Synthesis and Characterization of Glutamic-Chitosan Hydrogel for Copper and Nickel Removal from Wastewater
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Glutamic-Chitosan Cross Linked Hydrogels (GCs)
2.2. Fourier Transform Infrared Spectroscopy (FTIR) Characterization of G-Cs
2.3. Elemental Characterization of GCs
2.4. 1H-NMR Characterization of GC Hydrogels
2.5. Scanning Electron Microscopy Observations of G-Chitosan Hydrogels
2.6. Solubility of G-Chitosan Hydrogels
2.7. Sorption Studies of Ni(II) and Cu(II)
2.7.1. Influence of G-chitosan Amount
2.7.2. Influence of pH
2.7.3. Influence of Contact Time
2.7.4. Influence of Initial Concentration
2.8. Sorption Isotherm Studies
2.8.1. Langmuir Sorption Isotherm
2.8.2. Freundlich Sorption Isotherm
2.9. Kinetics Studies
2.10. Desorption Studies of Ni(II) and Cu(II)
3. Materials and Methods
3.1. Materials
3.2. Measurements
3.3. General Procedures for Chitosan-Glutamic Synthesis
3.4. Stock Solution Preparation
3.5. Adsorption Experiments
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Neylan, D. Accumulation of Heavy Metals in Freshwater Organisms: Assessment of Toxic Interactions. Turk. J. Chem. 2001, 25, 173–179. [Google Scholar]
- Wan, N.W.S.; Teong, L.C.; Hanafiah, K.M. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydr. Polym. 2011, 83, 1446–1456. [Google Scholar]
- Santino, O.L.C. Assessment of quality of air in Palermo by chemical (ICP-OES) and cytological analyses on leaves of Eucalyptus camaldulensis. Environ. Sci. Pollut. Res. Int. 2015, 22, 1891–1905. [Google Scholar]
- Boddu, V.M.; Abburi, K.; Randolph, A.J.; Smith, E.D. Removal of Copper(II) and Nickel(II) Ions from Aqueous Solutions by a Composite Chitosan Biosorbent. Sep. Sci. Technol. 2008, 43, 1365–1381. [Google Scholar] [CrossRef]
- Chervona, Y.; Arita, A.; Costa, M. Carcinogenic metals and the epigenome: Understanding the effect of nickel, arsenic, and chromium. Metallomics Integr. Biometal Sci. 2012, 4, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Das, K.K.; Das, S.N.; Dhundasi, S.A. Nickel, its adverse health effects & oxidative stress. Indian J. Med. Res. 2008, 128, 412–425. [Google Scholar] [PubMed]
- Awual, M.R. A novel facial composite adsorbent for enhanced copper(II) detection and removal from wastewater. Chem. Eng. J. 2015, 266, 368–375. [Google Scholar] [CrossRef]
- Tabrizi, A.B. Development of a cloud point extraction-spectrofluorimetric method for trace copper(II) determination in water samples and parenteral solutions. J. Hazard. Mater. 2007, 139, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Awual, M.R.; Ismael, M.; Yaita, T.; El-Safty, S.A.; Shiwaku, H.; Okamoto, Y.; Suzuki, S. Trace copper(II) ions detection and removal from water using novel ligand modified composite adsorbent. Chem. Eng. J. 2013, 222, 67–76. [Google Scholar] [CrossRef]
- Bo, C.; Ping, Z. A new determining method of copper(II) ions at ng·mL−1 levels based on quenching of the water-soluble nanocrystals fluorescence. Anal. Bioanal. Chem. 2005, 381, 986–992. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Dai, G.; Zhao, J.; Zhong, A.; Wu, J.; Yan, H. Removal of copper(II) ions by a biosorbent—Cinnamomum camphora leaves powder. J. Hazard. Mater. 2010, 177, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Boddu, V.M.; Abburi, K.; Talbott, J.L.; Smith, E.D. Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent. Environ. Sci. Technol. 2003, 37, 4449–4456. [Google Scholar] [CrossRef] [PubMed]
- Cataldo, S.; Muratore, N.; Orecchio, S.; Pettignano, A. Enhancement of adsorption ability of calcium alginate gel beads towards Pd(II) ion. A kinetic and equilibrium study on hybrid Laponite and Montmorillonite–alginate gel beads. Appl. Clay Sci. 2015, 118, 162–170. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Roberts, G.A.F. Chitin Chemistry; Macmillan Education: London, UK, 1992. [Google Scholar]
- Kyzas, G.Z.; Bikiaris, D.N. Recent modifications of chitosan for adsorption applications: A critical and systematic review. Mar. Drugs 2015, 13, 312–337. [Google Scholar] [CrossRef] [PubMed]
- Junli, Z. Synthesis, characterization and adsorption properties of a novel chitosan derivative. Indian J. Chem. Technol. 2012, 19, 161–166. [Google Scholar]
- Pavia, D.L.; Lampman, G.L.; Kriz, G.S.; Vyvyan, J.R. Introduction to Spectroscopy, 5th ed.; Cengage Learning: Belmont, CA, USA, 2015. [Google Scholar]
- Dehonor, G.M.; Hernández, E.M.; Ruiz, T.F.A.; Contreras-Reyes, R. Properties and adsorptive capacity of amino acids modified chitosans for copper ion removal. Macromol. Symp. 2003, 197, 277–288. [Google Scholar] [CrossRef]
- Sivakami, M.S.; Gomathi, T.; Venkatesan, J.; Jeong, H.S.; Kim, S.K.; Sudha, P.N. Preparation and characterization of nano chitosan for treatment wastewaters. Int. J. Biol. Macromol. 2013, 57, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples are not available.
Compound | IR (γ, cm−1) |
---|---|
GCs-1 | 1635 (CONH), 3465 (NH), 3465 cm−1 (OH) |
GCs-2 | 1637 (CONH), 3458 (NH), 3458 cm−1 (OH) |
GCs-3 | 1637 (CONH), 3467 (NH), 3467 cm−1 (OH) |
GCs-4 | 1638 (CONH), 3467 (NH), 3467 cm−1 (OH) |
Compound | Elemental Analyses | Yield % | ||
---|---|---|---|---|
% C | % H | % N | ||
Cs | 45.10 | 6.77 | 8.43 | - |
GCs-1 | 47.80 | 7.15 | 7.69 | 96.4 |
GCs-2 | 47.84 | 7.24 | 7.72 | 92.5 |
GCs-3 | 47.86 | 7.27 | 7.74 | 90.2 |
GCs-4 | 47.88 | 7.35 | 7.77 | 89 |
Metal Ion | Pseudo-First Order Model | Experimental Value | Pseudo-Second Order Model | ||||
---|---|---|---|---|---|---|---|
Qe (mg/g) | k1 (min−1) | R2 | Qe (mg/g) | Qe (mg/g) | k2 (g·mg−1·min−1) | R2 | |
GCs-1 | 20.32 | 0.013 | 0.930 | 18.08 | 18.67 | 0.005 | 0.956 |
GCs-2 | 25.00 | 0.009 | 0.973 | 19.06 | 17.81 | 0.004 | 0.988 |
GCs-3 | 23.26 | 0.012 | 0.961 | 17.68 | 20.05 | 0.004 | 0.966 |
GCs-4 | 27.03 | 0.008 | 0.940 | 17.46 | 18.43 | 0.002 | 0.949 |
Metal Ion | Pseudo-First Order Model | Experimental Value | Pseudo-Second Order Model | ||||
---|---|---|---|---|---|---|---|
Qe (mg/g) | k1 (min−1) | R2 | Qe (mg/g) | Qe (mg/g) | k2 (g·mg−1min−1) | R2 | |
GCs-1 | 12.99 | 0.007 | 0.974 | 18.8 | 19.01 | 0.009 | 0.989 |
GCs-2 | 14.73 | 0.009 | 0.895 | 18.4 | 21.20 | 0.006 | 0.975 |
GCs-3 | 15.26 | 0.009 | 0.829 | 18.06 | 20.73 | 0.005 | 0.963 |
GCs-4 | 12.31 | 0.005 | 0.890 | 17.84 | 21.30 | 0.004 | 0.954 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelwahab, H.E.; Hassan, S.Y.; Mostafa, M.A.; El Sadek, M.M. Synthesis and Characterization of Glutamic-Chitosan Hydrogel for Copper and Nickel Removal from Wastewater. Molecules 2016, 21, 684. https://doi.org/10.3390/molecules21060684
Abdelwahab HE, Hassan SY, Mostafa MA, El Sadek MM. Synthesis and Characterization of Glutamic-Chitosan Hydrogel for Copper and Nickel Removal from Wastewater. Molecules. 2016; 21(6):684. https://doi.org/10.3390/molecules21060684
Chicago/Turabian StyleAbdelwahab, Huda E., Seham Y. Hassan, Mohamed A. Mostafa, and Mohamed M. El Sadek. 2016. "Synthesis and Characterization of Glutamic-Chitosan Hydrogel for Copper and Nickel Removal from Wastewater" Molecules 21, no. 6: 684. https://doi.org/10.3390/molecules21060684
APA StyleAbdelwahab, H. E., Hassan, S. Y., Mostafa, M. A., & El Sadek, M. M. (2016). Synthesis and Characterization of Glutamic-Chitosan Hydrogel for Copper and Nickel Removal from Wastewater. Molecules, 21(6), 684. https://doi.org/10.3390/molecules21060684