Molecules 2017, 22(2), 319; https://doi.org/10.3390/molecules22020319
An Efficient Synthesis of Novel Bioactive Thiazolyl-Phthalazinediones under Ultrasound Irradiation
1
Department of Chemistry of Natural and Microbial Products, National Research Center, Dokki 12622, Egypt
2
Collage of Science and Humanities, Sattam bin Abdul Aziz University, Alkharj City 11942, Saudi Arabia
3
Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
4
Department of Chemistry, Faculty of Applied Science, UmmAl-Qura University, Makkah Almukkarramah 21514, Saudi Arabia
5
Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), AlAzhar University, Cairo1 1754, Egypt
*
Author to whom correspondence should be addressed.
Academic Editor: Panayiotis A. Koutentis
Received: 15 November 2016 / Revised: 16 January 2017 / Accepted: 14 February 2017 / Published: 18 February 2017
(This article belongs to the Special Issue Sulfur-Nitrogen Heteroaromatics)
Abstract
Novel 2-thiazolylphthalazine derivatives were efficiently synthesized under ultrasound irradiation, resulting in high yields and short reaction times after optimization of the reaction conditions. All prepared compounds were fully characterized using spectroscopic methods. They were screened for their antimicrobial activity against Gram-positive and Gram-negative bacteria as well as for antifungal activity. The antimicrobial activity profile of the tested compounds showed some promising results. The potent activity of compounds 4d, 7b (117% zone inhibition) and 7c (105% zone inhibition) against Salmonella sp., exceeding that of the reference drug Gentamycin is particularly noteworthy. In general, the newly synthesized thiazolylphthalazine derivatives showed higher antimicrobial activity against the tested Gram-negative bacteria than against Gram-positive bacteria and fungi. View Full-TextKeywords:
thiazolylphthalazinediones; hydrazonoyl chlorides; ultrasound irradiation; antimicrobial activity
▼
Figures
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article
MDPI and ACS Style
Elsharabasy, F.S.; Gomha, S.M.; Farghaly, T.A.; Elzahabi, H.S.A. An Efficient Synthesis of Novel Bioactive Thiazolyl-Phthalazinediones under Ultrasound Irradiation. Molecules 2017, 22, 319.
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.
Related Articles
Article Metrics
Comments
[Return to top]
Molecules
EISSN 1420-3049
Published by MDPI AG, Basel, Switzerland
RSS
E-Mail Table of Contents Alert