 2.7 |
8 | butyl acetate | 1056 | fruity | 2.8 | 2.7 |
9 | ethyl 2-methylbutyrate | 1060 | fruity | 2.7 | 2.3 |
10 | 2,3-pentanedione | 1069 | sour, fruity | 2.0 | 2.3 |
11 | ethyl 3-methylbutanoate | 1074 | fruity | 3.5 | 3.5 |
12 | 2-methyl-propanol | 1103 | fusel | 1.2 | 1.7 |
13 | 3-methylbutyl acetate | 1132 | fruity | 3.7 | 2.5 |
14 | ethyl pentanoate | 1143 | fruity | 1.5 | 1.5 |
15 | 1-butanol | 1163 | whiskey, medicine | 1.7 | 1.5 |
16 | 2- and 3-methyl-1-butanol | 1223 | medicine, brandy | 5.0 | 5.0 |
17 | ethyl hexanoate | 1247 | fruity | 3.3 | 2.7 |
18 | hexyl acetate | 1268 | fruity | 1.5 | 1.3 |
19 | 3-hydroxy-2-butanone | 1297 | fruity | 2.5 | 2.3 |
20 | 1-octen-3-one | 1310 | mushroom | 1.2 | 1.5 |
21 | 3-methylpentanol | 1335 | fruity, green | 1.5 | 1.3 |
22 | ethyl lactate | 1351 | fruity | 1.0 | 1.3 |
23 | 1-hexanol | 1364 | green | 2.7 | 2.5 |
24 | cis-3-hexenol | 1401 | green | 1.7 | 1.5 |
25 | trans-2-hexenol | 1424 | green | 1.5 | 1.3 |
26 | 3-isopropyl-2-methoxypyrazine | 1441 | green pepper | 1.7 | 1.5 |
27 | ethyl octanoate | 1444 | fruity, floral | 3.5 | 2.3 |
28 | 1-octen-3-ol | 1461 | mushroom | 1.0 | 1.3 |
29 | methional | 1465 | potato | 3.5 | 3.0 |
30 | furfural | 1483 | woody | 1.5 | 1.7 |
31 | 3-sec-butyl-2-methoxypyrazine | 1510 | bell pepper | 2.0 | 2.0 |
32 | benzaldehyde | 1525 | almond | 2.8 | 2.0 |
33 | 3-isobutyl-2-methoxypyrazine | 1542 | pepper | 1.5 | 1.3 |
34 | 2-(methylthio) ethanol | 1552 | potato | 2.2 | 2.3 |
35 | linalool | 1571 | floral, citrus | 1.2 | 1.5 |
36 | ethyl 3-methylthiopropionate | 1583 | metallic, onion | 1.7 | 1.3 |
37 | 2-methylpropanoic acid | 1588 | cheesy | 1.5 | 2.0 |
38 | butanoic acid | 1628 | sweaty | 2.2 | 2.0 |
39 | γ-butyrolactone | 1642 | nutty | 1.2 | 1.0 |
40 | ethyl decanoate | 1651 | fruity | 2.2 | 1.7 |
41 | furfuryl alcohol | 1679 | sweet, nutty | 1.7 | 1.7 |
42 | 3-methylbutanoic acid | 1687 | sweaty | 5.0 | 5.0 |
43 | α-terpineol | 1708 | floral | 2.7 | 3.2 |
44 | 3-(methylthio)propanol | 1738 | potato | 2.2 | 2.0 |
45 | β-citronellol | 1759 | floral | 2.0 | 2.0 |
46 | 2-phenethyl acetate | 1828 | bread, sweet | 2.7 | 3.0 |
47 | β-damascenone | 1841 | tobacco, burnt sugar | 4.2 | 4.0 |
48 | hexanoic acid | 1860 | sweaty | 2.8 | 3.0 |
49 | geraniol | 1865 | citrus, floral | 1.7 | 2.0 |
50 | guaiacol | 1872 | phenolic, spicy | 3.3 | 2.7 |
51 | benzyl alcohol | 1890 | floral | 2.8 | 2.7 |
52 | cis-whisky lactone | 1908 | nutty, wood | 3.5 | 3.8 |
53 | 2-phenylethanol | 1935 | floral, rose | 4.5 | 4.2 |
54 | β-ionone | 1965 | floral | 1.7 | 1.5 |
55 | trans-whisky lactone | 1975 | nutty, coconut | 2.5 | 2.0 |
56 | trans-2-hexenoic acid | 1989 | cheesy, herbal | 1.7 | 1.7 |
57 | o-cresol | 2007 | woody, phenolic | 2.8 | 1.7 |
58 | 4-ethylguaiacol | 2040 | caramellic | 3.3 | 3.2 |
59 | γ-nonalactone | 2049 | nutty, woody | 1.5 | 1.3 |
60 | furaneol | 2065 | burnt sugar | 3.5 | 3.2 |
61 | octanoic acid | 2078 | sweaty | 2.8 | 3.2 |
62 | p-cresol | 2087 | horse | 1.7 | 1.3 |
63 | m-cresol | 2103 | leather | 1.5 | 2.0 |
64 | γ-decalactone | 2149 | fiber wood, sweet | 2.5 | 1.5 |
65 | ethyl cinnamate | 2160 | spice, sweet | 2.5 | 2.0 |
66 | eugenol | 2179 | honey, clove | 3.5 | 2.7 |
67 | 4-ethylphenol | 2194 | medicine, horse | 2.5 | 2.7 |
68 | 4-vinylguaiacol | 2218 | spice, anise | 2.7 | 2.5 |
69 | sotolon | 2247 | honey, caramel | 3.3 | 2.7 |
70 | 2,6-dimethoxyphenol | 2282 | woody, phenolic | 1.7 | 1.7 |
71 | decanoic acid | 2286 | woody, rancid | 2.7 | 1.3 |
72 | ethyl anthranilate | 2291 | spice, sweet | 2.7 | 1.7 |
73 | isoeugenol | 2366 | sweet, floral | 2.0 | 2.0 |
74 | 4-vinylphenol | 2410 | chemical, smoky | 2.7 | 1.7 |
75 | phenylacetic acid | 2575 | honey, rose | 2.5 | 2.0 |
76 | vanillin | 2584 | vanilla | 2.7 | 1.7 |
77 | methyl vanillate | 2616 | vanilla | 1.8 | 2.0 |
78 | ethyl vanillate | 2658 | vanilla | 1.5 | 1.0 |
79 | acetovanillone | 2670 | fruity, vanilla | 1.7 | 1.3 |
No. | Compounds | Odor * | Concentration ** (μg/L, mean ± SD) | OAV *** | ||
---|---|---|---|---|---|---|
Threshold | NS | YS | NS | YS | ||
Ethyl esters of straight-chain fatty acid | ||||||
1 | ethyl acetate | 12,300 | 52,086 ± 3892 a | 81,445 ± 5481 b | 4.23 | 6.62 |
2 | ethyl propionate | 2100 | 204 ± 25 | 184 ± 47 | <0.1 | <0.1 |
3 | ethyl butanoate | 20 | 167 ± 12 a | 120 ± 21 b | 8.36 | 6.02 |
4 | ethyl hexanoate | 14 | 533 ± 32 a | 151 ± 13 b | 38.1 | 10.8 |
5 | ethyl octanoate | 5 | 275 ± 22 a | 58 ± 8 b | 54.9 | 11.7 |
6 | ethyl decanoate | 200 | 99.1 ± 5.3 a | 16.3 ± 2 b | 0.1–0.5 | <0.1 |
Ethyl esters of branched-chain fatty acid | ||||||
7 | ethyl isobutyrate | 15 | 264 ± 24 a | 164 ± 29 b | 17.6 | 10.9 |
8 | ethyl 2-methylbutanoate | 18 | 79.6 ± 3.4 a | 48.2 ± 5.4 b | 4.42 | 2.68 |
9 | ethyl isovalerate | 3 | 131 ± 5 a | 82 ± 9 b | 43.8 | 27.3 |
Higher alcohol acetates | ||||||
10 | isobutyl acetate | 1800 | 78.1 ± 6.3 a | 61.0 ± 10.1 b | <0.1 | <0.1 |
11 | butyl acetate | 1600 | 23.4 ± 1.1 a | 14.6 ± 1.6 b | <0.1 | <0.1 |
12 | isoamyl acetate | 30 | 408 ± 26 a | 244 ± 13 b | 13.6 | 8.1 |
13 | hexyl acetate | 670 | 3.31 ± 0.37 a | 0.76 ± 0.14 b | <0.1 | <0.1 |
14 | octyl acetate | 50,000 | 3.85 ± 0.08 a | 2.5 ± 0.12 b | <0.1 | <0.1 |
Aromatic esters and others | ||||||
15 | phenethyl acetate | 73 | 33.3 ± 0.9 a | 20.3 ± 1.2 b | 0.1–0.5 | 0.1–0.5 |
16 | ethyl phenylacetate | 250 | 5.51 ± 0.26 | 5.92 ± 0.26 | <0.1 | <0.1 |
17 | ethyl dihydrocinnamate | 1.6 | 1.68 ± 0.58 a | 0.41 ± 0.26 b | 1.05 | 0.1–0.5 |
18 | ethyl cinnamate | 1.1 | 0.51 ± 0.13 | 0.37 ± 0.23 | 0.1–0.5 | 0.1–0.5 |
19 | methyl anthranilate | 3 | 0.7 ± 0.12 a | 1.52 ± 0.24 b | 0.1–0.5 | 0.5–1 |
20 | ethyl anthranilate | 16 | 0.39 ± 0.26 a | 1.31 ± 0.26 b | <0.1 | <0.1 |
21 | methyl vanillate | 3000 | 5.68 ± 2.62 a | 13.5 ± 0.14 b | <0.1 | <0.1 |
22 | ethyl vanillate | 990 | 499± 245 | 898 ± 307 | 0.5–1 | 0.5–1 |
23 | diethyl succinate | 120,000 | 11311 ± 1078 | 9736 ± 958 | <0.1 | <0.1 |
Alcohols | ||||||
24 | 1-propanol | 50,000 | 31,180 ± 4642 | 38,252 ± 2941 | 0.5–1 | 0.5–1 |
25 | isobutyl alcohol | 40,000 | 52,872 ± 5530 | 47,188 ± 4978 | 1.32 | 1.18 |
26 | isoamyl alcohol | 30,000 | 123,435 ± 8642 | 105,594 ± 7374 | 4.11 | 3.52 |
27 | 1-hexanol | 8000 | 1046 ± 35 a | 1279 ± 63 b | 0.1–0.5 | 0.1–0.5 |
28 | cis-3-hexen-1-ol | 1000 | 10.1 ± 4.9 | 12.7 ± 3.4 | <0.1 | <0.1 |
29 | trans-2-hexen-1-ol | 1000 | 6.98 ± 2.42 | 8.77 ± 3.16 | <0.1 | <0.1 |
30 | 1-octen-3-ol | 20 | 14.3 ± 0.4 a | 17.8 ± 0.9 b | 0.5–1 | 0.5–1 |
31 | benzyl alcohol | 200,000 | 218 ± 52 a | 595 ± 80 b | <0.1 | <0.1 |
32 | 2-phenethanol | 14,000 | 13793 ± 1724 a | 9628 ± 801 b | 0.5–1 | 0.5–1 |
Fatty acids | ||||||
33 | butanoic acid | 173 | 550 ± 63 | 484 ± 70 | 3.18 | 2.80 |
34 | hexanoic acid | 420 | 1489 ± 165 a | 1076 ± 140 b | 3.55 | 2.56 |
35 | octanoic acid | 500 | 650 ± 51 | 579 ± 68 | 1.30 | 1.16 |
36 | decanoic acid | 1000 | 122 ± 14 a | 72 ± 16 b | 0.1–0.5 | <0.1 |
37 | 2-methylpropanoic acid | 2300 | 730 ± 102 a | 544 ± 96 b | 0.1–0.5 | 0.1–0.5 |
38 | 2- and 3-methylbutyric acid | 33 | 564 ± 134 a | 390 ± 43 b | 17.1 | 11.8 |
Shikimic acid derivatives (volatile phenols) | ||||||
39 | guaiacol | 23 | 28.8 ± 3.4 a | 36.3 ± 3.1 b | 1.25 | 1.58 |
40 | 4-methylguaiacol | 65 | 1.98 ± 0.97 a | 9.56 ± 0.15 b | <0.1 | 0.1–0.5 |
41 | 4-ethylguaiacol | 33 | 1.23 ± 0.43 a | 14.75 ± 0.69 b | <0.1 | 0.1–0.5 |
42 | 4-vinylguaiacol | 1100 | 20 ± 4.5 | 17.8 ± 1.4 | <0.1 | <0.1 |
43 | o-cresol | 31 | 5.86 ± 2.2 | 3.19 ± 0.17 | 0.1–0.5 | 0.1–0.5 |
44 | p-cresol | 60 | 3.4 ± 1.64 | 4.44 ± 0.28 | <0.1 | <0.1 |
45 | m-cresol | 68 | 3.11 ± 1.69 | 2.36 ± 0.11 | <0.1 | <0.1 |
46 | eugenol | 6 | 6.71 ± 1.25 | 7.16 ± 3.19 | 1.12 | 1.19 |
47 | isoeugenol | 6 | 0.44 ± 0.23 | 0.61 ± 0.25 | <0.1 | 0.1–0.5 |
48 | 4-ethylphenol | 440 | 1.76 ± 0.61 a | 101 ± 11 b | <0.1 | 0.1–0.5 |
49 | 3-ethylphenol | 250 | 1.86 ± 0.12 a | 87 ± 12 b | <0.1 | 0.1–0.5 |
50 | 4-vinylphenol | 180 | 56.9 ± 13.3 a | 81.2 ± 6.6 b | 0.1–0.5 | 0.1–0.5 |
Terpenoids | ||||||
51 | linalool | 15 | 11.6 ± 0.3 a | 1.81 ± 0.05 b | 0.1–0.5 | 0.1–0.5 |
52 | α-terpineol | 250 | 14.6 ± 0.1 a | 12 ± 0.7 b | <0.1 | <0.1 |
53 | citronellol | 100 | 1.76 ± 0.03 a | 0.66 ± 0.05 b | <0.1 | <0.1 |
54 | geraniol | 30 | 6.13 ± 0.72 a | 1.73 ± 0.36 b | 0.1–0.5 | <0.1 |
55 | nerol | 300 | 8.98 ± 0.65 | 10.4 ± 1.4 | <0.1 | <0.1 |
56 | rose oxide | 0.2 | 0.03 ± 0.01 | 0.04 ± 0.03 | 0.1–0.5 | 0.1–0.5 |
57 | linalool oxide | 3000 | 1.72 ± 0.36 a | 5.69 ± 0.49 b | <0.1 | <0.1 |
C13-norisoprenoids | ||||||
58 | β-damascenone | 0.05 | 2.81 ± 0.1 a | 0.22 ± 0.03 b | 56.1 | 24.4 |
59 | β-ionone | 5 | 0.12 ± 0.02 | 0.09 ± 0.08 | <0.1 | <0.1 |
Ketone and lactones | ||||||
60 | γ-octalactone | 400 | 6.24 ± 1.56 | 5.15 ± 0.6 | <0.1 | <0.1 |
61 | γ-nonalactone | 30 | 8.33 ± 0.86 | 11 ± 1.98 | 0.1–0.5 | 0.1–0.5 |
62 | γ-decalactone | 88 | 0.6 ± 0.04 a | 1.34 ± 0.29 b | <0.1 | <0.1 |
63 | γ-undecalactone | 150 | 5.61 ± 0.72 a | 3.71 ± 0.83 b | <0.1 | <0.1 |
64 | cis-whiskylactone | 74 | 12.7 ± 2.5 a | 33.9 ± 1.3 b | 0.1–0.5 | 0.1–0.5 |
65 | trans-whiskylactone | 32 | 31.5 ± 4.2 | 58.3 ± 2.1 | 0.5–1 | 1.82 |
66 | 2-aminoacetophenone | 1.4 | 1.01 ± 0.15 | 1.18 ± 0.11 | 0.5–1 | 0.5–1 |
Aldehydes | ||||||
67 | acetaldehyde | 500 | 22,343 ± 1397 a | 31,905 ± 2231 b | 44.7 | 63.8 |
68 | cinnamaldehyde | 1180 | 0.18 ± 0.03 a | 0.46 ± 0.16 b | <0.1 | <0.1 |
69 | vanillin | 200 | 88.8 ± 6.7 a | 110 ± 8 b | 0.1–0.5 | 0.5–1 |
Methoxypyrazines | ||||||
70 | 3-isopropyl-2-methoxypyrazine | 0.015 | 0.001 ± 0.0003 | N.D. | <0.1 | <0.1 |
71 | 3-sec-butyl-2-methoxypyrazine | 0.015 | N.D. | 0.0012 ± 0.0004 | <0.1 | <0.1 |
72 | 3-isobutyl-2-methoxypyrazine | 0.002 | 0.0017 ± 0.001 | 0.0012 ± 0.0004 | 0.5–1 | 0.5–1 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, P.; Gao, J.; Qian, M.; Li, H. Characterization of the Key Aroma Compounds in Chinese Syrah Wine by Gas Chromatography-Olfactometry-Mass Spectrometry and Aroma Reconstitution Studies. Molecules 2017, 22, 1045. https://doi.org/10.3390/molecules22071045
Zhao P, Gao J, Qian M, Li H. Characterization of the Key Aroma Compounds in Chinese Syrah Wine by Gas Chromatography-Olfactometry-Mass Spectrometry and Aroma Reconstitution Studies. Molecules. 2017; 22(7):1045. https://doi.org/10.3390/molecules22071045
Chicago/Turabian StyleZhao, Pengtao, Jinxin Gao, Michael Qian, and Hua Li. 2017. "Characterization of the Key Aroma Compounds in Chinese Syrah Wine by Gas Chromatography-Olfactometry-Mass Spectrometry and Aroma Reconstitution Studies" Molecules 22, no. 7: 1045. https://doi.org/10.3390/molecules22071045