The Architecture of Thiol Antioxidant Systems among Invertebrate Parasites
Abstract
:1. Introduction
2. Major Redox Substrates
2.1. Generalities
- (i)
- Low molecular weight thiol compounds, such as cysteine (Cys), glutathione (GSH), ovothiol (OSH), and trypanothione (TSH) [17].
- (ii)
2.2. Characteristics of Thiol-Containing Redox Substrates
2.2.1. Low Molecular Weight Thiols
Cysteine (Cys)
Selenocysteine (Sec)
- (i)
- Structurally, cysteine is characterized by the presence of a sulfur atom, which is critical for its biological functions. By contrast, in Sec a selenium atom replaces Cys [49].
- (ii)
- (iii)
- Selenocysteine, like canonical amino acids, is incorporated into proteins during the translation process. However, its insertion requires a specific UGA codon (normally a termination codon) located inside the open reading frame of the corresponding gene [52]. To be recognized as Sec instead of a stop signal of translation, a specific context is required which is given by trans-acting translation factors [53] that can recognize and interact with a cis-acting stem-loop structure in a selenoprotein mRNA. This structure has been named selenocysteine insertion sequence (SECIS) and is located immediately after the UGA codon within the coding region in eubacterias. By contrast, in archaeas and eukaryotes the SECIS element is located at the 3′ untranslated region of mRNA [54]. The SECIS element is an essential factor for incorporation and recruitment of the Sec-tRNA [55,56].
- (iv)
- In those proteins in which Sec has been incorporated, a unique of such residue is present per subunit. By contrast, the number of Cys residues found in proteins is variable, and can represent a significant fraction of the total amino acid residues (e.g., albumin). To date, the only exception is represented by the vertebrate selenoprotein P, in which 10 to 17 Sec residues are present [57].
- (v)
- As regard the reactivity of selenocysteine, this amino acid may be susceptible to redox phenomena similar to those of cysteine. However, due to the electronic configuration of selenium, the conjugate base of selenocysteine (selenolate anion Se−) is more stable than the corresponding conjugate base of cysteine (thiolate anion S−) and hence selenol (-SeH) is more acidic than thiol (-SH) (Sec pKa = 5.2 vs. Cys pKa = 8.3). Therefore, at physiological pH the selenol group of selenocysteine is present in its selenolate form [49], which makes it more reactive during catalysis than its protonated thiol counterpart, thereby increasing the catalytic efficiency of selenoenzymes [58].
Glutathione (GSH)
- (i)
- (ii)
- Fill intermediaries of GSH and transport of amino acids through the γ-glutamyl cycle [63].
- (iii)
- Formation of deoxyribonucleotides. In this process, GSH acts as a reducing compound by transferring electrons to Grx and then ribonucleotide reductase (RR) [64].
- (iv)
- (v)
- Recovery of the native conformation of proteins damaged during an oxidative stress. This process requires the participation of Grx [67].
- (vi)
- Cell signaling. The participation of GSH as mediator in cell signaling processes involves its reversible covalent binding to a diversity of proteins through glutathionylation [68].
Trypanothione (TSH)
Ovothiol (OSH)
2.2.2. Redox Protein Substrates (Redoxins)
Thioredoxin Superfamily
- (i)
- A protein core constituted by a ß-sheet sandwiched between a variable number of α helix segments. In some cases, such as PDI, an additional Trx-like segment can be present [40].
- (ii)
- A common CXXC redox active motif located at the C-terminal end of a β-sheet segment and the start of the α-helix 1. In some representatives of the family (e.g., an isoform of Grx), the C-terminal cysteine residue of the redox motif can be absent.
- (iii)
- The presence of a conserved cis proline (cis-Pro) located in a fork at the N-terminal end of a β-sheet segment (β2 for Trx, β6 de TXN) [82]. The cis-Pro containing fork is located near to the CXXC redox motif, and plays an essential role both in the structural stability and in the ability for binding proteins [83].
- (i)
- The thiolate form of the catalytic cysteine (SCH) performs a nucleophilic attack on a sulfur atom of a disulfide bond in the protein substrate, generating an intermolecular redoxin-protein mixed disulfide.
- (ii)
- Through a second nucleophilic attack involving the resolving cysteine (SRH) on the mixed disulfide the reduced state of the substrate is produced. As result of this process, an intramolecular disulfide bond in the redoxin is produced.
- (iii)
- The resulting disulfide bond in the redoxin is reduced either by a NADPH-dependent specific reductase or through the participation of reduced glutathione. This last step regenerates the biologically useful dithiol form of the redoxin.
Glutaredoxin (Grx)
Thioredoxin (Trx)
- (i)
- Synthesis of deoxiribonucleotides [38].
- (ii)
- Detoxification of H2O2 through the activity of peroxiredoxins [93].
- (iii)
- Regulation of the activity of transcription factors such as AP-2 and NF-κB [94].
- (iv)
- Regeneration of methionine sulfoxide acting as an electron donor to methionine sulfoxide reductase (MSR) [95].
- (v)
- Under oxidative stress conditions Trx is secreted, then acting as a cytosine [96].
- (vi)
- Its active CXXC redox motif can serve as a redox rheostat [97].
Tryparedoxin (TXN)
Plasmoredoxin (Plrx)
3. Peroxidases
3.1. General Features of Peroxidases
3.2. Characteristics of Thiol-Dependent Peroxidases
3.2.1. Glutathione Peroxidase (GPx)
- (i)
- GPx1 (cytosolic). Represents the typical GPx which is widely distributed in tissues. The enzyme can metabolize hydrogen peroxide and various organic peroxides but cannot metabolize fatty acid hydroperoxides present in phospholipids [115].
- (ii)
- GPx2 (gastrointestinal). This isoform is similar to GPx1 in terms of substrate specificity, and is present in liver and large intestine but not in other organs [116].
- (iii)
- (iv)
- GPx4 (Phospholipid hydroperoxide GPx). This variant of GPx is a monomeric protein that react mainly with phospholipid hydroperoxides as substrate, and is capable to accept a wide range of reducing substrates, including GSH [119].
- (v)
- GPx5 (epididymis). A low activity epididymis-specific GPx, its activity with H2O2 or organic peroxides is less than 0.1% of that of GPx1 [120].
- (vi)
- GPx6 (odourant metabolism). It was found in the Bowman´s gland of the olfactory system [121].
- (i)
- Reduction of the peroxide. In the first step of the reaction, a nucleophilic attack on the peroxide bond by the reactive selenolate (-Se−) leads to the formation of a selenenic acid intermediary (GPx-SeOH) and the release of the first water molecule. Such intermediary appears to be a common feature in the catalytic cycle of all the Sec-dependent GPx.
- (ii)
- Formation of the covalent adducts selenocysteine-glutathione (GPx-SeSG). In this step, a GSH molecule reacts with the selenenic acid intermediary, producing the second water molecule and a mixed selenil-sulfide covalent intermediary.
- (iii)
- Regeneration of selenolate. In the third step of the reaction, a second GSH molecule reacts with the mixed selenil-sulfide intermediate, leading to the regeneration of the initial selenolate state of the enzyme. During this last step a GSSG molecule is produced.
3.2.2. Peroxiredoxin (Prx)
- (i)
- Prx1 (2-Cys Prx) are the typical Prx. They are dimeric proteins but are capable to aggregate into decamers. They are well represented in the living world, being the major form of Prx. The eukaryotic variant is prone to over oxidation and has a higher activity with H2O2 over organic peroxides [26]. In humans it is represented by the isoforms PrxI, PrxII, PrxIII, and PrxIV [122].
- (ii)
- (iii)
- Prx5 (1-Cys Prx and 2-Cys Prx) are dimeric proteins and have a wide distribution, being present in bacteria, fungi, plants and mammals [124].
- (iv)
- (v)
- TPx (2-Cys Prx), also called thioredoxin peroxidase. They are found in bacteria [26].
- (vi)
- AhpE (1-Cys Prx and 2-Cys Prx). This variant of Prx is present in aerobic gram-positive bacteria of the order Actinomycetales [124].
- (i)
- Peroxide reduction. In the first step, the nucleophilic attack by the SpH on the O-O covalent bond of H2O2 leads to the formation of the intermediary sulphenic acid state of the peroxidatic cysteine (SpOH) and the release of the first water molecule. Such intermediary is apparently shared between various Prxs.
- (ii)
- Formation of the disulfide bond. The formation of the second water molecule involves the oxidation of the catalytic cysteine residues into an intramolecular disulfide bond, as result of the nucleophilic attack of the intermediary sulphenic acid by SRH.
- (iii)
- Reduction of the intermediary disulfide bond of Prx. This last step results in the regeneration of both SP− and SRH catalytic residues and is dependent on a reducing agent, typically a redoxin protein in which a conserved CXXC redox motif is present.
4. Disulfide Reductases
4.1. Why Do Parasites Need Reductases?
4.2. Characteristics of Thiol-Dependent Reductases
4.2.1. Glutathione Reductase (GR) and Trypanothione Reductase (TryR)
4.2.2. Thioredoxin Reductase (TrxR)
Low Molecular Weight Thioredoxin Reductase (L-TrxR)
High Molecular Weight Thioredoxin Reductase (H-TrxR)
Thioredoxin-Glutathione Reductase (TGR)
4.3. Reductase-Independent Substrate Reduction
5. Architecture of Thiol-Dependent Antioxidant Systems in Invertebrate Parasites
5.1. Protista Parasites
5.1.1. Phylum Amoebozoa
5.1.2. Phylum Apicomplexa
5.1.3. Phylum Kinetoplastida
5.2. Metazoan Parasites
5.2.1. Phylum Platyhelminthes
5.2.2. Phylum Nematoda
6. Final Comments
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
2-Cys-Grx | dithiolic glutaredoxin |
AhpF | alkyl hydroperoxide reductase component F |
APx | ascorbate peroxidase |
tBuOOH | tert butyl hydroperoxide |
CAT | catalase |
SCH | catalytic cysteine |
CHP | cumene hydroperoxide |
Cys | cysteine |
Grx | glutaredoxin |
GPx | glutathione peroxidase |
GPxA | glutathione peroxidase-like tryparedoxin peroxidase |
GR | glutathione reductase |
GSH | glutathione (reduced form) |
GSSG | glutathione disulfide (oxidized form) |
H2O2 | hydrogen peroxide |
.OH | hydroxyl radical |
1-Cys-Grx | monothiolic glutaredoxin |
OSH | ovothiol (reduced form) |
OSSO | ovithiol disulfide (oxidized form) |
SPH | peroxidatic cysteine |
ONOO− | peroxinitrite |
Prx | peroxiredoxin |
Plrx | plasmoredoxin |
Plrx-(SH)2 | plasmoredoxin (reduced form) |
Plrx-(S)2 | plasmoredoxin (oxidized form) |
AOP | protein antioxidant |
PDB | protein data bank |
PDI | protein disulfide isomerase |
ROS | reactive oxygen species |
RR | ribonucleotide reductase |
Rx | redoxin |
SRH | resolving cysteine |
SeOH | selenenic acid form of the Sec |
SeO2H | seleninic acid form of the Sec |
Sec | selenocysteine |
-Se− | selenolate group |
-SeH | selenol group |
SpOH | sulfenic acid form of the peroxidatic Cys |
SpO2H | sulfinic acid form of the peroxidatic Cys |
SpO3H | sulfonic acid form of the peroxidatic Cys |
O2.− | superoxide anion |
SOD | superoxide dismutase |
-SH | thiol group |
-S− | thiolated group |
TPx | thioredoxin peroxidase |
Trx | thioredoxin |
Trx-S2 | thioredoxin (ozidized form) |
Trx-(SH)2 | thioredoxin (reduced form) |
L-TrxR | thioredoxin reductase (low molecular weight isoform) |
H-TrxR | thioredoxin reductase (high molecular weight isoform) |
TSH | trypanothione |
T(S)2 | trypanothione (oxidized form) |
T(SH)2 | trypanothione (reduced form) |
TryR | trypanothione reductase |
TXN | tryparedoxin |
TXNPx | tryparedoxin peroxidase |
References
- Falkowski, P.G.; Godfrey, L. Electrons, life, and the evolution of earth’s oxygen cycle. Philos. Trans. R. Soc. 2008, 363, 2705–2716. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, J.; Zerkle, A.L.; Bekker, A. Geological constraints on the origin of oxygenic photosynthesis. Photosynth. Res. 2011, 107, 11–36. [Google Scholar] [CrossRef] [PubMed]
- Falkowski, P.G.; Isozaki, Y. The Story of O2. Science 2008, 322, 540–542. [Google Scholar] [CrossRef] [PubMed]
- Schopf, J.W.; Oehler, D.Z. How old are the eukaryotes? Science 1976, 193, 47–49. [Google Scholar] [CrossRef] [PubMed]
- Thannical, V.J. Oxygen in the evolution of complex life and the price we pay. Am. J. Resp. Cell Mol. Biol. 2009, 40, 507–510. [Google Scholar] [CrossRef] [PubMed]
- Forman, H.J.; Maiorino, M.; Ursini, F. Signaling functions of reactive oxygen species. Biochemistry 2010, 49, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, J.; Arnér, E.S. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. 2001, 31, 1287–1312. [Google Scholar] [CrossRef]
- Sen, C.K.; Packer, L. Antioxidant and redox regulation of gene transcription. FASEB J. 1996, 10, 709–720. [Google Scholar] [PubMed]
- Finkel, T. Oxygen radicals and signaling. Curr. Opin. Cell Biol. 1998, 10, 248–253. [Google Scholar] [CrossRef]
- Balaban, R.S.; Nemoto, S.; Finkel, T. Mitochondria, oxidants and aging. Cell 2005, 6, 971–976. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.L.; Bonilla, M.; Gladyshev, V.N.; Salinas, G. Thioredoxin glutathione reductase-dependent redox networks in platyhelminth parasites. Antioxid. Redox Signal. 2013, 19, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Varshavsky, A. The Ubiquitin system, an immense realm. Annu. Rev. Biochem. 2012, 81, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Eldeeb, M.; Fahlman, R. The-N-End Rule: The Beginning Determines the End. Prot. Pep. Lett. 2016, 23, 343–348. [Google Scholar] [CrossRef]
- Park, S.; Kim, J.; Seok, O.; Cho, H.; Wadas, B.; Kim, S.; Varshavsky, A.; Hwang, C. Control of mammalian G protein signaling by N-terminal acetylation and the N-end rule pathway. Science 2015, 347, 1249–1252. [Google Scholar] [CrossRef] [PubMed]
- Demansi, M.; Netto, L.E.S.; Silva, G.M.; Hand, A.; de Oliveira, C.; Bicev, R.N.; Gozzo, F.; Barros, M.H.; Leme, J.; Ohara, E. Redox regulation of the proteasome via S-glutathionylation. Redox Biol. 2014, 2, 44–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varshavsky, A. The N-end rule pathway and regulation by proteolysis. Prot. Sci. 2011, 20, 1298–1345. [Google Scholar] [CrossRef] [PubMed]
- Van Laer, K.; Hamilton, C.J.; Messens, J. Low-molecular-weight thiols in thiol-disulfide exchange. Antioxid. Redox Signal. 2013, 8, 1642–1653. [Google Scholar] [CrossRef] [PubMed]
- Deponte, M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim. Biophys. Acta 2013, 1830, 3217–3266. [Google Scholar] [CrossRef] [PubMed]
- Newton, G.L.; Fahey, R.C. Mycothiol biochemistry. Arch. Microbiol. 2002, 178, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Perera, V.R.; Newton, G.L.; Pogliano, K. Bacillithiol: A key protective thiol in Staphylococcus aureus. Expert Rev. Anti-Infect. Ther. 2015, 13, 1089–1107. [Google Scholar] [CrossRef]
- del Arenal, I.P.; Rubio, M.E.; Ramírez, J.; Rendón, J.L.; Escamilla, J.E. Cyanide-resistant respiration in Taenia crassiceps metacestode (cysticerci) is explained by the H2O2-producing side-reaction of respiratory complex I with O2. Parasitol. Int. 2005, 54, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Fioravanti, C.F.; Reisig, J.M. Mitochondrial hydrogen peroxide formation and fumarate reductase of Hymenolepis diminuta. J. Parasitol. 1990, 76, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Kohler, P. The strategies of energy conservation in helminths. Mol. Biochem. Parasitol. 1985, 17, 1–18. [Google Scholar] [CrossRef]
- Tielens, A.G.M. Energy generation in parasitic helminths. Parasitol. Today 1994, 10, 346–352. [Google Scholar] [CrossRef]
- Callahan, H.L.; Crouch, R.K.; James, E.R. Helminth anti-oxidant enzymes: A protective mechanism against host oxidants. Parasitol. Today 1988, 4, 218–225. [Google Scholar] [CrossRef]
- Gretes, M.C.; Poole, L.B.; Karplus, P.A. Peroxiredoxins in parasites. Antioxid. Redox Signal. 2012, 17, 608–633. [Google Scholar] [CrossRef] [PubMed]
- Fairlamb, A.H. Novel biochemical pathways in parasitic protozoa. Parasitology 1989, 99, S93–S112. [Google Scholar] [CrossRef] [PubMed]
- Müller, S.; Liebau, E.; Walter, R.D.; Krauth-Siegel, R.L. Thiol-based redox metabolism of protozoan parasites. Trends Parasitol. 2003, 19, 320–328. [Google Scholar] [CrossRef]
- Shimeld, S.M.; Donoghue, P.C.J. Evolutionary crossroads in developmental biology: Cyclostomes (lamprey and hagfish). Development 2002, 139, 2091–2099. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhu, S.W.; Li, Q.W. Lamprey: A model for vertebrate evolutionary research. Zool. Res. 2016, 37, 263–269. [Google Scholar] [PubMed]
- Parmentier, E.; Lanterbecq, D.; Eeckaut, I. From commensalism to parasitism in Carapidae (Ophidiiformes): Heterochronic modes of development? PeerJ 2016, 4, e1786. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J.M. Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biol. 2015, 4, 381–398. [Google Scholar]
- Cordas, C.M.; Raleiras, P.; Auchére, F.; Moura, I.; Moura, J.J.G. Comparative electrochemical study of superoxide reductases. Eur. Biophys. J. 2012, 41, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.; Barrett, J. Parasite sulphur amino acid metabolism. Int. J. Parasitol. 1997, 27, 883–897. [Google Scholar] [CrossRef]
- Jortzik, E.; Becker, K. Thioredoxin and glutathione systems in Plasmodium falciparum. Int. J. Med. Microbiol. 2012, 302, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Go, Y.M.; Jones, D.P. Redox compartmentalization in eukaryotic cells. Biochim. Biophys. Acta 2008, 1780, 1273–1290. [Google Scholar] [CrossRef] [PubMed]
- Dormeyer, M.; Reckenfelderbaümer, N.; Ludemann, H.; Krauth-Siegel, R.L. Trypanothione-dependent synthesis of deoxiribonucleotides by Trypanosome brucei ribonucleotide reductase. J. Biol. Chem. 2001, 276, 10602–10606. [Google Scholar] [CrossRef] [PubMed]
- Laurent, T.C.; Moore, E.C.; Reichard, P. Enzymatic synthesis of deoxyribonucleotides. IV. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli. J. Biol. Chem. 1964, 239, 3436–3444. [Google Scholar] [PubMed]
- Lu, J.; Holmgren, A. The thioredoxin superfamily in oxidative protein folding. Antioxid. Redox Signal. 2014, 20, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Gruber, C.W.; Masa, C.; Heras, B.; Martin, J.L.; Craik, D.J. Protein disulfide isomerase: The structure of oxidative folding. TIBS 2006, 31, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Kehr, S.; Jortzik, E.; Delahunty, C.; Yates, J.R.; Rahlfs, S.; Becker, K. Protein S-glutathionylation in malaria parasites. Antioxid. Redox Signal. 2011, 15, 2855–2865. [Google Scholar] [CrossRef] [PubMed]
- Noiva, R. Enzymatic catalysis of disulfide formation. Protein Expr. Purif. 1994, 5, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Jeelani, G.; Nozaki, T. Entamoeba thiol-based redox metabolism: A potential target for drug development. Mol. Biochem. Parasitol. 2016, 206, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Krauth-Siegel, R.L.; Leroux, A.E. Low-molecular-mass antioxidants in parasites. Antioxid. Redox Signal. 2012, 17, 583–607. [Google Scholar] [CrossRef] [PubMed]
- Nozaki, T.; Shigeta, Y.; Saito-Nakano, Y.; Imada, M.; Kruger, W.D. Characterization of transsulfuration and cysteine biosynthetic pathways in the protozoan hemoflagellate, Trypanosoma cruzi. Isolation and molecular characterization of cystathionine beta-synthase and serine acetyltransferase from Trypanosoma. J. Biol. Chem. 2001, 276, 6516–6523. [Google Scholar] [CrossRef] [PubMed]
- Westrop, G.D.; Goodall, G.; Mottram, J.C.; Coombs, G.H. Cysteine biosynthesis in Trichomonas vaginalis involves cysteine synthase utilizing O-phosphoserine. J. Biol. Chem. 2006, 281, 25062–25075. [Google Scholar] [CrossRef] [PubMed]
- Lujan, H.D.; Nash, T.E. The uptake and metabolism of cysteine by Giardia lamblia trophozoites. J. Eukaryot. Microbiol. 1994, 41, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Husain, A.; Jeelani, G.; Sato, D.; Nozaki, T. Global Analysis of gene expression in response to L-Cysteine deprivation in anaerobic protozoan parasite Entamoeba histolytica. BMC Genom. 2011, 12, 275. [Google Scholar] [CrossRef] [PubMed]
- Wessjohan, L.A.; Schneider, A.; Abbas, M.; Brandt, W. Selenium in chemistry and biochemistry in comparison to sulfur. Biol. Chem. 2007, 388, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.M.; Carlson, B.A.; Zhang, Y.; Mix, H.; Kryukov, G.V.; Glass, R.S.; Berry, M.J.; Gladyshev, V.N.; Hatfield, D.L. New developments in selenium biochemistry: Selenocysteine biosynthesis in eukaryotes and archaea. Biol. Trace Elem. Res. 2007, 119, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Turanov, A.A.; Xu, X.M.; Carlson, B.A.; Yoo, M.H.; Gladyshev, V.N.; Hatfield, D.L. Biosynthesis of selenocysteine, the 21st amino acid in the genetic code, and a novel pathway for cysteine biosynthesis. Adv. Nutr. 2011, 2, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Allmang, C.; Krol, A. Selenoprotein synthesis: UGA does not end the story. Biochimie 2006, 88, 1561–1571. [Google Scholar] [CrossRef] [PubMed]
- Bulteau, A.L.; Chavatte, L. Update on seleprotein biosynthesis. Antioxid. Redox Signal. 2015, 23, 775–794. [Google Scholar] [CrossRef] [PubMed]
- Low, S.C.; Berry, M.J. Knowing when not to stop: Selenocysteine incorporation in eukaryotes. Trends Biochem. Sci. 1996, 21, 203–208. [Google Scholar] [CrossRef]
- Small-Howard, A.L.; Berry, M.J. Unique features of selenocysteine incorporation function within the context of general eukaryotic translational process. Biochem. Soc. Trans. 2005, 33, 1493–1497. [Google Scholar] [CrossRef] [PubMed]
- Small-Howard, A.; Morozova, N.; Stoytcheva, Z.; Forry, E.P.; Mansell, J.B.; Harney, J.W.; Carlson, B.A.; Xu, X.M.; Hatfield, D.L.; Berry, M.J. Supramolecular complexes mediate selenocysteine incorporation in vivo. Mol. Cell. Biol. 2006, 26, 2337–2346. [Google Scholar] [CrossRef] [PubMed]
- Kryukov, G.V.; Gladyshev, V.N. Selenium metabolism in zebrafish: Multiplicity of selenoprotein genes and expression of a protein containing 17 selenocysteine residues. Genes Cells 2000, 5, 1049–1060. [Google Scholar] [CrossRef] [PubMed]
- Johansson, L.; Gafvelin, G.; Arnér, E.S. Selenocysteine in proteins—Properties and biotechnological use. Biochim. Biophys. Acta 2005, 1726, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Griffith, O.W. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic. Biol. Med. 1999, 27, 922–935. [Google Scholar] [CrossRef]
- Anderson, M.E. Glutathione: An overview of biosynthesis and modulation. Chem.-Biol. Interact. 1998, 111, 1–14. [Google Scholar] [CrossRef]
- Shen, D.; Dalton, T.P.; Nebert, D.W.; Shertzer, H.G. Glutathione redox state regulate mitochondrial reactive oxygen production. J. Biol. Chem. 2005, 27, 25305–25312. [Google Scholar] [CrossRef] [PubMed]
- Blokhina, O.; Virolainen, E.; Fagerstedt, K.V. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot. 2003, 91, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Hanigan, M.H. Gamma-glutamyl transpeptidase: Redox regulation and drug resistance. Adv. Cancer Res. 2014, 122, 103–141. [Google Scholar] [PubMed]
- Gon, S.; Faulkner, M.J.; Beckwith, J. In vivo requirement of glutaredoxins and thioredoxins in the reduction of the ribonucleotide reductases of Escherichia coli. Antioxid. Redox Signal. 2006, 8, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Rendón, J.L.; Juárez, O. Glutathione reductase: Structural, catalytic and functional aspects. In Advances in Protein Physical Chemistry; García-Hernández, E., Fernández-Velasco, A., Eds.; Transworld Research Network: Kerala, India, 2008; Volume 1, pp. 317–349. [Google Scholar]
- Torres-Rivera, A.; Landa, A. Glutathione transferases from parasites: A biochemical view. Acta Trop. 2008, 105, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Berndt, C.; Lilling, C.H.; Holmgren, A. Thioredoxins and glutaredoxins as facilitators of protein folding. Biochim. Biophys. Acta 2008, 1783, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Hill, B.G.; Ramana, K.V.; Cai, J.; Bhatnagar, A.; Srivastava, S.K. Chapter nine: Measurement and identification of S-glutathiolated proteins. Methods Enzymol. 2010, 473, 179–197. [Google Scholar] [PubMed]
- Nkabyo, Y.S.; Ziegler, T.R.; Gu, L.H.; Watson, W.H.; Jones, D.P. Glutathione and thioredoxin during differentiation in human colon epithelial (Caco-2). Am. J. Physiol. Gastrointest. Liver Physiol. 2002, 283, G1352–G1359. [Google Scholar] [CrossRef] [PubMed]
- Karinila, E.V.; Chernov, N.N.; Novichkova, M.D. Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes. Biochemisty (Moscow) 2014, 79, 1562–1583. [Google Scholar]
- Akerboom, T.P.; Sies, H. Assay of glutathione, glutathione disulfide and glutathione mixed disulfides in biological samples. Methods Enzymol. 1981, 77, 373–382. [Google Scholar] [PubMed]
- Fairlamb, A.H.; CeramI, A. Identification of a novel, thiol-containing co-factor essential for glutathione reductase enzyme activity in trypanosomatids. Mol. Biochem. Parasitol. 1985, 14, 187–198. [Google Scholar] [CrossRef]
- Smith, K.; Mills, A.; Thornton, J.M.; Fairlamb, A.H. Trypanothione metabolism as a target for drug design: Molecular modelling of trypanothione reductase. In Biochemical Protozoology; Coombs, G.H., North, M.J., Eds.; Taylor and Francis Ltd: London, UK, 1991; pp. 482–492. [Google Scholar]
- Nogoceke, E.; Gommel, D.U.; Kiess, M.; Kalisz, H.M.; Flohé, L.A. Unique cascade of oxidoreductases catalyses trypanothione-mediated peroxide metabolism in Crithidia fasciculate. Biol. Chem. 1997, 378, 827–836. [Google Scholar] [CrossRef] [PubMed]
- Hillebrand, H.; Schmidt, A.; Krauth-Siegel, R.L. A second class of peroxidases linked to the trypanothione metabolism. J. Biol. Chem. 2003, 278, 6809–6815. [Google Scholar] [CrossRef] [PubMed]
- Turner, E.; Kelvit, R.E.; Hager, L.J.; Shapiro, B.M. Ovothiols, a family of redox-active mercaptohistidines compounds from marine invertebrate eggs. Biochemisty 1987, 26, 4028–4036. [Google Scholar] [CrossRef]
- Shapiro, B.M.; Hopkins, P.B. Ovothiols-biological and chemical perspectives. Adv. Enzymol. Relat. Areas Mol. Biol. 1991, 64, 291–316. [Google Scholar] [PubMed]
- Turner, E.; Hager, L.J.; Shapiro, B.M. Ovothiol replaces glutathione peroxidase as a hydrogen peroxide scavenger in sea urchin eggs. Science 1988, 242, 939–941. [Google Scholar] [CrossRef] [PubMed]
- Fairlamb, A.H.; Cerami, A. Metabolism and functions of trypanothione in the Kinetoplastida. Ann. Rev. Microbiol. 1992, 46, 695–729. [Google Scholar] [CrossRef] [PubMed]
- Torrents, T. Ribonucleotide reductases: Essential enzymes for bacterial life. Front. Cell. Infect. Microbiol. 2014, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Grishin, N.V. Structural classification of thioredoxin-like fold proteins. Proteins 2005, 58, 376–388. [Google Scholar] [CrossRef] [PubMed]
- Fiorillo, A.; Colotti, G.; Boffi, A.; Baiocco, P.; Ilari, A. The crystal structures of the tryparedoxin-tryparedoxin peroxidase couple unveil the structural determinants of Leishmania detoxification pathway. PLoS Negl. Trop. Dis. 2012, 6, e1781. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Hägglund, P.; Finnie, C.; Svensson, B.; Henriksen, A. Structural basis for target protein recognition by the protein disulfide reductase thioredoxin. Structure 2006, 14, 1701–1710. [Google Scholar] [CrossRef] [PubMed]
- Reckenfelderbaümer, N.; Lüdemann, H.; Schmidt, H.; Steverding, D.; Krauth-Siegel, R.L. Identification and functional characterization of thioredoxin from Trypanosoma brucei brucei. J. Biol. Chem. 2000, 275, 7547–7552. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Stephan, D.; Xu, Z.; Zheng, Y.; Tang, D.; Harrison, R.S.; Kurz, M.; Jarrott, R.; Shouldice, S.R.; Hiniker, A.; et al. Properties of the thioredoxin fold superfamily are modulated by a single amino acid residue. J. Biol. Chem. 2009, 284, 10150–10159. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Berndt, C.; Fomenko, D.E.; Holmgren, A.; Gladyshev, V.N. A conserved cis-proline precludes metal binding by the active site thiolates in members of the thioredoxin family of proteins. Biochemisty 2007, 46, 6903–6910. [Google Scholar] [CrossRef] [PubMed]
- Kodokura, H.; Tian, H.; Zander, T.; Bardwell, J.C.; Beckwith, J. Snapshots of DsbA in action: Detection of proteins in the process of oxidative folding. Science 2004, 303, 534–537. [Google Scholar] [CrossRef] [PubMed]
- Lönn, M.E.; Hudemann, C.; Berndt, C.; Cherkasov, V.; Capani, F.; Holmgren, A.; Lillig, C.H. Expression pattern of human glutaredoxin 2 isoforms: Identification and characterization of two testis/cancer-specific isoforms. Antioxid. Redox Signal. 2008, 10, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Berndt, C.; Hudemann, C.; Hanschmann, E.M.; Axelsson, R.; Holmgren, A. How does iron-sulfur cluster coordination regulate the activity of human glutaredoxin 2? Antioxid. Redox Signal. 2007, 9, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Kalinina, E.V.; Chernov, N.N.; Saprin, A.N. Involvement of thio-, Peroxi-, and glutaredoxins in cellular redox-dependent processes. Biochemisty (Moscow) 2008, 73, 1493–1510. [Google Scholar] [CrossRef]
- Ceylan, S.; Seidel, V.; Ziebart, N.; Berndt, C.; Dirdjaja, N.; Krauth-Siegel, RL. The dithiol glutaredoxins of African trypanosomes have distinct roles and are closely linked to the unique trypanothione metabolism. J. Biol. Chem. 2010, 285, 35224–35237. [Google Scholar] [CrossRef] [PubMed]
- Yogavel, M.; Tripani, T.; Gupta, A.; Banday, M.M.; Rahlfs, S.; Becker, K.; Belrhali, H.; Sharma, A. Atomic resolution crystal structure of glutaredoxin 1 from Plasmodium falciparum and comparison with other glutaredoxins. Acta Crystallogr. D Biol. Crystallogr. 2014, 70, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Line, K.; Isupov, M.N.; Garcia-Rodriguez, E.; Maggioli, G.; Parra, F.; Littlechild, J.A. The Fasciola hepatica thioredoxin: High resolution structure reveals two oxidation states. Mol. Biochem. Parasitol. 2008, 161, 44–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen, R.; Baltimore, D. Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell 1986, 26, 921–928. [Google Scholar] [CrossRef]
- Arias, D.G.; Cabeza, M.S.; Erben, E.D.; Carranza, P.G.; Lujan, H.D.; Téllez-Iñón, M.T.; Iglesias, A.A.; Guerrero, S.A. Functional characterization of methionine sulfoxide reductase A from Trypanosoma spp. Free Radic. Biol. Med. 2011, 50, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Pekkari, K.; Holmgren, A. Truncated thioredoxin: Physiological functions and mechanism. Antioxid. Redox Signal. 2004, 6, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Quan, S.; Schneider, I.; Pan, J.; von Hacht, A.; Bardwell, J.C.A. The CXXC Motif Is More than a Redox Rheostat. J. Biol. Chem. 2007, 282, 28823–28833. [Google Scholar] [CrossRef] [PubMed]
- Watson, W.H.; Pohl, J.; Montfort, W.R.; Stuchlik, O.; Reed, M.S.; Powis, G.; Jones, D.P. Redox potential of human thioredoxin 1 and identification of a second dithiol/disulfide motif. J. Biol. Chem. 2003, 278, 33408–33415. [Google Scholar] [CrossRef] [PubMed]
- Fritz-Wolf, K.; Kehr, S.; Stumpf, M.; Rahlfs, S.; Becker, K. Crystal structure of the human thioredoxin reductase-thioredoxin complex. Nat. Commun. 2011, 2, 383. [Google Scholar] [CrossRef] [PubMed]
- Casagrande, S.; Bonetto, V.; Fratelli, M.; Gianazza, E.; Eberini, I.; Massignan, T.; Salmona, M.; Chang, G.; Holmgren, A.; Ghezzi, P. Glutathionylation of human thioredoxin: A possible crosstalk between the glutathione and thioredoxin systems. Proc. Natl. Acad. Sci. USA 2002, 99, 9745–9749. [Google Scholar] [CrossRef] [PubMed]
- Haendeler, J. Thioredoxin-1 and posttranslational modifications. Antioxid. Redox Signal. 2006, 8, 1723–1728. [Google Scholar] [CrossRef] [PubMed]
- Arias, D.G.; Piñeyro, M.D.; Iglesias, A.A.; Guerrero, S.A.; Robello, C. Molecular characterization and interactome analysis of Trypanosoma cruzi tryparedoxin II. J. Proteom. 2015, 120, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Arias, D.G.; Márquez, V.E.; Chiribao, M.L.; Gadelha, F.R.; Robello, C.; Iglesias, A.A.; Guerrero, S.A. Redox metabolism in Trypanosoma cruzi: Functional characterization of tryparedoxins revisited. Free Radic. Biol. Med. 2013, 63, 65–77. [Google Scholar] [CrossRef] [PubMed]
- González-Chávez, Z.; Olin-Sandoval, V.; Rodríguez-Zavala, J.S.; Moreno-Sánchez, R.; Saavedra, E. Metabolic control analysis of the Trypanosoma cruzi peroxide detoxification pathway identifies tryparedoxin as a suitable drug target. Biochim. Biophys. Acta 2015, 1850, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Kansok, S.M.; Lozef, R.; Fischer, M.; Schirmer, R.H. Plasmoredoxin, a novel redox-active protein unique for malarial parasites. FEBS 2003, 270, 1057–1064. [Google Scholar] [CrossRef]
- Buchholz, K.; Rahlfs, S.; Shirmer, R.H.; Becker, K.; Matuschewski, K. Depletion of plasmoredoxin reveals a non-essential role for life cycle progression of the malaria parasite. PLoS ONE 2008, 3, e2474. [Google Scholar] [CrossRef] [PubMed]
- Takebe, G.; Yarimizu, J.; Saito, Y.; Hayashi, T.; Nakamura, H.; Yodoi, J.; Nagasawa, S.; Takahashi, K. A comparative study on the hydroperoxide and thiol specificity of the glutathione peroxidase family and selenoprotein P. J. Biol. Chem. 2002, 277, 41254–41258. [Google Scholar] [CrossRef] [PubMed]
- Toppo, S.; Flohé, L.; Ursini, F.; Vanin, S.; Maiorino, M. Catalytic mechanisms and specificities of glutathione peroxidases: Variations of a basic scheme. Biochim. Biophys. Acta 2009, 1790, 1486–1500. [Google Scholar] [CrossRef] [PubMed]
- Wood, Z.A.; Schröder, E.; Robin Harris, J.; Poole, L.B. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 2003, 28, 32–40. [Google Scholar] [CrossRef]
- Karplus, P.A. A primer on peroxiredoxin biochemistry. Free Radic. Biol. Med. 2015, 80, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Sueta, G.; Manta, B.; Botti, H.; Radi, R.; Trujillo, M.; Denicola, A. Factors affecting protein thiol reactivity and specificity in peroxide reduction. Chem. Res. Toxicol. 2011, 24, 434–450. [Google Scholar] [CrossRef] [PubMed]
- Winterbourn, C.C.; Metodiewa, D. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic. Biol. Med. 1999, 27, 322–328. [Google Scholar] [CrossRef]
- Rocher, C.; Lalanne, J.L.; Chaudière, J. Purification and properties of a recombinant sulfur analog of murine selenium-glutathione peroxidase. Eur. J. Biochem. 1992, 205, 955–960. [Google Scholar] [CrossRef] [PubMed]
- Arthur, J.R. The glutathione peroxidases. Cell. Mol. Life Sci. 2000, 57, 1825–1835. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, A.; Wendel, A. Non-reactivity of the selenoenzyme glutathione peroxidase with enzymically hydroperoxidised phospholipids. Eur. J. Biochem. 1983, 135, 549–552. [Google Scholar] [CrossRef] [PubMed]
- Chu, F.F.; Doroshow, J.H.; Esworthy, R.S. Expression, characterization and tissue distribution of a new cellular selenium-dependent glutathione peroxidase GSHPx-GI. J. Biol. Chem. 1993, 268, 2571–2576. [Google Scholar] [PubMed]
- Bjornstedt, M.; Xue, J.Y.; Huang, W.H.; Akesson, B.; Holmgren, A. The thioredoxin and glutaredoxin systems are efficient electron donors to human plasma glutathione peroxidase. J. Biol. Chem. 1994, 269, 29382–29384. [Google Scholar] [PubMed]
- Avissar, N.; Ornt, D.B.; Yagil, Y.; Horowitz, S.; Watkins, R.H.; Kerl, E.A.; Takahashi, K.; Palmer, I.S.; Cohen, H.J. Human kidney proximal tubules are the main source of plasma glutathione peroxidase. Am. J. Phys. 1994, 266, C367–C375. [Google Scholar]
- Maiorino, M.; Thomas, J.P.; Girotti, A.W.; Ursini, F. Reactivity of phospholipid hydroperoxide glutathione peroxidase with membrane and lipoprotein lipid hydroperoxides. Free Radic. Res. Commun. 1991, 12, 131–135. [Google Scholar] [CrossRef]
- Hall, L.; Williams, K.; Perry, A.C.; Frayne, J.; Jury, J.A. The majority of human glutathione peroxidase type 5 (GPX-5) transcripts are incorrectly spliced: Implications for the role of GPX-5 in the male reproductive tract. Biochem. J. 1998, 333, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Dear, T.N.; Campbel, L.K.; Rabbits, T.H. Molecular cloning of putative odorant-binding and odorant-metabolizing proteins. Biochem. J. 1991, 285, 863–870. [Google Scholar] [CrossRef]
- Peskin, A.; Low, F.; Paton, L.; Maghzal, G. The high reactivity of peroxiredoxin 2 with H2O2 is not reflected in its reaction with other oxidants and thiol reagents. J. Biol. Chem. 2007, 282, 11885–11892. [Google Scholar] [CrossRef] [PubMed]
- Deponte, M.; Becker, K. Biochemical characterization of Toxoplasma gondii 1-Cys peroxiredoxin 2 with mechanistic similarities to typical 2-Cys Prx. Mol. Biochem. Parasitol. 2005, 140, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.J.; Knutson, S.T.; Soito, L.; Klomsiri, C.; Poole, L.B.; Fetrow, J.S. Analysis of the peroxiredoxin family: Using active-site structure and sequence information for global classification and residue analysis. Proteins 2010, 79, 947–964. [Google Scholar] [CrossRef] [PubMed]
- Perkins, A.; Nelson, K.J.; Parsonage, D.; Poole, L.B.; Karplus, P.A. Peroxiredoxins: Guardians against oxidative stress and modulators of peroxide signaling. Trends Biochem. Sci. 2015, 40, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Poole, L.B.; Nelson, K.J. Distribution and Features of the Six Classes of Peroxiredoxins. Mol. Cells 2016, 39, 53–59. [Google Scholar] [PubMed]
- Sayed, A.A.; Williams, D.L. Biochemical characterization of 2-Cys peroxiredoxins from Schistosoma mansoni. J. Biol. Chem. 2004, 279, 26159–26166. [Google Scholar] [CrossRef] [PubMed]
- Biteau, B.; Labarre, J.; Toledano, M.B. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 2003, 425, 980–984. [Google Scholar] [CrossRef] [PubMed]
- Jönsson, T.J.; Murray, M.S.; Johnson, L.C.; Lowther, W.T. Reduction of cysteine sulfinic acid in peroxiredoxin by sulfiredoxin proceeds directly through a sulfinic phosphoryl ester intermediate. J. Biol. Chem. 2008, 283, 23846–23851. [Google Scholar] [CrossRef] [PubMed]
- Thamsen, M.; Kumsta, C.; Li, F.; Jakob, U. Is overoxidation of peroxiredoxin physiologically significant? Antioxid. Redox Signal. 2011, 14, 725–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bond, C.S.; Zhang, Y.; Berriman, M.; Cunningham, M.L.; Fairlamb, A.H.; Hunter, W.N. Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with thypanothione, and the structure-based discovery of the natural product inhibitors. Structure 1999, 7, 81–89. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, C.Z. Crystal structure of glutathione reductase Glr1 from the yeast Saccharomyces cerevisiae. Proteins 2007, 68, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Mittl, P.R.E.; Schulz, G.E. Structure of glutathione reductase from Escherichia coli at 1.86 Å resolution: Comparison with the enzyme from human erythrocytes. Protein Sci. 1994, 3, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Krauth-Siegel, R.L.; Comini, M.A. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim. Biophys. Acta 2008, 1780, 1236–1248. [Google Scholar] [CrossRef] [PubMed]
- Stoll, V.S.; Simpson, S.J.; Krauth-Siegel, R.L.; Walsh, C.T.; Pai, E.F. Glutathione reductase turned into trypanothione reductase: Structural analysis of an engineered change in substrate specificity. Biochemistry 1997, 36, 6437–6447. [Google Scholar] [CrossRef] [PubMed]
- Kuriyan, J.; Krishna, T.S.R.; Wong, L.; Guenther, B.; Pahler, A.; Williams, C.H., Jr.; Model, P. Convergent evolution of similar function in two structurally divergent enzymes. Nature 1991, 352, 172–174. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.A.; Discola, K.F.; Alves, S.V.; Medrano, F.J.; Guimaraes, B.G.; Netto, L.E.S. Insights into the specificity of thioredoxin reductase-thioredoxin interactions. A structural and functional investigation of the yeast thioredoxin system. Biochemistry 2010, 49, 3317–3326. [Google Scholar] [CrossRef] [PubMed]
- Missirlis, F.; Ulschmid, J.K.; Hirosawa-Takamori, M.; Grönke, S.; Schänfer, U.; Becker, K.; Phillips, J.P.; Jäckle, H. Mitochondrial and cytoplasmic thioredoxin reductase variants encoded by a single Drosophila gene are both essential for viability. J. Biol. Chem. 2002, 277, 11521–11526. [Google Scholar] [CrossRef] [PubMed]
- Jacob, C.; Giles, G.I.; Giles, N.M.; Sies, H. Sulfur and selenium: The role of oxidation state in protein structure and function. Angew. Chem. Int. Ed. Engl. 2003, 42, 4742–4758. [Google Scholar] [CrossRef] [PubMed]
- Snider, G.W.; Ruggles, E.; Khan, N.; Hondal, R.J. Selenocysteine confers resistance to inactivation by oxidation in thioredoxin reductase: Comparison of selenium and sulfur enzymes. Biochemistry 2013, 52, 5472–5481. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.A.; Kirnarsky, L.; Sherman, S.; Gladyshev, V.N. Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems. Proc. Natl. Acad. Sci. USA 2001, 98, 3673–3678. [Google Scholar] [CrossRef] [PubMed]
- McMillan, P.J.; Patzewitz, E.M.; Young, S.E.; Westrop, G.D.; Coombs, G.H.; Engman, L.; Müller, S. Differential inhibition on high and low Mr thioredoxin reductases of parasites by organotelluriums supports the concept that low Mr thioredoxin reductases are good drug targets. Parasitology 2009, 136, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Grommer, S.; Arscott, D.; Williams, C.H., Jr.; Schirmer, R.H.; Becker, K. Human placenta thioredoxin reductase. Isolation of the selenoenzyme, steady state kinetics, and inhibition by therapeutic gold compounds. J. Biol. Chem. 1998, 273, 20096–20101. [Google Scholar] [CrossRef]
- Arscott, L.D.; Grommer, S.; Schirmer, R.H.; Becker, K.; Williams, C.H., Jr. The mechanism of thioredoxin reductase from human placenta is similar to the mechanism of lipoamide dehydrogenase and glutathione reductase and is distinct from the mechanism of thioredoxin reductase from Escherichia coli. Proc. Natl. Acad. Sci. USA 1997, 94, 3621–3626. [Google Scholar] [CrossRef] [PubMed]
- Holdan, R.J.; Ruggles, E.L. Differing view of the role of selenium in thioredoxin reductase. Amino Acids 2011, 41, 73–89. [Google Scholar]
- Hondal, R.J.; Marino, S.M.; Gladyshev, V.N. Selenocysteine in thiol/disulfide-like exchange reactions. Antioxid. Redox Signal. 2012, 18, 1675–1689. [Google Scholar] [CrossRef] [PubMed]
- Lacey, B.M.; Eckenroth, B.E.; Flemer, S., Jr.; Hondal, R.J. Selenium in thioredoxin reductase: A mechanistic perspective. Biochemistry 2008, 47, 12810–12821. [Google Scholar] [CrossRef] [PubMed]
- Fritz-Wolf, K.; Jortzik, E.; Stumpf, M.; Preuss, J.; Iozef, R.; Rahlfs, S.; Becker, K. Crystal structure of the Plasmodium falciparum thioredoxin reductase-thioredoxin complex. J. Mol. Biol. 2013, 425, 3446–3460. [Google Scholar] [CrossRef] [PubMed]
- Rendón, J.L.; del Arenal, I.P.; Guevara-Flores, A.; Uribe, A.; Plancarte, A.; Mendoza-Hernández, G. Purification, characterization and kinetic properties of the multifunctional thioredoxin-glutathione reductase from Taenia crassiceps metacestode (cysticerci). Mol. Biochem. Parasitol. 2004, 133, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Sandalova, T.; Zhong, L.; Lindqvist, Y.; Holmgren, A.; Schneider, G. Three-dimensional structure of a mammalian thioredoxin reductase: Implications for mechanism and evolution of a selenocysteine-dependent enzyme. Proc. Natl. Acad. Sci. USA 2001, 98, 9533–9538. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, J.J.; Guevara-Flores, A.; Rendón, J.L.; Sosa-Peinado, A.; del Arenal-Mena, I.P. Purification and characterization of Taenia crassiceps cysticerci thioredoxin: Insight into thioredoxin-glutathione-reductase (TGR) substrate recognition. Parasitol. Int. 2015, 64, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, M.; Denicola, A.; Novoselov, S.V.; Turanov, A.A.; Protasio, A.; Izmendi, D.; Gladyshev, V.N.; Salinas, G. Platyhelminth mitochondrial and cytosolic redox homeostasis is controlled by a single thioredoxin glutathione reductase and dependent on selenium and glutathione. J. Biol. Chem. 2008, 283, 17898–17907. [Google Scholar] [CrossRef] [PubMed]
- Angelucci, F.; Miele, A.E.; Boumis, G.; Dimastrogiovanni, D.; Brunori, M.; Bellelli, A. Glutathione reductase and thioredoxin reductase at the crossroad: The structure of Schistosoma mansoni thioredoxin glutathione reductase. Proteins 2008, 72, 936–945. [Google Scholar] [CrossRef] [PubMed]
- Dobrovolska, O.; Shumilina, E.; Gladishev, V.N.; Dikiy, A. Structural analysis of glutaredoxin domain of Mus musculus thioredoxin glutathione reductase. PLoS ONE 2012, 7, e52914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agorio, A.; Chalar, C.; Cardozo, S.; Salinas, G. Alternative mRNAs arising from trans-splicing code for mitochondrial and cytosolic variants of Echinococcus granulosus thioredoxin glutathione reductase. J. Biol. Chem. 2003, 278, 12920–12928. [Google Scholar] [CrossRef] [PubMed]
- Alger, H.M.; Williams, D.L. The disulfide redox system of Schistosoma mansoni and the importance of a multifunctional enzyme, thioredoxin glutathione reductase. Mol. Biochem. Parasitol. 2002, 121, 129–139. [Google Scholar] [CrossRef]
- Su, D.; Novoselov, S.V.; Sun, Q.A.; Moustafa, M.E.; Zhou, Y.; Oko, R.; Hatfield, D.L.; Gladyshev, S.V. Mammalian selenoprotein thioredoxin-glutathione reductase. Roles in disulfide bond formation and sperm maturation. J. Biol. Chem. 2005, 280, 26491–26498. [Google Scholar] [PubMed]
- Mandal, P.K.; Seiler, A.; Perisic, T.; Kölle, P.; Canak, A.B.; Förster, H.; Weiss, N.; Kremmer, E.; Lieberman, M.W.; Bannai, S.; et al. System Xc and thioredoxin reductase 1 cooperatively rescue glutathione deficiency. J. Biol. Chem. 2010, 285, 22244–22253. [Google Scholar] [CrossRef] [PubMed]
- Reckenfelderbäumer, N.; Krauth-Siegel, R.L. Catalytic properties, thiol pH value, and redox potential of Trypanosome brucei tryparedoxin. J. Biol. Chem. 2002, 277, 17548–17555. [Google Scholar] [CrossRef] [PubMed]
- Fahey, R.C.; Newton, G.L.; Arrick, B.; Overdank-Bogart, T.; Aley, S.B. Entamoeba histolytica: A eukaryote without glutathione metabolism. Science 1984, 224, 70–72. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.M.; Upcroft, J.A.; Edwards, M.R.; Upcroft, P. Anaerobic bacterial metabolism in the ancient eukaryote Giardia duodenalis. Inter. J. Parasitol. 1998, 28, 149–164. [Google Scholar] [CrossRef]
- Mehlotra, R.K. Antioxidant defense mechanisms in parasitic protozoa. Crit. Rev. Microbiol. 1996, 22, 295–314. [Google Scholar] [CrossRef] [PubMed]
- Jeelani, G.; Husain, A.; Sato, D.; Ali, V.; Suematsu, M.; Soga, T.; Nozaki, T. Two atypical l-cysteine-regulated NADPH-dependent Oxidoreductases involved in redox maintenance, l-cystine and iron reduction, and metronidazole activation in the enteric protozoan Entamoeba histolytica. J. Biol. Chem. 2010, 285, 26889–26899. [Google Scholar] [CrossRef] [PubMed]
- Akbar, M.A.; Chatterjee, N.S.; Sen, P.; Debnath, A.; Pal, A.; Bera, T.; Das, P. Genes induced by a high-oxygen environment in Entamoeba histolytica. Mol. Biochem. Parasitol. 2004, 133, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Arias, DG.; Gutierrez, C.E.; Iglesias, A.A.; Guerrero, S.A. Thioredoxin-linked metabolism in Entamoeba histolytica. Free Radic. Biol. Med. 2007, 42, 1496–1505. [Google Scholar] [CrossRef] [PubMed]
- Arias, D.G.; Carranza, P.G.; Lujan, H.D.; Iglesias, A.A.; Guerrero, S.A. Inmunolocalization and enzymatic functional characterization of the thioredoxin system in Entamoeba hystolytica. Free Radic. Biol. Med. 2008, 45, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Arias, D.G.; Regner, E.L.; Iglesias, A.A.; Guerrero, S.A. Entamoeba histolytica thioredoxin reductase: Molecular and functional characterization of its atypical propierties. Biochim. Biophys. Acta 2012, 1820, 1859–1866. [Google Scholar] [CrossRef] [PubMed]
- Bendtsen, J.D.; Nielsen, H.; von Heijne, G.; Brunak, S. Improved prediction of signal peptides: Signal P 3.0. J. Mol. Biol. 2004, 340, 783–795. [Google Scholar] [CrossRef] [PubMed]
- Wassmann, C.; Hellberg, A.; Tannich, E.; Bruchhaus, I. Metronidazole resistance in the protozoan parasite Entamoeba histolytica is associated with increased expression of iron-containing superoxide dismutase and peroxiredoxin and decreased expression of ferredoxin 1 and flavin reductase. J. Biol. Chem. 1999, 274, 26051–26056. [Google Scholar] [CrossRef] [PubMed]
- Rasoloson, D.; Vanacova, S.; Tomkova, E.; Razga, J.; Hrdy, I.; Tachezy, J.; Kulda, J. Mechanisms of in vitro development of resistance to metronidazole in Trichomonas vaginalis. Microbiology 2002, 148, 2467–2477. [Google Scholar] [CrossRef] [PubMed]
- Cabeza, M.S.; Guerrero, S.A.; Iglesias, A.A.; Arias, D.G. New enzymatic pathways for the reduction of reactive oxygen species in Entamoeba histolytica. Biochim. Biophys. Acta 2015, 1850, 1233–1244. [Google Scholar] [CrossRef] [PubMed]
- Müller, M. Reductive activation of nitroimidazoles in anaerobic microorganisms. Biochem. Pharmacol. 1986, 35, 37–41. [Google Scholar] [CrossRef]
- Williams, K.; Lowe, P.N.; Leadlay, P.F. Purification and characterization of pyruvate: Ferredoxin oxidoreductase from the anaerobic protozoon Trichomonas vaginalis. Biochem. J. 1987, 246, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Maayeh, S.Y.; Knörr, L.; Svärd, S.G. Transcriptional profiling of Giardia intestinalis in response to oxidative stress. Int. J. Parasitol. 2015, 45, 925–938. [Google Scholar] [CrossRef] [PubMed]
- Kehr, S.; Sturm, N.; Rahlfs, S.; Przyborski, J.M.; Becker, K. Compartmentation of redox metabolism in malaria Parasites. PLoS Pathog. 2010, 6, e1001242. [Google Scholar] [CrossRef] [PubMed]
- Barrand, M.A.; Winterberg, M.; Ng, F.; Nguyen, M.; Kirk, K.; Hladky, S.B. Glutathione export from human erythrocytes and Plasmodium falciparum malaria parasites. Biochem. J. 2012, 448, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Müller, S. Role and Regulation of Glutathione Metabolism in Plasmodium falciparum. Molecules 2015, 20, 10511–10534. [Google Scholar] [CrossRef] [PubMed]
- Rahlfs, S.; Fisher, M.; Becker, K. Plasmodium falciparum possesses a classical glutaredoxins and a second glutaredoxins-like protein with a PICOT homology domain. J. Biol. Chem. 2001, 276, 37133–37140. [Google Scholar] [CrossRef] [PubMed]
- Sturm, N.; Jortzik, E.; Mailu, B.M.; Komcarevic, S.; Deponte, M.; Forchhammer, K.; Rahlfs, S.; Becker, K. Identification of proteins targeted by the thioredoxin superfamily in Plasmodium falciparum. PLoS Pathog. 2009, 5, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawazu, S.; Komak, K.; Tsuji, N.; Kawai, S.; Ikenoue, N.; Hatabu, T.; Ishikawa, H.; Matsumoto, Y.; Himeno, K.; Kano, S. Molecular characterization of a 2-Cys peroxiredoxin from the human malaria parasite Plasmodium falciparum. Mol. Biochem. Parasitol. 2001, 116, 73–79. [Google Scholar] [CrossRef]
- Yano, K.; Komaki-Yasuda, K.; Kobayashi, T.; Takemae, H.; Kita, K.; Kano, S.; Kawazu, S.I. Expression of mRNAs and proteins for peroxiredoxins in Plasmodium falciparum erythrocyte stage. Parasitol. Int. 2005, 54, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Akerman, S.; Muller, S. 2-Cys peroxiredoxin PfTrx-Px1 is involved in the antioxidant defence of Plasmodium falciparum. Mol. Biochem. Parasitol. 2003, 130, 75–81. [Google Scholar] [CrossRef]
- Rahlfs, S.; Becker, K. Thioredoxin peroxidases of the malarial parasite Plasmodium falciparum. Eur. J. Biochem. 2001, 268, 1404–1409. [Google Scholar] [CrossRef] [PubMed]
- Nickel, C.; Trujillo, M.; Rahlfs, S.; Deponte, M.; Radi, R.; Becker, K. Plasmodium falciparum 2-Cys peroxiredoxin reacts with plasmoredoxin and peroxynitrite. Biol. Chem. 2005, 386, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Sztajer, H.; Gamain, B.; Aumann, K.D.; Slomianny, C.; Becker, K.; Brigelius-Flohé, R.; Flohé, L. The putative glutathione peroxidase gene of Plasmodium falciparum codes for a thioredoxin peroxidase. J. Biol. Chem. 2001, 276, 7397–7403. [Google Scholar] [CrossRef] [PubMed]
- Sarma, G.N.; Nickel, C.; Rahlfs, S.; Fischer, M.; Becker, K.; Karplus, P.A. Crystal structure of a novel Plasmodium falciparum 1-Cys peroxiredoxin. J. Mol. Biol. 2005, 346, 1021–1034. [Google Scholar] [CrossRef] [PubMed]
- Nickel, C.; Rahlfs, S.; Deponte, M.; Koncarevic, S.; Becker, K. Thioredoxin networks in the malarial parasite Plasmodium falciparum. Antioxid. Redox Signal. 2006, 8, 1227–1239. [Google Scholar] [CrossRef] [PubMed]
- Richard, D.; Bartfai, R.; Volz, J.; Ralph, S.A.; Muller, S.; Stunnenberg, H.G.; Cowman, A.F. A genome-wide chromatin-associated nuclear peroxiredoxin from the malaria parasite Plasmodium falciparum. J. Biol. Chem. 2011, 286, 11746–11755. [Google Scholar] [CrossRef] [PubMed]
- Müller, S.; Gilberger, T.W.; Färber, P.M.; Becker, K.; Schirmer, R.H.; Walter, R.D. Recombinant putative glutathione reductase of Plasmodium falciparum exhibits thioredoxin reductase activity. Mol. Biochem. Parasitol. 1996, 80, 215–219. [Google Scholar] [CrossRef]
- Färber, P.M.; Arscott, L.D.; Williams, C.H., Jr.; Becker, K.; Schirmer, R.H. Recombinant Plasmodium falciparum glutathione reductase is inhibited by the antimalarian dye methylene blue. FEBS Lett. 1998, 422, 311–314. [Google Scholar] [CrossRef]
- Karplus, P.A.; Schulz, G.E. Substrate binding and catalysis by glutathione reductase as derived from refined enzyme: Substrate crystal at 2 Å resolution. J. Mol. Biol. 1989, 210, 163–180. [Google Scholar] [CrossRef]
- Snider, G.W.; Dustin, C.M.; Ruggles, E.L.; Hondal, R.J. A mechanistic investigation of the C-terminal redox motif of thioredoxin reductase from Plasmodium falciparum. Biochemistry 2014, 53, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.F.; Arscott, L.D.; Gilberger, T.W.; Müller, S.; Williams, C.H., Jr. Thioredoxin reductase from Plasmodium falciparum: Evidence for interaction between the C-terminal cysteine residues and the active site disulfide-dithiol. Biochemistry 1999, 38, 3187–3196. [Google Scholar] [CrossRef] [PubMed]
- McMillan, P.J.; Arscott, L.D.; Ballou, D.P.; Becker, K.; Williams, C.H., Jr.; Müller, S. Identification of acid-base catalytic residues of high-Mr thoredoxin reductase from Plasmodium falciparum. J. Biol. Chem. 2006, 281, 32967–32977. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Salcedo, J.A.; Unciti-Broceta, J.D.; Valverde-Pozo, J.; Soriano, M. New approaches to overcome transport related drug resistance in trypanosomatid parasites. Front. Pharmacol. 2016, 7, 351. [Google Scholar] [CrossRef] [PubMed]
- Manta, B.; Comini, M.; Medeiros, A.; Hugo, M.; Trujillo, M.; Radi, R. Trypanothione: A unique bis-glutathionyl derivative in trypanosomatids. Biochem. Biophys. Acta 2013, 1830, 3199–3216. [Google Scholar] [CrossRef] [PubMed]
- Fairlamb, A.H.; Blackburn, P.; Ulrich, P.; Chait, B.T.; CeramI, A. Trypanothione: A novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science 1985, 227, 1485–1487. [Google Scholar] [CrossRef] [PubMed]
- Krauth-Siegel, R.L.; Enders, B.; Henderson, G.B.; Fairlamb, A.H.; Shirmer, R.H. Trypanothione reductase from Trypanosoma cruzi. Purification and characterization of the crystalline enzyme. Eur. J. Biochem. 1987, 164, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Boveris, A.; Sies, H.; Martino, E.E.; Docampo, R.; Turrens, J.F.; Stoppani, A.O. Deficient metabolic utilization of Hydrogen peroxide in Trypanosoma cruzi. Biochem. J. 1980, 188, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Friemann, R.; Schmidt, H.; Ramaswamy, S.; Forstner, M.; Krauth-Siegel, R.L.; Eklund, H. Structure of thioredoxin from Trypanosoma brucei. FEBS Lett. 2003, 554, 301–305. [Google Scholar] [CrossRef]
- Piattoni, C.V.; Blancato, V.S.; Miglietta, H.; Iglesias, A.A.; Guerrero, S.A. On the occurrence of thioredoxin in Trypanosoma cruzi. Acta Trop. 2006, 97, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Balaña-Fouce, R.; Calvo-Álvarez, E.; Álvarez-Valilla, R.; Prada, C.F.; Pérez-Pertejo, Y.; Reguera, R.M. Role of trypanosomatid’s arginase in polyamine biosynthesis and pathogenesis. Mol. Biochem. Parasitol. 2012, 181, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Peluffo, G.; Piacenza, L.; Irigoín, F.; Alvarez, M.N.; Radi, R. L-arginine metabolism during interaction of Trypanosoma cruzi with host cells. Trends Parasitol. 2004, 20, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Melchers, J.; Dirdjaja, N.; Ruppert, T.; Krauth-Siegel, R.L. Glutathionylation of trypanosomal thiol redox proteins. J. Biol. Chem. 2007, 282, 8678–8694. [Google Scholar] [CrossRef] [PubMed]
- Tetaud, E.; Giroud, C.; Prescott, A.R.; Parkin, D.W.; Baltz, D.; Biteau, N.; Baltz, T.; Failamb, A.H. Molecular characterization of mitochondrial and cytosolic trypanothione-dependent tryparedoxin peroxidases in Trypanosoma brucei. Mol. Biochem. Parasitol. 2001, 116, 171–183. [Google Scholar] [CrossRef]
- Atwood, J.A.; Weatherly, D.B.; Minning, T.A.; Bundy, B.; Cavola, C.; Opperdoes, F.R.; Orlando, R.; Tarleton, R.L. The Trypanosome cruzi proteome. Science 2005, 309, 473–476. [Google Scholar] [CrossRef] [PubMed]
- Comini, M.A.; Krauth-Siegel, R.L.; Flohé, L. Depletion of the thioredoxin homologue tryparedoxin impairs antioxidative defence in African trypanosomes. Biochem. J. 2007, 402, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Comini, M.A.; Comini, J.R.; Dirdjaja, N.; Hanschmann, E.; Berndt, C.; Krauth-Siegel, R.L. Monothiol Glutaredoxin-1 Is an Essential Iron-Sulfur Protein in the Mitochondrion of African Trypanosomes. J. Biol. Chem. 2010, 285, 35224–35237. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, S.R.; Obado, S.O.; Mauricio, I.L.; Kelly, J.M. Trypanosoma cruzi expresses aplantlike ascorbate-dependent hemoperoxidase localized to the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 2002, 99, 13453–13458. [Google Scholar] [CrossRef] [PubMed]
- Logan-Klumpler, F.J.; de Silva, N.; Boehme, U.; Rogers, M.B.; Velarde, G.; McQuillan, J.A.; Carver, T.; Aslett, M.; Olsen, C.; Subramanian, S.; et al. GeneDB- an annotation database for pathogens. Nucleic Acids Res. 2012, 40, D98–D108. [Google Scholar] [CrossRef] [PubMed]
- Spinks, D.; Shanks, E.J.; Cleghorn, L.A.; McElroy, S.; Jones, D.; James, D.; Fairlamb, A.H.; Frearson, J.A.; Wyatt, P.G.; Gilbert, I.H. Investigation of trypanothione reductase as a drug target in Trypanosoma brucei. Chem. Med. Chem. 2009, 4, 2060–2069. [Google Scholar] [CrossRef] [PubMed]
- Ariyanayagam, M.R.; Fairlamb, A.H. Ovothiol and trypanothione as antoxidant in trypanosomatides. Mol. Biochem. Parasit. 2001, 115, 189–198. [Google Scholar] [CrossRef]
- Chalar, C.; Martinez, C.; Agorio, A.; Salinas, G.; Soto, J.; Ehrlich, R. Molecular cloning and characterization of a thioredoxin gene from Echinococcus granulosus. Biochem. Biophys. Res. Commun. 1999, 262, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Alger, H.M.; Sayed, A.A.; Stadecker, M.J.; Williams, D.L. Molecular and enzymatic characterization of Schistosoma mansoni thioredoxin. Int. J. Parasitol. 2002, 32, 1285–1292. [Google Scholar] [CrossRef]
- Boukli, N.M.; Delgado, B.; Ricaurte, M.; Espino, A.M. Fasciola hepatica and Schistosoma mansoni identification of common proteins by comparative proteomic analysis. J. Parasitol. 2011, 97, 852–861. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; li, P.; Peng, Y.; Wu, Q.; Huang, F. Expression, characterization and crystal structure of thioredoxin-I from Schistosoma japonicum. Parasitology 2015, 142, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Sripa, B.; Tripathi, T. Purification and characterization of two domain glutaredoxin in the parasitic helminth Fasciola gigantica. Parasit. Int. 2016, in press. [Google Scholar]
- Wachnowsky, C.; Fidai, I.; Cowan, J.A. Cytosolic iron-sulfur transfer a proposed kinetic pathway for reconstitution of glutaredoxin 3. FEBS Lett. 2016, 590, 4531–4540. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, J.J.; Guevara-Flores, A.; Rendón, J.L.; del Arenal, I.P. Auranofin-induced oxidative stress causes redistribution of the glutathione pool in Taenia crassiceps cysticerci. Mol. Biochem. Parasitol. 2015, 201, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Dimastrogiovanni, D.; Anselmi, M.; Miele, A.E.; Boumis, G.; Petersson, L.; Angelucci, F.; Nola, A.D.; Brunori, M.; Bellelli, A. Combining crystallography and molecular dynamics: The case of Schistosoma mansoni phospholipid glutathione peroxidase. Proteins 2010, 78, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Kwatia, M.A.; Botkin, D.J.; Williams, D.L. Molecular and enzymatic characterization of Schistosoma mansoni thioredoxin peroxidase. J. Parasitol. 2000, 86, 908–915. [Google Scholar] [CrossRef]
- Luszczak, J.; Ziaja-Soltys, M.; Rzymowska, J. Anti-oxidant activity of superoxide dismutase and glutathione peroxidase enzymes in skeletal muscles from slaughter cattle infected with Taenia saginata. Exp. Parasitol. 2011, 128, 163–165. [Google Scholar] [CrossRef] [PubMed]
- Tsai, I.J.; Zarowiecki, M.; Holroyd, N.; Garciarrubio, A.; Sanchez-Flores, A.; Brooks, K.L.; Tracey, A.; Bobes, R.J.; Fragoso, G.; Sciutto, E.; et al. The genomes of four tapeworm species reveal adaptations to parasitism. Nature 2013, 496, 57–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.; Zhang, W.; Zhang, L.; Zhang, Z.; Li, J.; Lu, G.; Zhu, Y.; Wang, Y.; Huang, Y.; Liu, J.; et al. The genome of the hydatid tapeworm Echinococcus granulosus. Nat. Genet. 2013, 45, 1168–1175. [Google Scholar] [CrossRef] [PubMed]
- Molina-López, J.; Jiménez, L.; Ochoa-Sánchez, A.; Landa, A. Molecular cloning and characterization of a 2-Cys peroxiredoxin from Taenia solium. J. Parasitol. 2006, 92, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Vaca-Paniagua, F.; Parra-Unda, R.; Landa, A. Characterization of one typical 2-Cys peroxiredoxin gene of Taenia solium and Taenia crassiceps. Parasitol. Res. 2009, 105, 781–787. [Google Scholar] [CrossRef] [PubMed]
- Guevara-Flores, A.; Pardo, J.P.; Rendón, J.L. Hysteresis in thioredoxin-glutathione reductase (TGR) from the adult stage of the liver fluke Fasciola hepatica. Parasitol. Int. 2011, 60, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhang, M.; Hong, Y.; Zhu, Z.; Li, D.; Li, X.; Fu, Z.; Lin, J. Characterization of thioredoxin glutathione reductase in Schistosoma japonicum. Parasitol. Int. 2012, 61, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Changklungmoa, N.; Kueakhai, P.; Sangpairoj, K.; Chaichanasak, P.; Jaikua, W.; Riengrojpitak, S.; Sobhon, P.; Chaithirayanon, K. Molecular cloning and characterization of Fasciola gigantica thioredoxin-glutathione reductase. Parasitol. Res. 2015, 114, 2119–2127. [Google Scholar] [CrossRef] [PubMed]
- Plancarte, A.; Nava, G. Purification and kinetic analysis of cytosolic and mitochondrial thioredoxin glutathione reductase extracted from Taenia solium cysticerci. Exp. Parasitol. 2015, 149, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Guevara-Flores, A.; del Arenal, I.P.; Mendoza-Hernández, G.; Pardo, J.P.; Flores-Herrera, O.; Rendón, J.L. Mitochondrial thioredoxin-glutathione reductase from larval Taenia crassiceps (Cysticerci). J. Parasitol. Res. 2010, 2010, 719856. [Google Scholar] [CrossRef] [PubMed]
- Maggioli, G.; Placenza, L.; Carambula, B.; Carmona, C. Purification, characterization, and immunolocalization of a thioredoxin reductase from adult Fasciola hepatica. J. Parasitol. 2004, 90, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Simeonov, A.; Jadhav, A.; Sayed, A.A.; Wang, Y.; Nelson, M.E.; Thomas, C.J.; Inglese, J.; Williams, D.L.; Austin, C.P. Quantitative high-throughput screen identifies inhibitors of the Schistosoma mansoni redox cascade. PLoS Negl. Trop. Dis. 2008, 2, e127. [Google Scholar] [CrossRef] [PubMed]
- Saiz, C.; Castillo, V.; Fontán, P.; Bonilla, M.; Salinas, G.; Rodríguez-Haralambides, A.; Mahler, S.G. Discovering Echinococcus granulosus thioredoxin glutathione reductase inhibitors through site-specific dynamic combinatorial chemistry. Mol. Divers. 2014, 18, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Ziniel, P.D.; He, P.Q.; Kommer, V.P.; Crowther, G.J.; He, M.; Liu, Q.; Van Voorhis, W.C.; Williams, D.L.; Wang, M.W. High-throughput screening against thioredoxin glutathione reductase identifies novel inhibitors with potential therapeutic value for schistosomiasis. Infect. Dis. Poverty 2015, 4, 40. [Google Scholar] [CrossRef] [PubMed]
- Kuntz, A.N.; Davioud-Charvet, E.; Saayed, A.A.; Califf, L.L.; Dessolin, J.; Arnér, E.S.; Williams, D.L. Thioredoxin glutathione reductase from Schistosoma mansoni: An essential parasite enzyme and a key drug target. PLoS Med. 2007, 4, e206. [Google Scholar]
- Martínez-González, J.J.; Guevara-Flores, A.; Alvarez, G.; Rendón-Gómez, J.L.; Del Arenal, I.P. In vitro killing action of auranofin on Taenia crassiceps metacestode (cysticerci) and inactivation of thioredoxin-glutathione reductase (TGR). Parasitol. Res. 2010, 107, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Kunchithapautham, K.; Padmavathi, B.; Narayanan, R.B.; Kaliraj, P.; Scott, A.L. Thioredoxin from Brugia malayi: Defining a 16-kilodalton class of thioredoxins from nematodes. Infect. Immun. 2003, 17, 4119–4126. [Google Scholar] [CrossRef]
- Henkle-Duhrsen, K.; Kampkotter, A. Antioxidant enzyme families in parasitic nematodes. Mol. Biochem. Parasitol. 2001, 114, 129–142. [Google Scholar] [CrossRef]
- Ou, X.; Thomas, G.R.; Chacón, M.R.; Tang, L.; Selkirk, M.E. Brugia malayi: Differential susceptibility to and metabolism of hydrogen peroxide in adults and microfilariae. Exp. Parasitol. 1995, 80, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Selkirk, M.E.; Smith, V.P.; Thomas, G.R.; Gounaris, K. Resistance of filarial nematode parasites to oxidative stress. Int. J. Parasitol. 1998, 28, 1315–1332. [Google Scholar] [CrossRef]
- Lu, W.; Egerton, G.L.; Bianco, A.E.; Williams, S.A. Thioredoxin peroxidase from Onchocerca volvulus: A major hydrogen peroxide detoxifying enzyme in filarial parasites. Mol. Biochem. Parasitol. 1998, 91, 221–235. [Google Scholar] [CrossRef]
- Ghosh, I.; Eisinger, S.W.; Raghavan, N.; Scott, A.L. Thioredoxin peroxidases from Brugia malayi. Mol. Biochem. Parasitol. 1998, 91, 207–220. [Google Scholar] [CrossRef]
- Lüersen, K.; Stegehake, D.; Daniel, J.; Drescher, M.; Ajonina, I.; Hertel, P.; Woltersdorf, C.; Liebau, E. The glutathione reductase GSR-1 determines strees tolerance and longevity in Caenorhabditis elegans. PLoS ONE 2013, 8, e60731. [Google Scholar] [CrossRef] [PubMed]
- Müller, S.; Walter, R.D.; Fairlamb, A.H. Differential susceptibility of filarial and human erythrocyte glutathione reductase to inhibition by the trivalent organic arsenial melarsen oxide. Mol. Biochem. Parasitol. 1995, 71, 211–219. [Google Scholar] [CrossRef]
- Komuniecki, R.; Bruchhaus, I.; Ilg, T.; Wilson, K.; Zhang, Y.; Fairlamb, A.H. Purification of glutathione reductase from muscle of the parasitic nematode Ascaris suum. Mol. Biochem. Parasitol. 1992, 51, 331–333. [Google Scholar] [CrossRef]
- Müller, S.; Gilberger, T.W.; Fairlamb, A.H.; Walter, R.D. Molecular characterization and expression of Onchocerca volvulus glutathione reductase. Biochem. J. 1997, 325, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Bandyopadhyay, J.; Hwaang, H.S.; Park, B.J.; Cho, J.H.; Lee, J.I.; Ahnn, J.; Lee, S.K. Two thioredoxin reductases, trxr-1 and trxr-2, have differential physiological roles in Caenorhabditis elegans. Mol. Cells 2012, 34, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Hudson, A.L.; Sotirchos, I.M.; Davey, M.W. Substrate specificity of the mitochondrial thioredoxin reductase of the parasitic nematode Haemonchus contortus. Parasitol. Res. 2010, 107, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Bondareva, A.A.; Capecchi, M.R.; Iverson, S.V.; Li, Y.; Lopez, N.I.; Lucas, O.; Merril, G.F.; Prigge, J.R.; Siders, A.M.; Wakamiya, M.; et al. Effects of thioredoxin reductase-1 deletion on embryogenesis and transcriptome. Free Radic. Biol. Med. 2007, 43, 911–923. [Google Scholar] [CrossRef] [PubMed]
- Stenvall, J.; Fierro-Gonzalez, J.C.; Swoboda, P.; Saamarthy, K.; Cheng, Q.; Cacho-Valadez, B.; Arner, E.S.; Persson, O.P.; Miranda-Vizuete, A.; Tuck, S. Selenoprotein TRXR-1 and GSR-1 are essential for removal of old cuticle during molting in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2011, 108, 1064–1069. [Google Scholar] [CrossRef] [PubMed]
- Cacho-Valadez, B.; Munoz-Lobato, F.; Pedrajas, J.R.; Cabello, J.; Fierro-Gonzalez, J.C.; Navas, P.; Swoboda, P.; Link, C.D.; Miranda-Vizuete, A. The characterization of the Caenorhabditis elegans mitochondrial thioredoxin system uncovers an unexpected protective role of thioredoxin reductase 2 in beta-amyloid peptide toxicity. Antioxid. Redox Signal. 2012, 16, 1384–1400. [Google Scholar] [CrossRef] [PubMed]
- Mora-Lorca, J.A.; Sáenz-Narciso, B.; Gaffney, C.J.; Naranjo-Galindo, F.J.; Pedrajas, J.R.; Guerrero-Gómez, D.; Dobrzynska, A.; Askjaer, P.; Szewczyk, N.J.; Cabello, J.; et al. Glutathione reductase gsr-1 is a essential gene required for Caenorhabditis elegans early embryonic development. Free Radic. Biol. Med. 2016, 96, 446–461. [Google Scholar] [CrossRef] [PubMed]
- Allmang, C.; Wurth, L.; Krol, A. The selenium to selenoprotein pathway in eukaryotes: More molecular partners than anticipated. Biochim. Biophys. Acta 2009, 1790, 1415–1423. [Google Scholar] [CrossRef] [PubMed]
- Lovanov, A.V.; Hatfield, D.L.; Gladyshev, V.N. Reduced reliance on the trace element selenium during evolution of mammals. Genome Biol. 2008, 9, R62. [Google Scholar] [CrossRef] [PubMed]
- Lovanov, A.V.; Fomenko, D.E.; Zhang, Y.; Sengupta, A.; Hatfield, D.L.; Gladyshev, V.N. Evolutionary dynamics of eukaryotic selenoproteomes: Large selenoproteomes may associate with aquatic life and small with terrestrial life. Genome Biol. 2007, 8, R198. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Zhu, H.Z.; Xu, Y.Z.; Ni, J.Z.; Zhang, Y.; Liu, Q. Comparative selenoproteome analysis reveals a reduced utilization of selenium in parasitic platyhelminthes. PeerJ 2013, 1, e202. [Google Scholar] [CrossRef] [PubMed]
- Taskov, K.; Chapple, C.; Kryukov, G.V.; Castellano, S.; Lobanov, A.V.; Korotkov, K.V.; Guigó, R.; Gladyshev, V.N. Nematode selenoproteome: The use of the selenocysteine insertion system to decode one codon in an animal genome? Nucleic Acids Res. 2005, 33, 2227–2238. [Google Scholar] [CrossRef] [PubMed]
- Otero, L.; Romanelli-Cedrez, L.; Turanov, A.A.; Gladyshev, V.N.; Miranda-Vizuete, A.; Salinas, G. Adjustments, extinction, and remains of selenocysteine incorporation machinery in the nematode lineage. RNA 2014, 20, 1023–1034. [Google Scholar] [CrossRef] [PubMed]
- Cassago, A.; Rodrigues, E.M.; Prieto, E.L.; Gaston, K.W.; Alfonzo, J.D.; Iribar, M.P.; Berry, M.J.; Cruz, A.K.; Thiemann, O.H. Identification of Leishmania selenoproteins and SECIS element. Mol. Biochem. Parasitol. 2006, 149, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Mourier, T.; Pain, A.; Barrell, B.; Griffiths-Jones, S. A selenocysteine tRNA and SECIS element in Plasmodium falciparum. RNA 2005, 11, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Lovanov, A.V.; Delgado, C.; Rahlfs, S.; Novoselov, S.V.; Kryukov, G.V.; Gromer, S.; Hatfield, D.L.; Becker, K.; Gladyshev, V.N. The Plasmodium selenoproteome. Nucleic Acids Res. 2006, 34, 496–505. [Google Scholar] [CrossRef]
- Eldeeb, M.A.; Fahlman, R.P. The anti-apoptotic form of tyrosine kinase Lyn that is generated by proteolysis is degraded by the N-end rule pathway. Oncotarget 2014, 5, 2714–2721. [Google Scholar] [CrossRef] [PubMed]
- Eldeeb, M.A.; Fahlman, R.P. Phosphorylation impacts N-end rule degradation of the proteolytically activated form of BMX kinase. J. Biol. Chem. 2016, 291, 22757–22768. [Google Scholar] [CrossRef] [PubMed]
- Paugam, A.; Bulteau, A.; Dupouy-Camet, J.; Creuzet, C.; Friguet, B. Characterization and role of protozoan parasite proteasomes. Trends Parasitol. 2003, 19, 55–59. [Google Scholar] [CrossRef]
- De Diego, J.L.; Katz, J.M.; Marshall, P.; Gutiérrez, B.; Manning, J.E.; Nussenzweig, V.; González, J. The ubiquitin-proteasome pathway plays an essential role in proteolysis during Trypanosoma cruzi remodeling. Biochemisty 2001, 40, 1053–1062. [Google Scholar] [CrossRef]
- Sinha, A.; Datta, S.P.; Ray, A.; Sarkar, S. A reduced VWA domain containing protesomal ubiquitin receptor of G. lambria localizes to the flagellar pore regions in microtubule-dependent manner. Parasites Vectors 2015, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- De Paula, R.G.; de Magalhães, O.A.M.; Morais, E.R.; de Souza, G.M.; de Paula, A.D.; Magalhães, L.G.; Rodrigues, V. Proteasome stress responses in Schistosoma mansoni. Parasitol. Res. 2015, 114, 1747–1760. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guevara-Flores, A.; Martínez-González, J.D.J.; Rendón, J.L.; Del Arenal, I.P. The Architecture of Thiol Antioxidant Systems among Invertebrate Parasites. Molecules 2017, 22, 259. https://doi.org/10.3390/molecules22020259
Guevara-Flores A, Martínez-González JDJ, Rendón JL, Del Arenal IP. The Architecture of Thiol Antioxidant Systems among Invertebrate Parasites. Molecules. 2017; 22(2):259. https://doi.org/10.3390/molecules22020259
Chicago/Turabian StyleGuevara-Flores, Alberto, José De Jesús Martínez-González, Juan Luis Rendón, and Irene Patricia Del Arenal. 2017. "The Architecture of Thiol Antioxidant Systems among Invertebrate Parasites" Molecules 22, no. 2: 259. https://doi.org/10.3390/molecules22020259
APA StyleGuevara-Flores, A., Martínez-González, J. D. J., Rendón, J. L., & Del Arenal, I. P. (2017). The Architecture of Thiol Antioxidant Systems among Invertebrate Parasites. Molecules, 22(2), 259. https://doi.org/10.3390/molecules22020259