Next Article in Journal
Potential Application of p-Coumaric Acid on Differentiation of C2C12 Skeletal Muscle and 3T3-L1 Preadipocytes—An in Vitro and in Silico Approach
Next Article in Special Issue
A Modular Synthetic Approach to Isosteric Sulfonic Acid Analogues of the Anticoagulant Pentasaccharide Idraparinux
Previous Article in Journal
Microfluidic Devices in Advanced Caenorhabditis elegans Research
Previous Article in Special Issue
Multivalent Carbohydrate-Lectin Interactions: How Synthetic Chemistry Enables Insights into Nanometric Recognition
Open AccessArticle

Agavins Increase Neurotrophic Factors and Decrease Oxidative Stress in the Brains of High-Fat Diet-Induced Obese Mice

Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, Unidad de Biotecnología e Ingeniería Genética de Plantas, Irapuato, Guanajuato C.P. 36821, México
*
Author to whom correspondence should be addressed.
Academic Editor: Derek J. McPhee
Molecules 2016, 21(8), 998; https://doi.org/10.3390/molecules21080998
Received: 12 April 2016 / Revised: 18 July 2016 / Accepted: 26 July 2016 / Published: 2 August 2016
(This article belongs to the Collection Advances in Glycosciences)
Background: Fructans obtained from agave, called agavins, have recently shown significant benefits for human health including obesity. Therefore, we evaluated the potential of agavins as neuroprotectors and antioxidants by determining their effect on brain-derived neurotrophic factor (BDNF) and glial-derived neurotrophic factor (GDNF) as well as oxidative brain damage in of obese mice. Methods: Male C57BL/6J mice were fed a high-fat diet (HFD) and treated daily with 5% (HFD/A5) or 10% (HFD/A10) of agavins or a standard diet (SD) for 10 weeks. The levels of BDNF and GDNF were evaluated by ELISA. The oxidative stress was evaluated by lipid peroxidation (TBARS) and carbonyls. SCFAs were also measured with GC-FID. Differences between groups were assessed using ANOVA and by Tukey’s test considering p < 0.05. Results: The body weight gain and food intake of mice HFD/A10 group were significantly lower than those in the HFD group. Agavins restored BDNF levels in HFD/A5 group and GDNF levels of HFD/A5 and HFD/A10 groups in cerebellum. Interestingly, agavins decreased TBARS levels in HFD/A5 and HFD/A10 groups in the hippocampus, frontal cortex and cerebellum. Carbonyl levels were also lower in HFD/A5 and HFD/A10 for only the hippocampus and cerebellum. It was also found that agavins enhanced SCFAs production in feces. Conclusion: Agavins may act as bioactive ingredients with antioxidant and protective roles in the brain. View Full-Text
Keywords: agavins; high-fat diet; brain; lipids; oxidative stress agavins; high-fat diet; brain; lipids; oxidative stress
Show Figures

Graphical abstract

MDPI and ACS Style

Franco-Robles, E.; López, M.G. Agavins Increase Neurotrophic Factors and Decrease Oxidative Stress in the Brains of High-Fat Diet-Induced Obese Mice. Molecules 2016, 21, 998. https://doi.org/10.3390/molecules21080998

AMA Style

Franco-Robles E, López MG. Agavins Increase Neurotrophic Factors and Decrease Oxidative Stress in the Brains of High-Fat Diet-Induced Obese Mice. Molecules. 2016; 21(8):998. https://doi.org/10.3390/molecules21080998

Chicago/Turabian Style

Franco-Robles, Elena; López, Mercedes G. 2016. "Agavins Increase Neurotrophic Factors and Decrease Oxidative Stress in the Brains of High-Fat Diet-Induced Obese Mice" Molecules 21, no. 8: 998. https://doi.org/10.3390/molecules21080998

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop