Synthesis and Preliminary Biological Evaluation of 1,3,5-Triazine Amino Acid Derivatives to Study Their MAO Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Preliminary Biology
3. Experimental Section
3.1. Chemistry
3.1.1. General Procedure for the Synthesis of (4,6-Dimethoxy-1,3,5-triazin-2-yl) Amino Acid Derivatives 3–9
3.1.2. General Procedure for the Synthesis of N-(4,6-Dipiperidino-1,3,5-triazin-2-yl) Amino Acid Derivatives 15–21
3.1.3. General Procedure for the Synthesis of N-(4,6-Dimorpholino-1,3,5-triazin-2-yl) Amino Acid Derivatives 22–28
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kalgutkar, A.S.; Dalvie, D.K.; Castagnoli, N.; Taylor, T. Interactions of Nitrogen-Containing Xenobiotics with Monoamine Oxidase (MAO) Isozymes A and B: SAR Studies on MAO Substrates and Inhibitors. Chem. Res. Toxicol. 2001, 14, 1139–1162. [Google Scholar] [CrossRef] [PubMed]
- Legoabe, L.J.; Petzer, A.; Petzer, J.P. Selected C7-substituted chromone derivatives as monoamine oxidase inhibitors. Bioorg. Chem. 2012, 45, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Youdim, M.B.H.; Bakhle, Y.S. Monoamine oxidase: Isoforms and inhibitors in Parkinson’s disease and depressive illness. Br. J. Pharmacol. 2006, 147, S287–S296. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.C.; Hasan, F.; McCrodden, J.M. Monoamine oxidase inhibitors and the cheese effect. Neurochem. Res. 1993, 18, 1145–1149. [Google Scholar] [CrossRef] [PubMed]
- Tetrud, J.W.; Koller, W.C. A novel formulation of selegiline for the treatment of Parkinson’s disease. Neurology 2004, 63, S2–S6. [Google Scholar] [CrossRef] [PubMed]
- Riederer, P.; Danielczyk, W.; Grunblatt, E. Monoamine-oxidase-B inhibition in Alzheimer’s disease. Neurotoxicology 2004, 25, 271–277. [Google Scholar] [CrossRef]
- Hassan, S.Y.; Khattab, S.N.; Bekhit, A.A.; Amer, A. Synthesis of 3-benzyl-2-substituted quinoxalines as novel monoamine oxidase A inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 1753–1756. [Google Scholar] [CrossRef] [PubMed]
- Khattab, S.N.; Hassan, S.Y.; Bekhit, A.A.; El-Massry, A.; Langer, V.; Amer, A. Synthesis of new series of quinoxaline based MAO-inhibitors and docking studies. Eur. J. Med. Chem. 2010, 45, 4479–4489. [Google Scholar] [CrossRef] [PubMed]
- Khattab, S.N.; Bekhit, A.A.; El-Faham, A.; El-Massry, A.; Amer, A. Synthesis of Some Pyridazinyl acetic Acid Derivatives as a Novel Class of Monoamine Oxidase-A Inhibitors. Chem. Pharm. Bull. 2008, 56, 1717–1721. [Google Scholar] [CrossRef] [PubMed]
- El-Faham, A.; Al Marhoon, Z.; Abdel-Megeed, A.; Khattab, S.N.; Bekhit, A.; Albericio, F. α-Ketoamino acid ester derivatives as promising MAO inhibitors. Biol. Org. Med. Chem. Lett. 2015, 25, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Foster, B.J.; Harding, B.J.; Leyland-Jones, B.; Hoth, D. Hexamethylmelamine: A critical review of an active drug. Cancer Treat. Rev. 1986, 38, 197–217. [Google Scholar] [CrossRef]
- Tranchand, B.; Catimel, G.; Lucas, C.; Sarkany, M.; Bastian, G.; Evene, E.; Guastalla, J.P.; Negrier, S.; Rebattu, P.; Dumortier, A.; et al. Phase-I clinicalandpharmacokinetic study of S9788, anew multidrug-resistance reversal agent given alone and in combination with Doxorubicin to patients with advanced solid tumers. Cancer Chemother. Pharmacol. 1998, 41, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Ono, M.; Kawahara, N.; Goto, D.; Wakabayashi, Y.; Ushiro, S.; Yoshida, S.; Izumi, H.; Kuwano, M.; Sato, Y. Inhibition of tumor growth and neovascularization by an anti-gastric ulcer agent, irsogladine. Cancer Res. 1996, 56, 1512–1516. [Google Scholar] [PubMed]
- Maeda, M.; Iigo, M.; Tsuda, H.; Fujita, H.; Yonemura, Y.; Nakagawa, K.; Endo, Y.; Sasaki, T. Antimetastatic and antitumor effects of 2,4-diamino-6-(pyridine-4-yl)-1,3,5-triazine(4PyDAT) on the high lung metastatic colon 26 tumor in mice. Anti-Cancer Drug Des. 2000, 15, 217–223. [Google Scholar]
- Menicagli, R.; Samaritani, S.; Signore, G.; Vaglini, F.; Via, L.D. In vitro cytotoxic activities of 2-alkyl-4,6-diheteroalkyl-1,3,5-triazines: New molecules in anticancer research. J. Med. Chem. 2004, 47, 4649–4652. [Google Scholar] [CrossRef] [PubMed]
- Baindur, N.; Chadha, N.; Brandt, B.M.; Asgari, D.; Patch, R.J.; Schalk-Hihi, C.; Carver, T.E.; Petrounia, I.P.; Baumann, C.A.; Ott, H.; et al. 2-Hydroxy-4,6-diamino-[1,3,5]triazines: A Novel Class of VEGF-R2 (KDR) Tyrosine Kinase Inhibitors. J. Med. Chem. 2005, 48, 1717–1720. [Google Scholar] [CrossRef] [PubMed]
- Pandey, V.K.; Tusi, S.; Tusi, Z.; Joshi, M.; Bajpai, S. Synthesis and biological activity of substituted 2,4,6-s-triazines. Acta Pharm. 2004, 54, 1–12. [Google Scholar] [PubMed]
- Porter, J.R.; Archibald, S.C.; Brown, J.A.; Childs, K.; Critchley, D.; Head, J.C.; Hutchinson, B.; Parton, T.A.H.; Robinson, M.K.; Shock, A.; et al. Discovery and evaluation of N-(triazin-1,3,5-yl) phenylalanine derivatives as VLA-4 integrin antagonists. Bioorg. Med. Chem. Lett. 2002, 12, 1591–1594. [Google Scholar] [CrossRef]
- Mylari, B.L.; Withbroe, G.J.; Beebe, D.A.; Brackett, N.S.; Conn, E.L.; Coutcher, J.B.; Oates, P.J.; Zembrowski, W.J. Design and synthesis of a novel family of triazine-based inhibitors of sorbitol dehydrogenase with oral activity: 1-{4-[3R,5S-dimethyl-4-(4-methyl-[1,3,5]triazin-2-yl)-piperazin-1-yl]-[1,3,5]triazin-2-yl}-(R) ethanol. Bioorg. Med. Chem. 2003, 11, 4179–4188. [Google Scholar] [CrossRef]
- Henke, B.R.; Consler, T.G.; Go, N.; Hale, R.L.; Hohman, D.R.; Jones, S.A.; Lu, A.T.; Moore, L.B.; Moore, J.T.; Orband-Miller, L.A.; et al. A New Series of Estrogen Receptor Modulators That Display Selectivity for Estrogen Receptor β. J. Med. Chem. 2002, 45, 5492–5505. [Google Scholar] [CrossRef] [PubMed]
- Klenke, B.; Stewart, M.; Barrett, M.P.; Brun, R.; Gilbert, I.H. Synthesis and Biological Evaluation of s-Triazine Substituted Polyamines as Potential New Anti-Trypanosomal Drugs. J. Med. Chem. 2001, 44, 3440–3452. [Google Scholar] [CrossRef] [PubMed]
- Jensen, N.P.; Ager, A.L.; Bliss, R.A.; Canfield, C.J.; Kotecka, B.M.; Rieckmann, K.H.; Terpinski, J.; Jacobus, D.P. Phenoxypropoxybiguanides, prodrugs of DHFR-inhibiting diaminotriazine antimalarials. J. Med. Chem. 2001, 44, 3925–3931. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Srivastava, K.; Puri, S.K.; Chauhan, P.M.S. Syntheses of 2,4,6-trisubstituted triazines as antimalarial agents. Bioorg. Med. Chem. Lett. 2005, 15, 531–533. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, K.; Srinivas, U.; Harakishore, K.; Jayathirha, R.V.; Bhanuprakash, K.; Murthy, U.S.N. Synthesis and antibacterial activity of 2,4,6-tri substituted s-triazines. Bioorg. Med. Chem. Lett. 2005, 15, 1121–1123. [Google Scholar] [CrossRef] [PubMed]
- McKay, G.A.; Reddy, R.; Arhin, F.; Belley, A.; Lehoux, D.; Moeck, G.; Sarmiento, I.; Parr, T.R.; Gros, P.; Pelletier, J.; et al. Triaminotriazine DNA helicase inhibitors with antibacterial activity. Bioorg. Med. Chem. Lett. 2006, 16, 1286–1290. [Google Scholar] [CrossRef] [PubMed]
- Ghaib, A.; Menager, S.; Verite, P.; Lafont, O. Synthesis of variously 9,9-dialkylated octahydropyrimido [3,4-a]-s-triazines with potential antifungal activity. IL Farmaco 2002, 57, 109–116. [Google Scholar] [CrossRef]
- Lubbers, T.; Angehrn, P.; Gmunder, H.; Herzig, S.; Kulhanek, J. Design, synthesis, and structure-activity relationship studies of ATP analogues as DNA gyrase inhibitors. Bioorg. Med. Chem. Lett. 2000, 10, 821–826. [Google Scholar] [CrossRef]
- Lebreton, S.; Newcombe, N.; Bradley, M. Antibacterial single-bead screening. Tetrahedron 2003, 59, 10213–10222. [Google Scholar] [CrossRef]
- Sunduru, N.; Sharma, M.; Srivastava, K.; Rajakumar, S.; Puri, S.K.; Saxena, J.K.; Chauhan, P.M.S. Synthesis of oxalamide and triazine derivatives as a novel class of hybrid 4-aminoquinoline with potent antiplasmodial activity. Bioorg. Med. Chem. 2009, 17, 6451–6462. [Google Scholar] [CrossRef] [PubMed]
- D’Atri, G.; Gomarasca, P.; Resnati, G.; Tronconi, G.; Scolastico, C.; Sirtori, C.R. Novel pyrimidine and 1,3,5-triazine hypolipemic agents. J. Med. Chem. 1984, 27, 1621–1629. [Google Scholar] [CrossRef] [PubMed]
- Silen, J.L.; Lu, A.T.; Solas, D.W.; Gore, M.A.; Maclean, D.; Shah, N.H.; Coffin, L.M.; Bhinderwala, N.S.; Wang, Y.; Tsutsui, K.L.; et al. Screening for novel antimicrobials from encoded combinatorial libraries by using a two-dimensional agar format. Antimicrob. Agents Chemother. 1998, 42, 1447–1453. [Google Scholar] [PubMed]
- Zhou, C.; Min, J.; Liu, Z.; Young, A.; Deshazer, H.; Gao, T.; Chang, Y.; Kallenbach, N.R. Synthesis and biological evaluation of novel 1,3,5-triazine derivatives as antimicrobial agents. Bioorg. Med. Chem. Lett. 2008, 18, 1308–1311. [Google Scholar] [CrossRef] [PubMed]
- Koc, Z.E.; Bingol, H.; Saf, A.O.; Torlak, E.; Coskun, A. Synthesis of novel tripodal-benzimidazole from 2,4,6-tris(p-formylphenoxy)-1,3,5-triazine: Structural, electrochemical and antimicrobial studies. J. Hazard. Mater. 2010, 183, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Santo, R.D.; Costi, R.; Roux, A.; Artico, M.; Befani, O.; Meninno, T.; Agostinelli, E.; Palmegiani, P.; Turini, P.; Girilli, R.; et al. Design, Synthesis, and Biological Activities of Pyrrolylethanoneamine Derivatives, a Novel Class of Monoamine Oxidases Inhibitors. J. Med. Chem. 2005, 48, 4220–4223. [Google Scholar] [CrossRef] [PubMed]
- Tao, G.; Irie, Y.; Li, D.J.; Keung, W.M. Eugenol and its structural analogs inhibit monoamine oxidase A and exhibit antidepressant-like activity. Bioorg. Med. Chem. 2005, 13, 4777–4788. [Google Scholar] [CrossRef] [PubMed]
- Kurteva, V.; Afonso, C. Solvent-free synthesis of melamines under microwave irradiation. Green Chem. 2004, 6, 183–187. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the all compounds are available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khattab, S.N.; Khalil, H.H.; Bekhit, A.A.; El-Rahman, M.M.A.; El-Faham, A.; Albericio, F. Synthesis and Preliminary Biological Evaluation of 1,3,5-Triazine Amino Acid Derivatives to Study Their MAO Inhibitors. Molecules 2015, 20, 15976-15988. https://doi.org/10.3390/molecules200915976
Khattab SN, Khalil HH, Bekhit AA, El-Rahman MMA, El-Faham A, Albericio F. Synthesis and Preliminary Biological Evaluation of 1,3,5-Triazine Amino Acid Derivatives to Study Their MAO Inhibitors. Molecules. 2015; 20(9):15976-15988. https://doi.org/10.3390/molecules200915976
Chicago/Turabian StyleKhattab, Sherine N., Hosam H. Khalil, Adnan A. Bekhit, Mohamed Mokbel Abd El-Rahman, Ayman El-Faham, and Fernando Albericio. 2015. "Synthesis and Preliminary Biological Evaluation of 1,3,5-Triazine Amino Acid Derivatives to Study Their MAO Inhibitors" Molecules 20, no. 9: 15976-15988. https://doi.org/10.3390/molecules200915976
APA StyleKhattab, S. N., Khalil, H. H., Bekhit, A. A., El-Rahman, M. M. A., El-Faham, A., & Albericio, F. (2015). Synthesis and Preliminary Biological Evaluation of 1,3,5-Triazine Amino Acid Derivatives to Study Their MAO Inhibitors. Molecules, 20(9), 15976-15988. https://doi.org/10.3390/molecules200915976