Synthesis and Biological Evaluation of Novel Aromatic Imide-Polyamine Conjugates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2 Biological Evaluation
2.2.1. Cytotoxicity in Human Tumor Cell Lines
2.2.2. Apoptosis
2.2.3. Antitumor Activity In Vivo
2.2.4. Systemic Toxicity
2.2.5. ADMET Prediction
3. Materials and Methods
3.1. General Information
3.2. General Procedure for the Synthesis of 5d–f
3.3. General Procedure for the Synthesis of Compounds 11
3.3.1. Synthesis of (3-Aminopropyl)-1H-benz[de]isoquinoline-1,3(2H)-dione (8)
3.3.2. General Procedure for the Synthesis of 11a–b, e–f
3.4. General Procedure for the Synthesis of 17b–d
3.4.1. Synthesis of Compounds 14a–b
3.4.2. Synthesis of Compounds 15b–d
3.4.3. Synthesis of Compounds 17b–d
3.5. Cell Culture
3.6. Cytotoxicity against Cancer Cell Lines
3.7. Cellular Apoptotic Evaluation
3.8. Subcutaneous Xenograft of H22 Cells in Kunming Mice
3.9. H22 Cells Lung Metastasis Models
3.10. Survival Time in Mice Bearing H22 Cells
3.11. Systemic Toxicity Evaluation
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Giannopoulos, K.; Dmoszynska, A.; Kowal, M.; Wasik-Szczepanek, E.; Bojarska-Junak, A.; Rolinski, J.; Döhner, H.; Stilgenbauer, S.; Bullinger, L. Thalidomide exerts distinct molecular antileukemic effects and combined thalidomide/fludarabine therapy is clinically effective in high-risk chronic lymphocytic leukemia. Leukemia 2009, 23, 1771–1778. [Google Scholar] [CrossRef] [PubMed]
- Warren, K.E.; Goldman, S.; Pollack, I.F.; Fangusaro, J.; Schaiquevich, P.; Stewart, C.F.; Wallace, D.; Blaney, S.M.; Packer, R.; Macdonald, T.; et al. Phase I trial of lenalidomide in pediatric patients with recurrent, refractory, or progressive primary CNS tumors: Pediatric Brain Tumor Consortium study PBTC-018. J. Clin. Oncol. 2011, 29, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Awan, F.T.; Johnson, A.J.; Lapalombella, R.; Hu, W.; Lucas, M.; Fischer, B.; Byrd, J.C. Thalidomide and lenalidomide as new therapeutics for the treatment of chronic lymphocytic leukemia. Leuk. Lymphoma 2010, 51, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Rajkumar, S.V. Thalidomide and lenalidomide in the treatment of multiple myeloma. Eur. J. Cancer 2006, 42, 1612–1622. [Google Scholar] [CrossRef] [PubMed]
- Cruz, M.P. Lenalidomide (Revlimid): A Thalidomide Analogue in Combination with Dexamethasone for the Treatment of All Patients with Multiple Myeloma. Pharm. Ther. 2016, 41, 308–313. [Google Scholar]
- Lv, M.; Xu, H. Overview of naphthalimide analogs as anticancer agents. Curr. Med. Chem. 2009, 16, 4797–4813. [Google Scholar] [CrossRef] [PubMed]
- Ingrassia, L.; Lefranc, F.; Kiss, R.; Mijatovic, T. Naphthalimides and azonafides as promising anti-cancer agents. Curr. Med. Chem. 2009, 16, 1192–1213. [Google Scholar] [CrossRef] [PubMed]
- Gellerman, G. Recent Developments in the Synthesis and Applications of Anticancer Amonafide Derivatives A Mini Review. Lett. Drug Des. Discov. 2016, 13, 47–63. [Google Scholar] [CrossRef]
- Chen, Z.; Liang, X.; Zhang, H.Y.; Xie, H.; Liu, J.W.; Xu, Y.F.; Zhu, W.P.; Wang, Y.; Wang, X.; Tan, S.Y.; et al. A new class of naphthalimide-based antitumor agents that inhibit topoisomerase II and induce lysosomal membrane permeabilization and apoptosis. J. Med. Chem. 2010, 53, 2589–2600. [Google Scholar] [CrossRef] [PubMed]
- Van Quaquebeke, E.; Mahieu, T.; Dumont, P.; Dewelle, J.; Ribaucur, F.; Simon, G.; Sauvage, S.; Gaussin, J.F.; Tuti, J.; EI Yazidi, M.; et al. 2,2,2-Trichloro-N-({2-[2-(dimethylamino)ethyl]-1,3-dioxo-2,3-dihydro-1H-benzo-[de]isoquinolin-5-yl}carbamoyl)acetamide (UNBS3157), anovel nonhematotoxic naphthalimide derivative with potent antitumor activity. J. Med. Chem. 2007, 50, 4122–4134. [Google Scholar] [CrossRef] [PubMed]
- Carta, F.; Temperini, C.; Innocenti, A.; Scozzafava, A.; Kaila, K.; Supuran, C.T. Polyamines inhibit carbonic anhydrases by anchoring to the zinc-coordinated water molecule. J. Med. Chem. 2010, 53, 5511–5522. [Google Scholar] [CrossRef] [PubMed]
- Weisell, J.; Hyvönen, M.T.; Häkkinen, M.R.; Grigorenko, N.A.; Pietilä, M.; Lampinen, A.; Kochetkov, S.N.; Alhonen, L.; Vepsäläinen, J.; Keinänen, T.A.; et al. Synthesis and biological characterization of novel charge-deficient spermine analogues. J. Med. Chem. 2010, 53, 5738–5748. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, S.; Renault, J.; Martin, B.; Duhieu, S.; Cerec, V.; le Roch, M.; Uriac, P.; Delcros, J.G. Targeting the polyamine transport system with benzazepine- and azepine-polyamine conjugates. J. Med. Chem. 2010, 53, 7647–7663. [Google Scholar] [CrossRef] [PubMed]
- Palmer, A.J.; Wallace, H.M. The polyamine transport system as a target for anticancer drug development. Amino Acids 2010, 38, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Muth, A.; Pandey, V.; Kaur, N.; Wason, M.; Baker, C.; Han, X.; Johnson, T.R.; Altomare, D.A.; Phanstiel, O. Synthesis and biological evaluation of antimetastatic agents predicated upon dihydromotuporamine C and its carbocyclic derivatives. J. Med. Chem. 2014, 57, 4023–4034. [Google Scholar] [CrossRef] [PubMed]
- Barret, J.M.; Kruczynski, A.; Vispé, S.; Annereau, J.P.; Brel, V.; Guminski, Y.; Delcros, J.G.; Lansiaux, A.; Guilbaud, N.; Imbert, T.; et al. F14512, a potent antitumor agent targeting topoisomerase II vectored into cancer cells via the polyamine transport system. Cancer Res. 2008, 68, 9845–9853. [Google Scholar] [CrossRef] [PubMed]
- Palermo, G.; Minniti, E.; Greco, M.L.; Riccardi, L.; Simoni, E.; Convertino, M.; Marchetti, C.; Rosini, M.; Sissi, C.; Minarini, A.; et al. An optimized polyamine moiety boosts the potency of human type II topoisomerase poisons as quantified by comparative analysis centered on the clinical candidate F14512. Chem. Commun. 2015, 51, 14310–14313. [Google Scholar] [CrossRef] [PubMed]
- Tierny, D.; Serres, F.; Segaoula, Z.; Bemelmans, I.; Bouchaert, E.; Pétain, A.; Brel, V.; Couffin, S.; Marchal, T.; Nguyen, L.; et al. Phase I Clinical Pharmacology Study of F14512, a New Polyamine-Vectorized Anticancer Drug, in Naturally Occurring Canine Lymphoma. Clin. Cancer Res. 2015, 21, 5314–5323. [Google Scholar] [CrossRef] [PubMed]
- Kruczynski, A.; Pillon, A.; Créancier, L.; Vandenberghe, I.; Gomes, B.; Brel, V.; Fournier, E.; Annereau, J.P.; Currie, E.; Guminski, Y.; et al. F14512, a polyamine-vectorized anti-cancer drug, currently in clinical trials exhibits a marked preclinical anti-leukemic activity. Leukemia 2013, 27, 2139–2148. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Xie, S.; Du, Y.; Ma, Y.; Zhao, J.; Gao, W.; Wang, C. Synthesis, cytotoxicity and apoptosis of naphthalimide polyamine conjugates as antitumor agents. Eur. J. Med. Chem. 2009, 44, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Xie, S.; Mei, Z.; Zhao, J.; Gao, W.; Wang, C. Conjugation of substituted naphthalimides to polyamines as cytotoxic agents targeting the Akt/mTOR signal pathway. Org. Biomol. Chem. 2009, 7, 4651–4660. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, X.; Zhao, J.; Xie, S.; Wang, C. Nonhematotoxic naphthalene diimide modified by polyamine: Synthesis and biological evaluation. J. Med. Chem. 2012, 55, 3502–3512. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wu, Y.Y.; Luo, Y.; He, M.Q.; Xie, J.M.; Li, H.M.; Yuan, X.H. One-pot synthesis of 5-acetylacenaphthene using heteropoly acid catalysts. React. Kinet. Mech. Catal. 2011, 102, 103–111. [Google Scholar] [CrossRef]
- Zhu, W.H.; Yao, R.; Tian, H. Synthesis of novel electro-transporting emitting compounds. Dyes Pigments 2002, 54, 147–154. [Google Scholar] [CrossRef]
- Wang, C.; Delcros, J.G.; Biggerstaff, J.; Phanstiel, O. Molecular requirements for targeting the polyamine transport system. Synthesis and biological evaluation of polyamine-anthracene conjugates. J. Med. Chem. 2003, 46, 2672–2682. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.J.; Xu, X.Z.; Wang, J.D.; Chen, N.S.; Huang, J.L. Synthesis and Crystal Structure of 4-Bromo-5-nitrophthalonitrile. Chin. J. Synth. Chem. 2005, 13, 169–171. [Google Scholar]
- Lin, M.J.; Wang, J.D.; Chen, N.S.; Huang, J.L. A convenient synthesis of a substituted phthalocyanine compound. J. Coord. Chem. 2006, 59, 607–611. [Google Scholar] [CrossRef]
- Sakurai, H.; Tsukuda, T.; Hirao, T. Pd/C as a reusable catalyst for the coupling reaction of halophenols and arylboronic acids in aqueous media. J. Org. Chem. 2002, 67, 2721–2722. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Cui, J.; Qian, X.; Xu, Y.; Liu, J.; Xu, R. 5-Non-amino aromatic substituted naphthalimides as potential antitumor agents: Synthesis via Suzuki reaction, antiproliferative activity, and DNA-binding behavior. Bioorg. Med. Chem. 2011, 19, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Ballot, C.; Jendoubi, M.; Kluza, J.; Jonneaux, A.; Laine, W.; Formstecher, P.; Bailly, C.; Marchetti, P. Regulation by survivin of cancer cell death induced by F14512, a polyamine-containing inhibitor of DNA topoisomerase II. Apoptosis 2012, 17, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Jakubowicz-Gil, J.; Langner, E.; Bądziul, D.; Wertel, I.; Rzeski, W. Apoptosis induction in human glioblastoma multiforme T98G cells upon temozolomide and quercetin treatment. Tumour Biol. 2013, 34, 2367–2378. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.Q.; Wang, J.H.; Ma, H.X.; Cheng, P.F.; Zhao, J.; Wang, C.J. Polyamine transporter recognization and antitumor effects of anthracenymethyl homospermidine. Toxicology 2009, 263, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Ellegaard, A.M.; Groth-Pedersen, L.; Oorschot, V.; Klumperman, J.; Kirkegaard, T.; Nylandsted, J.; Jäättelä, M. Sunitinib and SU11652 Inhibit Acid Sphingomyelinase, Destabilize Lysosomes, and Inhibit Multidrug Resistance. Mol. Cancer Ther. 2013, 12, 2018–2030. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, A.; Pawlikowski, J.; Manoharan, I.; van Tuyn, J.; Nelson, D.M.; Rai, T.S.; Shah, P.P.; Hewitt, G.; Korolchuk, V.I.; Passos, J.F.; et al. Lysosome-mediated processing of chromatin in senescence. J. Cell Biol. 2013, 202, 129–143. [Google Scholar]
- Zhu, H.; Miao, Z.H.; Huang, M.; Feng, J.M.; Zhang, Z.X.; Lu, J.J.; Cai, Y.J.; Tong, L.J.; Xu, Y.F.; Qian, X.H.; et al. Naphthalimides induce G2 arrest through the ATM-activated Chk2-executed pathway in HCT116 cells. Neoplasia 2009, 11, 1226–1234. [Google Scholar] [CrossRef] [PubMed]
- Kruczynski, A.; Vandenberghe, I.; Pillon, A.; Pesenl, S.; Goetsch, L.; Barret, J.M.; Guminski, Y.; le Pape, A.; Imbert, T.; Bailly, C.; et al. Preclinical activity of F14512, designed to target tumors expressing anactive polyamine transport system. Investig. New Drugs 2011, 29, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Chen, Y.; Wang, T.; Hong, C.; Chang, L.P.; Chang, C.C.; Yang, Y.C.; Xie, S.Q.; Wang, C.J. Flavonoid derivatives with improved cholinesterase inhibitory activities. Bioorg. Med. Chem. 2016, 24, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.A.; de Queiroz, A.C.; Alexandre-Moreira, M.S.; Varela, J.; Cerecetto, H.; González, M.; Doriguetto, A.C.; Landre, I.M.; Barreiro, E.J.; Lima, L.M. Design, synthesis and in vitro trypanocidal and leishmanicidal activities of novel semicarbazone derivatives. Eur. J. Med. Chem. 2015, 100, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Du, G.; Xie, S.; Zhao, J.; Gao, W.; Wang, C.J. Synthesis and bioevaluation of 5-fluorouracil derivatives. Molecules 2007, 12, 2450–2457. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Not available.
Compd. | R2 | X | k | IC50 (μM) a | ||||
---|---|---|---|---|---|---|---|---|
HCT-116 | HepG2 | K562 | MDA-MB-231 | QSG-7701 | ||||
Amo. | 15.43 | 6.57 | 6.31 | 7.98 | 55.45 | |||
5d | -(CH2)4NH(CH2)4NH2 | 2 | 22.92 | 23.85 | 31.05 | nd b | 23.21 | |
5e | -(CH2)3NH(CH2)4NH(CH2)3NH2 | 3 | 16.91 | 22.07 | 12.25 | nd b | 27.65 | |
5f | -(CH2)4NH(CH2)4NH(CH2)4NH2 | 3 | 19.56 | 30.72 | 18.81 | nd b | 21.19 | |
11a | -(CH2)3NH2 | 2 | 39.85 | 53.46 | 33.19 | 32.38 | 39.18 | |
11b | -(CH2)3NH(CH2)3NH2 | 3 | >50 | >50 | 28.01 | 16.75 | 42.89 | |
11e | -(CH2)3NH(CH2)4NH(CH2)3NH2 | 4 | 5.12 | 6.33 | 2.86 | 11.98 | 53.85 | |
11f | -(CH2)4NH(CH2)4NH(CH2)4NH2 | 4 | >50 | >50 | 26.18 | 57.08 | 50.64 | |
17b | -(CH2)3NH(CH2)3NH2 | 3 | 1 | >50 | >50 | 28.17 | nd b | >50 |
17c | -(CH2)4NH(CH2)3NH2 | 3 | 1 | >50 | >50 | >50 | nd b | >50 |
17d | -(CH2)4NH(CH2)4NH2 | 3 | 2 | >50 | >50 | >50 | nd b | >50 |
Groups | Dose (mg/kg) | Tumor Weight (g) | Inhibition Rate (%) | No. Dead |
---|---|---|---|---|
Control | 2.17 ± 0.22 | 0/9 | ||
Amonafide | 5 | 1.22 ± 0.13 | 43.79 | 0/9 |
11e | 1 | 0.63 ± 0.21 | 70.92 | 0/9 |
Groups | Dose (mg/kg) | Metastatic Focus (No.) | Inhibition Rate (%) | No. Dead |
---|---|---|---|---|
Control | 110.04 ± 15.38 | 0/8 | ||
Amonafide | 5 | 65.25 ± 13.82 | 40.70 | 0/8 |
11e | 1 | 40.25 ± 8.15 | 62.42 | 0/8 |
Predicted Properties | Compounds | |
---|---|---|
11e | Amonafide | |
MW (g/mol) | 496.65 | 283.33 |
H-Donors | 6 | 2 |
H-Acceptor | 9 | 5 |
Rot. Bonds | 18 | 3 |
Rings | 3 | 3 |
Lipinski | 1 | 0 |
Log P | 0.57 | 1.35 |
Solubility | 1000 mg/mL | 21.1 mg/mL |
Caco-2 | Pe = 0.1 × 10−6 cm/s | Pe = 13 × 10−6 cm/s |
HIA | 1% | 97% |
HLM | 0.49 | 0.46 |
hERG | 0.49 | 0.39 |
AMES | 0.41 | 0.57 |
CNS | −4.81 | −3.2 |
Classification Scores | Predicted ADMET Properties | ||
---|---|---|---|
HLM | hERG | AMES | |
≤0.33 | Stable | Non-inhibitor | Non-mutagenic |
>0.33 and ≤0.67 | Undefined | Undefined | Undefined |
>0.67 | Undefined | Inhibitor | Mutagenic |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Wang, Y.; Zhang, J.; Xie, S.; Wang, C.; Wu, Y. Synthesis and Biological Evaluation of Novel Aromatic Imide-Polyamine Conjugates. Molecules 2016, 21, 1637. https://doi.org/10.3390/molecules21121637
Li M, Wang Y, Zhang J, Xie S, Wang C, Wu Y. Synthesis and Biological Evaluation of Novel Aromatic Imide-Polyamine Conjugates. Molecules. 2016; 21(12):1637. https://doi.org/10.3390/molecules21121637
Chicago/Turabian StyleLi, Ming, Yuxia Wang, Jianying Zhang, Songqiang Xie, Chaojie Wang, and Yingliang Wu. 2016. "Synthesis and Biological Evaluation of Novel Aromatic Imide-Polyamine Conjugates" Molecules 21, no. 12: 1637. https://doi.org/10.3390/molecules21121637
APA StyleLi, M., Wang, Y., Zhang, J., Xie, S., Wang, C., & Wu, Y. (2016). Synthesis and Biological Evaluation of Novel Aromatic Imide-Polyamine Conjugates. Molecules, 21(12), 1637. https://doi.org/10.3390/molecules21121637