Synthesis of Nitrogen Heterocycles Using Samarium(II) Iodide
Abstract
:1. Introduction
2. Synthesis of Nitrogen Heterocycles via Aminoketyl Radicals
3. Synthesis of Nitrogen Heterocycles via Aminyl Radicals
4. Synthesis of Nitrogen Heterocycles via Fragmentation/Cyclization Pathways
5. Synthesis of Nitrogen Heterocycles via Tethered Approach
6. Reactions Involving Aminoketyl and Related Radicals
7. Conclusions and Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Szostak, M.; Fazakerley, N.J.; Parmar, D.; Procter, D.J. Cross-Coupling Reactions Using Samarium(II) Iodide. Chem. Rev. 2014, 114, 5959–6039. [Google Scholar] [CrossRef] [PubMed]
- Szostak, M.; Procter, D.J. Beyond Samarium Diiodide: Vistas in Reductive Chemistry Mediated by Lanthanides(II). Angew. Chem. Int. Ed. 2012, 51, 9238–9256. [Google Scholar] [CrossRef] [PubMed]
- Steel, P.G. Recent developments in lanthanide mediated organic synthesis. J. Chem. Soc. Perkin Trans. 2001, 1, 2727–2751. [Google Scholar] [CrossRef]
- Molander, G.A.; Harris, C.R. Sequencing Reactions with Samarium(II) Iodide. Chem. Rev. 1996, 96, 307–338. [Google Scholar] [CrossRef] [PubMed]
- Curran, D.P.; Fevig, T.L.; Jasperse, C.P.; Totleben, J. New mechanistic insights into reductions of halides and radicals with samarium(II) iodide. Synlett 1992, 1992, 943–961. [Google Scholar] [CrossRef]
- Edmonds, D.J.; Johnston, D.; Procter, D.J. Samarium(II)-Iodide-Mediated Cyclizations in Natural Product Synthesis. Chem. Rev. 2004, 104, 3371–3404. [Google Scholar] [CrossRef] [PubMed]
- Nicolaou, K.C.; Ellery, S.P.; Chen, J.S. Samarium Diiodide Mediated Reactions in Total Synthesis. Angew. Chem. Int. Ed. 2009, 48, 7140–7165. [Google Scholar] [CrossRef] [PubMed]
- Austad, B.C.; Calkins, T.L.; Chase, C.E.; Fang, F.G.; Horstmann, T.E.; Hu, Y.; Lewis, B.M.; Niu, X.; Noland, T.A.; Orr, J.D.; et al. Commercial Manufacture of Halaven®: Chemoselective Transformations En Route to Structurally Complex Macrocyclic Ketones. Synlett 2013, 24, 333–337. [Google Scholar] [CrossRef]
- Szostak, M.; Spain, M.; Procter, D.J. Determination of the Effective Redox Potentials of SmI2, SmBr2, SmCl2, and their Complexes with Water by Reduction of Aromatic Hydrocarbons. Reduction of Anthracene and Stilbene by Samarium(II) Iodide-Water Complex. J. Org. Chem. 2014, 79, 2522–2537. [Google Scholar] [CrossRef] [PubMed]
- Szostak, M.; Spain, M.; Procter, D.J. Recent advances in the chemoselective reduction of functional groups mediated by samarium(II) iodide: A single electron transfer approach. Chem. Soc. Rev. 2013, 42, 9155–9183. [Google Scholar] [CrossRef] [PubMed]
- Dahlén, A.; Hilmersson, G. Samarium(II) Iodide Mediated Reductions—Influence of Various Additives. Eur. J. Inorg. Chem. 2004, 2004, 3393–3403. [Google Scholar] [CrossRef]
- Szostak, M.; Spain, M.; Parmar, D.; Procter, D.J. Selective reductive transformations using samarium diiodide-water. Chem. Commun. 2012, 48, 330–346. [Google Scholar] [CrossRef] [PubMed]
- Krief, A.; Laval, A.M. Coupling of Organic Halides with Carbonyl Compounds Promoted by SmI2, the Kagan Reagent. Chem. Rev. 1999, 99, 745–778. [Google Scholar] [CrossRef] [PubMed]
- Szostak, M.; Spain, M.; Procter, D.J. Ketyl-Type Radicals from Cyclic and Acyclic Esters are Stabilized by SmI2(H2O)n: The Role of SmI2(H2O)n in Post-Electron Transfer Steps. J. Am. Chem. Soc. 2014, 136, 8459–8466. [Google Scholar] [CrossRef] [PubMed]
- Tsuruta, H.; Yamaguchi, K.; Imamoto, T. Evaluation of the relative Lewis acidities of lanthanoid(III) compounds by tandem mass spectrometry. Chem. Commun. 1999, 17, 1703–1704. [Google Scholar] [CrossRef]
- Szostak, M.; Spain, M.; Procter, D.J. Preparation of Samarium(II) Iodide: Quantitative Evaluation of the Effect of Water, Oxygen, and Peroxide Content, Preparative Methods, and the Activation of Samarium Metal. J. Org. Chem. 2012, 77, 3049–3059. [Google Scholar] [CrossRef] [PubMed]
- Helm, M.D.; Da Silva, M.; Sucunza, D.; Findley, T.J.K.; Procter, D.J. A dialdehyde cyclization cascade: An approach to pleuromutilin. Angew. Chem. Int. Ed. 2009, 48, 9315–9317. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.Y.; Yeoman, J.T.S.; Reisman, S.E. A Concise Total Synthesis of (−)-Maoecrystal Z. J. Am. Chem. Soc. 2011, 133, 14964–14967. [Google Scholar] [CrossRef] [PubMed]
- Parmar, D.; Price, K.; Spain, M.; Matsubara, H.; Bradley, P.A.; Procter, D.J. Reductive Cyclization Cascades of Lactones Using SmI2−H2O. J. Am. Chem. Soc. 2011, 133, 2418–2420. [Google Scholar] [CrossRef] [PubMed]
- Parmar, D.; Matsubara, H.; Price, K.; Spain, M.; Procter, D.J. Lactone Radical Cyclizations and Cyclization Cascades Mediated by SmI2–H2O. J. Am. Chem. Soc. 2012, 134, 12751–12757. [Google Scholar] [CrossRef] [PubMed]
- Just-Baringo, X.; Procter, D.J. Sm(II)-Mediated Electron Transfer to Carboxylic Acid Derivatives: Development of Complexity-Generating Cascade. Acc. Chem. Res. 2015, 48, 1263–1275. [Google Scholar] [CrossRef] [PubMed]
- Yeoman, J.T.S.; Mak, V.W.; Reisman, S.E. A Unified Strategy to ent-Kauranoid Natural Products: Total Syntheses of (−)-Trichorabdal A and (−)-Longikaurin E. J. Am. Chem. Soc. 2013, 135, 11764–11767. [Google Scholar] [CrossRef] [PubMed]
- Kern, N.; Plesniak, M.P.; McDouall, J.W.W.; Procter, D.J. Enantioselective cyclizations and cyclization cascades of samarium ketyl radicals. Nat. Chem. 2017, in press. [Google Scholar] [CrossRef]
- Joule, J.A.; Mills, K. Heterocyclic Chemistry, 5th ed.; Wiley-Blackwell: Oxford, UK, 2010. [Google Scholar]
- Majumdar, K.C.; Chattopadhyay, S.K. Heterocycles in Natural Product Synthesis, 1st ed.; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Vitaku, E.; Smith, D.T.; Njardson, J.T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014, 57, 10257–10274. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.D.; MacCoss, M.; Lawson, A.D.G. Rings in Drugs. J. Med. Chem. 2014, 57, 5845–5859. [Google Scholar] [CrossRef] [PubMed]
- Meng, G.; Shi, S.; Szostak, M. Cross-Coupling of Amides by N–C Bond Activation. Synlett 2016, 27, 2530–2540. [Google Scholar] [CrossRef]
- Liu, C.; Szostak, M. Twisted Amides: From Obscurity to Broadly Useful Transition-Metal-Catalyzed Reactions by N−C Amide Bond Activation. Chem. Eur. J. 2017, 23, 7157–7173. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Szostak, M. Aminoketyl Radicals in Organic Synthesis: Stereoselective Cyclization of Five- and Six-Membered Cyclic Imides to 2-Azabicycles Using SmI2–H2O. Org. Lett. 2015, 17, 5144–5147. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Lalancette, R.; Szostak, M. Cyclization of Imides to 2-Azabicycles via Aminoketyl Radicals by Using Samarium(II) Iodide-Water: Reaction Development, Synthetic Scope, and Mechanistic Studies. Synthesis 2016, 48, 1825–1854. [Google Scholar] [CrossRef]
- Shi, S.; Lalancette, R.; Szostak, R.; Szostak, M. Highly Chemoselective Synthesis of Indolizidine Lactams by SmI2-Induced Umpolung of the Amide Bond via Aminoketyl Radicals: Efficient Entry to Alkaloid Scaffolds. Chem. Eur. J. 2016, 22, 11949–11953. [Google Scholar] [CrossRef] [PubMed]
- Szostak, M.; Spain, M.; Choquette, K.A.; Flowers, R.A., II; Procter, D.J. Substrate-Directable Electron Transfer Reactions. Dramatic Rate Enhancement in the Chemoselective Reduction of Cyclic Esters Using SmI2–H2O: Mechanism, Scope, and Synthetic Utility. J. Am. Chem. Soc. 2013, 135, 15702–15705. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Szostak, R.; Szostak, M. Proton-coupled electron transfer in the reduction of carbonyls using SmI2–H2O: Implications for the reductive coupling of acyl-type ketyl radicals with SmI2–H2O. Org. Biomol. Chem. 2016, 14, 9151–9157. [Google Scholar] [CrossRef] [PubMed]
- Szostak, M.; Sautier, B.; Spain, M.; Behlendorf, M.; Procter, D.J. Selective Reduction of Barbituric Acids Using SmI2/H2O: Synthesis, Reactivity, and Structural Analysis of Tetrahedral Adduct. Angew. Chem. Int. Ed. 2013, 52, 12559–12563. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.M.; Procter, D.J. Radical–Radical Cyclization Cascades of Barbiturates Triggered by Electron-Transfer Reduction of Amide-Type Carbonyls. J. Am. Chem. Soc. 2016, 138, 7770–7775. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.M.; Procter, D.J. Dearomatizing Radical Cyclizations and Cyclization Cascades Triggered by Electron-Transfer Reduction of Amide-Type Carbonyls. J. Am. Chem. Soc. 2017, 139, 1661–1667. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.M.; Procter, D.J. Selective construction of quaternary stereocentres in radical cyclisation cascades triggered by electron-transfer reduction of amide-type carbonyls. Org. Biomol. Chem. 2017, 15, 4159–4164. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.M.; Procter, D.J. Radical Heterocyclization and Heterocyclization Cascades Triggered by Electron Transfer to Amide-Type Carbonyl Compounds. Angew. Chem. Int. Ed. 2017. [Google Scholar] [CrossRef]
- Vacas, T.; Álvarez, E.; Chiara, J.L. Phthalimides as Exceptionally Efficient Single Electron Transfer Acceptors in Reductive Coupling Reactions Promoted by Samarium Diiodide. Org. Lett. 2007, 9, 5445–5448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, D.C.; Yun, C.S.; Yu, E. Reductive cyclization of N-iodoalkyl cyclic imides to nitrogen-fused polycyclic amides induced by samarium diiodide. Tetrahedron Lett. 1996, 37, 2577–2580. [Google Scholar] [CrossRef]
- Ha, D.C.; Yun, C.S.; Lee, Y. Samarium Diiodide-Promoted Cyclization of N-(ω-Iodoalkyl)imides to Polyhydroxylated Indolizidinones and Pyrrolizidinones: Synthesis of (+)-Lentiginosine. J. Org. Chem. 2000, 65, 621–623. [Google Scholar] [CrossRef] [PubMed]
- Burchak, O.N.; Py, S. Reductive cross-coupling reactions (RCCR) between CN and CO for β-amino alcohol synthesis. Tetrahedron 2009, 65, 7333–7356. [Google Scholar] [CrossRef]
- Masson, G.; Py, S.; Vallée, Y. Samarium Diiodide-Induced Reductive Cross-Coupling of Nitrones with Aldehydes and Ketones. Angew. Chem. Int. Ed. 2002, 41, 1772–1775. [Google Scholar] [CrossRef]
- Masson, G.; Cividino, P.; Py, S.; Vallée, Y. SmI2-Induced Umpolung of the C=N Bond: First Reductive Conjugate Addition of Nitrones to α,β-Unsaturated Esters. Angew. Chem. Int. Ed. 2003, 42, 2265–2268. [Google Scholar] [CrossRef] [PubMed]
- Masson, G.; Zeghida, W.; Cividino, P.; Py, S.; Vallée, Y. A Concise Formal Synthesis of (S)-Vigabatrin Based on Nitrone Umpolung. Synlett 2003, 1527–1529. [Google Scholar] [CrossRef]
- Riber, D.; Skrydstrup, T. SmI2-Promoted Radical Addition of Nitrones to α,β-Unsaturated Amides and Esters: Synthesis of γ-Amino Acids via a Nitrogen Equivalent to the Ketyl Radical. Org. Lett. 2003, 5, 229–231. [Google Scholar] [CrossRef] [PubMed]
- Johannesen, S.A.; Albu, S.; Hazell, R.G.; Skrydstrup, T. Radical addition of nitrones to acrylates mediated by SmI2: Asymmetric synthesis of γ-amino acids employing carbohydrate-based chiral auxiliaries. Chem. Commun. 2004, 1962–1963. [Google Scholar] [CrossRef] [PubMed]
- Cividino, P.; Py, S.; Delair, P.; Greene, A.E. 1-(2,4,6-Triisopropylphenyl)ethylamine: A New Chiral Auxiliary for the Asymmetric Synthesis of γ-Amino Acid Derivatives. J. Org. Chem. 2007, 72, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.P.; Huang, P.Q.; Py, S. SmI2-Mediated Coupling of Nitrones and tert-Butanesulfinyl Imines with Allenoates: Synthesis of β-Methylenyl-γ-lactams and Tetramic Acids. Org. Lett. 2012, 14, 2034–2037. [Google Scholar] [CrossRef] [PubMed]
- Desvergnes, S.; Desvergnes, V.; Martin, O.R.; Itoh, K.; Liu, H.W.; Py, S. Stereoselective synthesis of β-1-c-substituted 1,4-dideoxy-1,4-imino-d-galactitols and evaluation as UDP-galactopyranose mutase inhibitors. Bioorg. Med. Chem. 2007, 15, 6443–6449. [Google Scholar] [CrossRef] [PubMed]
- Desvergnes, S.; Py, S.; Vallée, Y. Total Synthesis of (+)-Hyacinthacine A2 Based on SmI2-Induced Nitrone Umpolung. J. Org. Chem. 2005, 70, 1459–1462. [Google Scholar] [CrossRef] [PubMed]
- Gilles, P.; Py, S. SmI2-Mediated Cross-Coupling of Nitrones with β-Silyl Acrylates: Synthesis of (+)-Australine. Org. Lett. 2012, 14, 1042–1045. [Google Scholar] [CrossRef] [PubMed]
- Ebran, J.P.; Hazell, R.G.; Skrydstrup, T. Samarium diiodide-induced intramolecular pinacol coupling of dinitrones: Synthesis of cyclic cis-vicinal diamines. Chem. Commun. 2005, 45, 5402–5404. [Google Scholar] [CrossRef] [PubMed]
- Volz, N.; Clayden, J. The Urea Renaissance. Angew. Chem. Int. Ed. 2011, 50, 12148–12155. [Google Scholar] [CrossRef] [PubMed]
- Robak, M.A.T.; Herbage, M.A.; Ellman, J.A. Synthesis and Applications of tert-Butanesulfinamide. Chem. Rev. 2010, 110, 3600–3740. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.W.; Dong, Y.Z.; Fang, K.; Izumi, K.; Xu, M.H.; Lin, G.Q. A Highly Efficient and Direct Approach for Synthesis of Enantiopure β-Amino Alcohols by Reductive Cross-Coupling of Chiral N-tert-Butanesulfinyl Imines with Aldehydes. J. Am. Chem. Soc. 2005, 127, 11956–11957. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.W.; Izumi, K.; Xu, M.H.; Lin, G.Q. Highly Diastereoselective and Enantioselective Synthesis of Enantiopure C2-Symmetrical Vicinal Diamines by Reductive Homocoupling of Chiral N-tert-Butanesulfinyl Imines. Org. Lett. 2004, 6, 4747–4750. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, Y.J. SmI2-Promoted Intramolecular Asymmetric Pinacol-Type Ketone−tert-Butanesulfinyl Imine Reductive Coupling: Stereoselectivity and Mechanism. Org. Lett. 2009, 11, 3410–3413. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.H.; Fang, K.; Wang, B.; Xu, M.H.; Lin, G.Q. Concise Asymmetric Synthesis of (+)-CP-99,994 and (+)-L-733,060 via Efficient Construction of Homochiral syn-1,2-Diamines and syn-1,2-Amino Alcohols. J. Org. Chem. 2008, 73, 3307–3310. [Google Scholar] [CrossRef] [PubMed]
- Maryanoff, B.E.; Zhang, H.C.; Cohen, J.H.; Turchi, I.J.; Maryanoff, C. Cyclizations of N-Acyliminium Ions. Chem. Rev. 2004, 104, 1431–1628. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.J.; Zheng, X.; Huang, P.Q. A new method for the construction of the hydroxylated tropane skeleton: Enantioselective synthesis of (−)-Bao Gong Teng A. Chem Commun. 2011, 47, 1545–1547. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.K.; Qiu, S.; Xiang, Y.G.; Ruan, Y.P.; Zheng, X.; Huang, P.Q. SmI2-Mediated Radical Cross-Couplings of α-Hydroxylated Aza-hemiacetals and N,S-Acetals with α,β-Unsaturated Compounds: Asymmetric Synthesis of (+)-Hyacinthacine A2, (−)-Uniflorine A, and (+)-7-epi-Casuarine. J. Org. Chem. 2011, 76, 4952–4963. [Google Scholar] [CrossRef] [PubMed]
- Schiedler, D.A.; Lu, Y.; Beaudry, C.M. Reductive Synthesis of Aminal Radicals for Carbon–Carbon Bond Formation. Org. Lett. 2014, 16, 1160–1163. [Google Scholar] [CrossRef] [PubMed]
- Schiedler, D.A.; Vellucci, J.K.; Lu, Y.; Beaudry, C.M. The development of carbon–carbon bond forming reactions of aminal radicals. Tetrahedron 2015, 71, 1448–1465. [Google Scholar] [CrossRef]
- Schiedler, D.A.; Vellucci, J.K.; Beaudry, C.M. Formation of Carbon–Carbon Bonds Using Aminal Radicals. Org. Lett. 2012, 14, 6092–6095. [Google Scholar] [CrossRef] [PubMed]
- Honda, T.; Ishikawa, F. Reductive deamination of α-amino carbonyl compounds by means of samarium iodide. Chem. Commun. 1999, 12, 1065–1066. [Google Scholar] [CrossRef]
- Honda, T.; Takahashi, R.; Namiki, H. Syntheses of (+)-Cytisine, (−)-Kuraramine, (−)-Isokuraramine, and (−)-Jussiaeiine A. J. Org. Chem. 2005, 70, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Honda, T. Development of Samarium Diiodide-Promoted Reductive Carbon-Nitrogen Bond Cleavage Reaction of α-Amino Carbonyl Compounds: Application to the Synthesis of Biologically Active Alkaloids. Heterocycles 2011, 83, 1–46. [Google Scholar] [CrossRef]
- Pinho, V.D.; Procter, D.J.; Burtoloso, A.C.B. SmI2-Mediated Couplings of α-Amino Acid Derivatives. Formal Synthesis of (−)-Pumiliotoxin 251D and (±)-Epiquinamide. Org. Lett. 2013, 15, 2434–2437. [Google Scholar] [CrossRef] [PubMed]
- Bernardim, B.; Pinho, V.D.; Burtoloso, A.C.D. α,β-Unsaturated Diazoketones as Platforms in the Asymmetric Synthesis of Hydroxylated Alkaloids. Total Synthesis of 1-Deoxy-8,8a-diepicastanospermine and 1,6-Dideoxyepicastanospermine and Formal Synthesis of Pumiliotoxin 251D. J. Org. Chem. 2012, 77, 9926–9931. [Google Scholar] [CrossRef] [PubMed]
- Burtoloso, A.C.D.; Dias, R.M.P.; Bernardim, B. α,β-Unsaturated Diazoketones as Useful Platforms in the Synthesis of Nitrogen Heterocycles. Acc. Chem. Res. 2015, 48, 921–934. [Google Scholar] [CrossRef] [PubMed]
- Ohno, H.; Iwasaki, H.; Eguchi, T.; Tanaka, T. The first samarium(II)-mediated aryl radical cyclisation onto an aromatic ring. Chem. Commun. 2004, 2228–2229. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.; Coffin, A.; Nguyen, Q.N.; Tantillo, D.J.; Ready, J.M. Synthesis and Utility of Dihydropyridine Boronic Esters. Angew. Chem. Int. Ed. 2016, 55, 2205–2209. [Google Scholar] [CrossRef] [PubMed]
- Kamabe, M.; Miyazaki, T.; Hashimoto, K.; Shirahama, H. Formal Synthesis of FPA, a Kainoid Amino Acid, via Ketyl Radical Cyclization. Heterocycles 2002, 56, 105–111. [Google Scholar] [CrossRef]
- Foster, S.L.; Handa, S.; Krafft, M.; Rowling, D. Samarium(II) iodide-mediated intramolecular pinacol coupling reactions with cyclopropyl ketones. Chem. Commun. 2007, 45, 4791–4793. [Google Scholar] [CrossRef] [PubMed]
- Schmalz, H.G.; Siegel, S.; Bats, J.W. Radical Additions to (η6-Arene)(tricarbonyl)-chromium Complexes: Diastereoselective Synthesis of Hydrophenalene and Hydrobenzindene Derivatives by Samarium(II) Iodide Induced Cyclization. Angew. Chem. Int. Ed. 1995, 34, 2383–2385. [Google Scholar] [CrossRef]
- Beemelmanns, C.; Reissig, H.U. Samarium diiodide induced ketyl-(het)arene cyclisations towards novel N-heterocycles. Chem. Soc. Rev. 2011, 40, 2199–2210. [Google Scholar] [CrossRef] [PubMed]
- Beemelmanns, C.; Reissig, H.U. A Short Formal Total Synthesis of Strychnine with a Samarium Diiodide Induced Cascade Reaction as the Key Step. Angew. Chem. Int. Ed. 2010, 49, 8021–8025. [Google Scholar] [CrossRef] [PubMed]
- Szostak, M.; Procter, D.J. Concise Syntheses of Strychnine and Englerin A: The Power of Reductive Cyclizations Triggered by Samarium Iodide. Angew. Chem. Int. Ed. 2011, 50, 7737–7739. [Google Scholar] [CrossRef] [PubMed]
- Beemelmanns, C.; Reissig, H.U. New samarium diiodide-induced cyclizations. Pure Appl. Chem. 2011, 83, 507–518. [Google Scholar] [CrossRef]
- Rao, N.C.; Lentz, D.; Reissig, H.U. Synthesis of Polycyclic Tertiary Carbinamines by Samarium Diiodide Mediated Cyclizations of Indolyl Sulfinyl Imines. Angew. Chem. Int. Ed. 2015, 54, 2750–2753. [Google Scholar] [CrossRef] [PubMed]
- Ready, J.M.; Reisman, S.E.; Hirata, M.; Weiss, M.M.; Tamaki, K.; Ovaska, T.V.; Wood, J.L. A Mild and Efficient Synthesis of Oxindoles: Progress towards the Synthesis of Welwitindolinone A Isonitrile. Angew. Chem. Int. Ed. 2004, 43, 1270–1272. [Google Scholar] [CrossRef]
- Reisman, S.E.; Ready, J.M.; Weiss, M.M.; Hasuoka, A.; Hirata, M.; Tamaki, K.; Ovaska, T.V.; Smith, C.J.; Wood, J.L. Evolution of a Synthetic Strategy: Total Synthesis of (±)-Welwitindolinone A Isonitrile. J. Am. Chem. Soc. 2008, 130, 2087–2100. [Google Scholar] [CrossRef] [PubMed]
- Ishida, T.; Tsukano, C.; Takemoto, Y. Synthesis of 2-Iminoindolines via Samarium Diiodide Mediated Reductive Cyclization of Carbodiimides. Chem. Lett. 2012, 41, 44–46. [Google Scholar] [CrossRef]
- Ishida, T.; Takemoto, Y. Synthetic study of perophoramidine: Construction of pentacyclic core structure via SmI2-mediated reductive cyclization. Tetrahedron 2013, 69, 4517–4523. [Google Scholar] [CrossRef] [Green Version]
- Bai, W.J.; Jackson, S.K.; Pettus, T.R.R. Mild Construction of 3-Methyl Tetramic Acids Enabling a Formal Synthesis of Palau’imide. Org. Lett. 2012, 14, 3862–3865. [Google Scholar] [CrossRef] [PubMed]
- Szostak, M.; Spain, M.; Eberhart, A.J.; Procter, D.J. Highly Chemoselective Reduction of Amides (Primary, Secondary, Tertiary) to Alcohols using SmI2/Amine/H2O under Mild Conditions. J. Am. Chem. Soc. 2014, 136, 2268–2271. [Google Scholar] [CrossRef] [PubMed]
- Dahlén, A.; Hilmersson, G. Instantaneous SmI2–H2O-mediated reduction of dialkyl ketones induced by amines in THF. Tetrahedron Lett. 2002, 43, 7197–7200. [Google Scholar] [CrossRef]
- Dahlén, A.; Hilmersson, G. Mechanistic Study of the SmI2/H2O/Amine-Mediated Reduction of Alkyl Halides: Amine Base Strength (pKBH+) Dependent Rate. J. Am. Chem. Soc. 2005, 127, 8340–8347. [Google Scholar] [CrossRef] [PubMed]
- Huq, S.; Shi, S.; Diao, R.; Szostak, M. Mechanistic Study of SmI2/H2O and SmI2/Amine/H2O-Promoted Chemoselective Reduction of Aromatic Amides (Primary, Secondary, Tertiary) to Alcohols via Aminoketyl Radicals. J. Org. Chem. 2017, 82, 6528–6540. [Google Scholar] [CrossRef] [PubMed]
- Thurow, S.; Lenardao, E.J.; Just-Baringo, X.; Procter, D.J. Reduction of Selenoamides to Amines Using SmI2–H2O. Org. Lett. 2017, 19, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Ankner, T.; Hilmersson, G. Instantaneous Deprotection of Tosylamides and Esters with SmI2/Amine/Water. Org. Lett. 2009, 11, 503–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ankner, T.; Stålsmeden, A.S.; Hilmersson, G. Selective cleavage of 3,5-bis-(trifluoromethyl)benzylcarbamate by SmI2–Et3N–H2O. Chem. Commun. 2013, 49, 6867–6869. [Google Scholar] [CrossRef] [PubMed]
- Dahlén, A.; Hilmersson, G. Instantaneous SmI2/H2O/Amine-Mediated Reductions in THF. Chem. Eur. J. 2003, 9, 1123–1128. [Google Scholar] [CrossRef] [PubMed]
- Ankner, T.; Hilmersson, G. SmI2/H2O/amine promoted reductive cleavage of benzyl-heteroatom bonds: optimization and mechanism. Tetrahedron 2009, 65, 10856–10862. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, S.; Szostak, M. Synthesis of Nitrogen Heterocycles Using Samarium(II) Iodide. Molecules 2017, 22, 2018. https://doi.org/10.3390/molecules22112018
Shi S, Szostak M. Synthesis of Nitrogen Heterocycles Using Samarium(II) Iodide. Molecules. 2017; 22(11):2018. https://doi.org/10.3390/molecules22112018
Chicago/Turabian StyleShi, Shicheng, and Michal Szostak. 2017. "Synthesis of Nitrogen Heterocycles Using Samarium(II) Iodide" Molecules 22, no. 11: 2018. https://doi.org/10.3390/molecules22112018
APA StyleShi, S., & Szostak, M. (2017). Synthesis of Nitrogen Heterocycles Using Samarium(II) Iodide. Molecules, 22(11), 2018. https://doi.org/10.3390/molecules22112018