Next Article in Journal
The Unusual Acid-Accumulating Behavior during Ripening of Cherimoya (Annona cherimola Mill.) is Linked to Changes in Transcription and Enzyme Activity Related to Citric and Malic Acid Metabolism
Next Article in Special Issue
New Aspects in the Formulation of Drugs Based on Three Case Studies
Previous Article in Journal
Highly Efficient Reproducible Perovskite Solar Cells Prepared by Low-Temperature Processing
Previous Article in Special Issue
The Effect of an Optimized Wet Milling Technology on the Crystallinity, Morphology and Dissolution Properties of Micro- and Nanonized Meloxicam
Article Menu
Issue 4 (April) cover image

Export Article

Open AccessArticle
Molecules 2016, 21(4), 544;

Crystallization of Esomeprazole Magnesium Water/Butanol Solvate

Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 3K7, Canada
Apotex Pharmachem Inc., 34 Spalding Drive, Brantford, ON N3T 6B8, Canada
These authors contributed equally to this work.
Author to whom correspondence should be addressed.
Academic Editor: Derek J. McPhee
Received: 15 March 2016 / Revised: 8 April 2016 / Accepted: 21 April 2016 / Published: 23 April 2016
(This article belongs to the Special Issue Crystallization of Pharmaceuticals)
Full-Text   |   PDF [3082 KB, uploaded 23 April 2016]   |  


The molecular structure of esomeprazole magnesium derivative in the solid-state is reported for the first time, along with a simplified crystallization pathway. The structure was determined using the single crystal X-ray diffraction technique to reveal the bonding relationships between esomeprazole heteroatoms and magnesium. The esomeprazole crystallization process was carried out in 1-butanol and water was utilized as anti-solvent. The product proved to be esomeprazole magnesium tetrahydrate with two 1-butanol molecules that crystallized in P63 space group, in a hexagonal unit cell. Complete characterization of a sample after drying was conducted by the use of powder X-ray diffraction (PXRD), 1H-nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), infrared spectroscopy (IR), and dynamic vapor sorption (DVS). Investigation by 1H-NMR and TGA has shown that the solvent content in the dried sample consists of two water molecules and 0.3 butanol molecules per esomeprazole magnesium molecule. This is different from the single crystal X-ray diffraction results and can be attributed to the loss of some water and 1-butanol molecules stabilized by intermolecular interactions. The title compound, after drying, is a true solvate in terms of water; conversely, 1-butanol fills the voids of the crystal lattice in non-stoichiometric amounts. View Full-Text
Keywords: pharmaceutical solvates; solid-state analysis; single crystal X-ray diffraction; thermal analysis; crystallization pharmaceutical solvates; solid-state analysis; single crystal X-ray diffraction; thermal analysis; crystallization

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Skieneh, J.; Khalili Najafabadi, B.; Horne, S.; Rohani, S. Crystallization of Esomeprazole Magnesium Water/Butanol Solvate. Molecules 2016, 21, 544.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top