Novel Microsatellite Markers Acquired from Rubus coreanus Miq. and Cross-Amplification in Other Rubus Species
Abstract
:1. Introduction
2. Results and Discussion
Rubus Species (Sample Size) | Accession no. |
---|---|
R. coreanus (32) | GCB0021 *, GCB0023, GCB0024, GCB0027, GCB0029, GCB0030, GCB0032, GCB0033 *, GCB0034, GCB0035, GCB0036, GCB0038, GCB0040, GCB0041, GCB0042, GCB0043, GCB0045, GCB0046, GCB0047, GCB0049, GCB0051, GCB0052, GCB0054, GCB0055, GCB0057, GCB0059, GCB0060, GCB0061, GCB0062, GCB0063, GCB0118, GCB0119 |
R. crataegifolius var. subcuneatus (3) | GCB0001, GCB0002, GCB0120 |
R. parvifolius (2) | GCB0004, GCB0005 |
R. crataegifolius (4) | GCB0006, GCB0009, GCB0014, GCB0015 |
R. ursinus (1) | GCB0066 |
R. fruticosus (3) | GCB0067, GCB0068, GCB0069 |
R. idaeus (3) | GCB0071, GCB0072, GCB0073 |
Rubus Species | |||||||
---|---|---|---|---|---|---|---|
R. co * | R. p * | R. i * | R. u * | R. f * | R. cs * | R. c * | |
Mean transferability (%) | 100 | 84 (83.5–84.5) | 78.4 (75.3–80.4) | 79.4 | 71.8 (66.0–76.3) | 67.7 (63.9–71.1) | 59.8 (56.7–61.9) |
Primer Name | Genebank No | Primer Sequence (5'-3') | R-Motif | Size Range | R. coreanus | Other Rubus sp. | Tr * | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
NA | HO | HE | PIC | NA | PIC | ||||||
GB-RC-020 | JX976551 | F-AAGCAATAATGGGTGGATCA R-AATGGGAAGGCTGCAACT | (GAA)9 | 303–318 | 4 | 0.607 | 0.696 | 0.647 | 8 | 0.809 | 50 |
GB-RC-049 | JX976552 | F-ACAAGGTTGGTGAATGCG R-ATTGCACTCTTCCGCTCA | (GA)4 | 196–210 | 2 | 0.333 | 0.278 | 0.239 | 5 | 0.745 | 31.3 |
GB-RC-062 | JX976553 | F-ACGACCCTTTGAATCGCT R-GCGAGGCAAGTATTGGTG | (ATG)5 | 157–175 | 3 | 0.25 | 0.279 | 0.255 | 4 | 0.639 | 37.5 |
GB-RC-067 | JX976554 | F-AGAAGGTGTGCGAGACCC R-AACCGTGTCACCGTGAAG | (AG)19 | 287–297 | 6 | 0.233 | 0.584 | 0.557 | - | - | - |
GB-RC-074 | JX976555 | F-AGAGTGGCCCTAGCCTTG R-ACCCGATGAAGCTGGTTT | (AG)15 | 210–226 | 6 | 0.613 | 0.482 | 0.446 | 10 | 0.815 | 93.8 |
GB-RC-077 | JX976557 | F-AGCACCCTCTAAACCCGA R-TGCTCATATATAATCGATGTGCTT | (AAC)9 | 194–208 | 6 | 0.742 | 0.552 | 0.508 | 7 | 0.565 | 93.8 |
GB-RC-078 | JX976558 | F-AGCAGCATCATCAGTTCCA R-TGCTTGGTGACCTCTGCT | (GCA)6 | 192–224 | 5 | 0.774 | 0.699 | 0.643 | 14 | 0.904 | 81.3 |
GB-RC-091 | JX976559 | F-ATCCCGAAAACCACCATT R-CCTCTCTCTCCCCGTGAA | (AG)15 | 235–259 | 8 | 0.281 | 0.845 | 0.826 | 11 | 0.844 | 81.3 |
GB-RC-098 | JX976560 | F-ATGCCTCGATTGCAGAGA R-GAACTCACAGCAGGTCGC | (GCA)4 | 201–216 | 3 | 0.167 | 0.155 | 0.147 | 4 | 0.683 | 100 |
GB-RC-100 | JX976561 | F-ATGTGCAGCAGCAGTGAA R-CTGGGTCCATCCACATTG | (AG)6 | 210–286 | 8 | 0.548 | 0.771 | 0.741 | 11 | 0.852 | 100 |
GB-RC-105 | JX976562 | F-ATTAAACCTCACCGGCGT R-CAAGGCTTGTCAATTCGG | (GT)8 | 167–183 | 4 | 0.969 | 0.626 | 0.566 | 9 | 0.798 | 93.8 |
GB-RC-109 | JX976563 | F-CAAGAGTTGCATCGGCTC R-TGTTGAAACTTTGCCATGC | (TC)12 | 169–195 | 6 | 0.387 | 0.614 | 0.538 | 15 | 0.893 | 87.5 |
GB-RC-111 | JX976564 | F-CAAGGCTTGTCAATTCGG R-ATTAAACCTCACCGGCGT | (CA)11 | 170–184 | 4 | 0.968 | 0.623 | 0.56 | 8 | 0.753 | 93.8 |
GB-RC-138 | JX976565 | F-CCACAAAACCAAGACCCA R-AAGATAGATGAGGCCAGCG | (ACACTC)4 | 213–220 | 4 | 0.469 | 0.471 | 0.387 | 11 | 0.861 | 93.8 |
GB-RC-141 | JX976566 | F-CCACAGAATGGGATTCATA R-CTCGACTTGTCGCAGAGG | (GA)6 | 163–189 | 4 | 0.281 | 0.249 | 0.231 | 12 | 0.872 | 87.5 |
GB-RC-143 | JX976567 | F-CCACGGAGGACGTAATGA R-CAGTCCAACTTGCTTCCG | (AG)12 | 207–225 | 6 | 0.719 | 0.625 | 0.564 | 10 | 0.81 | 62.5 |
GB-RC-145 | JX976568 | F-CCATATGACACAGCCCAAA R-CCATGCGACTTTACTGCC | (AC)9, (CAA)5 | 276–280 | 3 | 0.188 | 0.246 | 0.222 | 6 | 0.672 | 100 |
GB-RC-166 | JX976570 | F-CCTACGGCTTTGGTATGTT R-CCCCCTTTCTCCTTCCTT | (TTGAAG)6 | 181–207 | 5 | 0.625 | 0.751 | 0.71 | 12 | 0.871 | 93.8 |
GB-RC-167 | JX976571 | F-CCTCATTTGCAAAGGTTCT R-GACCGAACCATGATGGAA | (TC)17 | 187–247 | 12 | 0.759 | 0.819 | 0.796 | 14 | 0.884 | 81.3 |
GB-RC-178 | JX976572 | F-CGCGCTAAACCACTTCAC R-GTTGGAACAGCAGTGGGA | (CA)15 | 167–191 | 6 | 1 | 0.67 | 0.618 | 11 | 0.829 | 81.3 |
GB-RC-186 | JX976573 | F-CGTCCAATGTCTATCCGC R-CAGGCAACTGCGATCTTC | (TTG)5 | 269–295 | 6 | 0.621 | 0.69 | 0.635 | 11 | 0.87 | 81.3 |
GB-RC-191 | JX976574 | F-CTCAATGGGAGCACCAAA R-CCCTGCCCAATAAGCATT | (GA)6 | 275–287 | 7 | 0.862 | 0.797 | 0.772 | 12 | 0.803 | 93.8 |
GB-RC-193 | JX976575 | F-CTCCCTGCAAAGAAAGCC R-CTGGAATTCGCCCTTCTC | (GA)18 | 275–287 | 7 | 0.857 | 0.782 | 0.753 | 9 | 0.804 | 81.3 |
GB-RC-207 | JX976577 | F-CTTAGCCAGAACGGGGAG R-CTAACCGGCTGGCCTACT | (GA)10 | 219–231 | 6 | 0.643 | 0.577 | 0.512 | - | - | - |
GB-RC-211 | JX976578 | F-CTTGGTGTGGATGCGATT R-TTCCAGATTCGACCGTTG | (GGA)7 | 196–210 | 6 | 0.5 | 0.556 | 0.527 | 8 | 0.838 | 100 |
GB-RC-220 | JX976579 | F-GAATCAGGGTGAAGGGGA R-CCCCCTCTCTTCTTTTTGG | (GA)14 | 272–276 | 2 | 0.379 | 0.307 | 0.26 | 9 | 0.797 | 62.5 |
GB-RC-245 | JX976582 | F-GCCTCAAGCTCACACAGG R-GGTGCGTCCACAAACTGT | (AG)14 | 262–350 | 13 | 0.645 | 0.876 | 0.863 | 13 | 0.897 | 93.8 |
GB-RC-247 | JX976583 | F-GCGCTATGGTCAGGTTGA R-AAAGAAACGGTGGCCATT | (TTC)12 | 278–338 | 10 | 0.6 | 0.844 | 0.826 | 10 | 0.874 | 62.5 |
GB-RC-259 | JX976584 | F-GGAAGGAATGCAATAGCCA R-TCCCCCTGCTTCTGAGAT | (TG)8 | 315–317 | 2 | 0.161 | 0.425 | 0.335 | 5 | 0.704 | 43.8 |
Mean | 5.7 | 0.558 | 0.582 | 0.541 | 9.6 | 0.803 | 80.1 |
3. Experimental Section
3.1. Plant Materials and Genomic DNA Extraction
3.2. Construction of an SSR-Enriched Library and Primer Design
3.3. PCR Amplification and Genotyping
3.4. Analysis of Transferability, Genetic Variability, and Evolutionary Relationships
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bushakra, J.; Stephens, M.; Atmadjaja, A.; Lewers, K.; Symonds, V.; Udall, J.; Chagné, D.; Buck, E.; Gardiner, S. Construction of black (Rubus occidentalis) and red (R. Idaeus) raspberry linkage maps and their comparison to the genomes of strawberry, apple, and peach. Theor. Appl. Genet. 2012, 125, 311–327. [Google Scholar] [CrossRef]
- Alice, L.A.; Campbell, C.S. Phylogeny of Rubus (Rosaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. Am. J. Bot. 1999, 86, 81–97. [Google Scholar] [CrossRef] [PubMed]
- Alice, L.A.; Eriksson, T.; Eriksen, B.; Campbell, C.S. Hybridization and gene flow between distantly related species of Rubus (Rosaceae): Evidence from nuclear ribosomal DNA internal transcribed spacer region sequences. Syst. Bot. 2001, 26, 769–778. [Google Scholar]
- Weber, H.E. Former and modern taxonomic treatment of the apomicticrubus complex. Folia Geobot. 1996, 31, 373–380. [Google Scholar] [CrossRef]
- Eu, G.-S.; Chung, B.-Y.; Bandopadhyay, R.; Yoo, N.-H.; Choi, D.; Yun, S. Phylogenic relationships of Rubus species revealed by randomly amplified polymorphic DNA markers. J. Crop Sci. Biotechnol. 2008, 11, 39–44. [Google Scholar]
- Choi, H.; Kim, M.; Park, H.; Kim, Y.; Shin, D. Alcoholic fermentation of bokbunja (Rubus coreanus miq.) wine. Korean J. Food Sci. Technol. 2006, 38, 543–547. [Google Scholar]
- Agar, G.; Halasz, J.; Ercisli, S. Genetic relationships among wild and cultivated blackberries (Rubus caucasicus L.) based on amplified fragment length polymorphism markers. Plant Biosyst. 2011, 145, 347–352. [Google Scholar] [CrossRef]
- Marulanda, M.; López, A.; Uribe, M. Molecular characterization of the andean blackberry, Rubus glaucus, using ssr markers. Genet. Mol. Res. 2012, 11, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Parent, J.; Fortin, M.; Page, D. Identification of raspberry cultivars by random amplified polymorphic DNA (RAPD) analysis. Can. J. Plant Sci. 1993, 73, 1115–1122. [Google Scholar] [CrossRef]
- Graham, J.; Smith, K.; MacKenzie, K.; Jorgenson, L.; Hackett, C.; Powell, W. The construction of a genetic linkage map of red raspberry (Rubus idaeus subsp. idaeus) based on AFLPs, genomic-SSR and EST-SSR markers. Theor. Appl. Genet. 2004, 109, 740–749. [Google Scholar]
- Parent, J.-G.; Pagé, D. Identification of raspberry cultivars by sequence characterized amplified region DNA analysis. HortScience 1998, 33, 140–142. [Google Scholar]
- Dossett, M.; Bassil, N.; Finn, C. SSR fingerprinting of black raspberry cultivars shows discrepancies in identification. In Proceedings of the X International Rubus and Ribes Symposium 946, Zlatibor, Serbia, 22–26 June 2011; pp. 49–53.
- Amsellem, L.; Noyer, J.; Le Bourgeois, T.; Hossaert-McKey, M. Comparison of genetic diversity of the invasive weed Rubus alceifolius Poir. (Rosaceae) in its native range and in areas of introduction, using amplified fragment length polymorphism (AFLP) markers. Mol. Ecol. 2000, 9, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Graham, J.; McNicol, R. An examination of the ability of RAPD markers to determine the relationships within and between rubus species. Theor. Appl. Genet. 1995, 90, 1128–1132. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.; Maciel, G.; Mendonca, D.; Gil, F.S.; Da Câmara Machado, A. Isolation and characterization of simple sequence repeat loci in rubus hochstetterorum and their use in other species from the rosaceae family. Mol. Ecol. Notes 2006, 6, 750–752. [Google Scholar] [CrossRef]
- Alice, L.; Eriksson, T.; Eriksen, B.; Campbell, C. Intersubgeneric hybridization between a diploid raspberry, Rubus idaeus, and a tetraploid blackberry, R. caesius (Rosaceae). Am. J. Bot. 1997, 84, 171. [Google Scholar]
- Cuc, L.M.; Mace, E.S.; Crouch, J.H.; Quang, V.D.; Long, T.D.; Varshney, R.K. Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea). BMC Plant Biol. 2008, 8, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, S.-W.; Chung, J.-W.; Park, J.-W.; Lee, G.-A.; Ma, K.-H.; Lee, M.-C.; Park, Y.-J. Microsatellite variations and population structure in an on-farm collection of japanese apricot (Prunus mume Sieb. et Zucc.). Biochem. Syst. Ecol. 2012, 42, 99–112. [Google Scholar] [CrossRef]
- Viruel, M.; Hormaza, J. Development, characterization and variability analysis of microsatellites in lychee (Litchi chinensis Sonn., Sapindaceae). Theor. Appl. Genet. 2004, 108, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.-J.; Lee, G.-A.; Kwack, Y.-B.; Lee, H.-S.; Cho, G.-T.; Ko, H.-C.; Lee, S.-Y.; Kim, Y.-G.; Ma, K.-H. Development of 34 new microsatellite markers from Actinidia arguta: Intra- and interspecies genetic analysis. Korean Soc. Breed. Sci. 2013, 1, 137–147. [Google Scholar]
- Katti, M.V.; Ranjekar, P.K.; Gupta, V.S. Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol. Biol. Evol. 2001, 18, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
- Cardle, L.; Ramsay, L.; Milbourne, D.; Macaulay, M.; Marshall, D.; Waugh, R. Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 2000, 156, 847–854. [Google Scholar] [PubMed]
- Zhao, W.; Lee, G.-A.; Kwon, S.-W.; Ma, K.-H.; Lee, M.-C.; Park, Y.-J. Development and use of novel ssr markers for molecular genetic diversity in italian millet (Setaria italica L.). Genes Genomics 2012, 34, 51–57. [Google Scholar] [CrossRef]
- Gupta, P.K.; Varshney, R. The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 2000, 113, 163–185. [Google Scholar] [CrossRef]
- Castillo, N.R.; Reed, B.M.; Graham, J.; Fernández-Fernández, F.; Bassil, N.V. Microsatellite markers for raspberry and blackberry. J. Am. Soc. Hortic. Sci. 2010, 135, 271–278. [Google Scholar]
- Dossett, M.; Bassil, N.V.; Lewers, K.S.; Finn, C.E. Genetic diversity in wild and cultivated black raspberry (Rubus occidentalis L.) evaluated by simple sequence repeat markers. Genet. Resour. Crop Evol. 2012, 59, 1849–1865. [Google Scholar] [CrossRef]
- Lee, G.-A.; Kwon, S.-J.; Park, Y.-J.; Lee, M.-C.; Kim, H.-H.; Lee, J.-S.; Lee, S.-Y.; Gwag, J.-G.; Kim, C.-K.; Ma, K.-H. Cross-amplification of ssr markers developed from Allium sativum to other Allium species. Sci. Hortic. 2011, 128, 401–407. [Google Scholar] [CrossRef]
- Kim, K. Developing one Step Program (SSR Manager) for Rapid Identification of Clones with SSRs and Primer Designing. Master’s Thesis, Seoul National University, Seoul, South Korea, 2004. [Google Scholar]
- Schuelke, M. An economic method for the fluorescent labeling of pcr fragments. Nat. Biotechnol. 2000, 18, 233–234. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Muse, S.V. Powermarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, R.; Jin, L. A unified approach to study hypervariable polymorphisms: Statistical considerations of determining relatedness and population distances. In DNA Fingerprinting: State of the Science; Birkhauser Verlag: Basel, Switzerland, 1993; pp. 153–175. [Google Scholar]
- PHYLIP. Available online: http://evolution.genetics.washington.edu/phylip.html (accessed on 1 January 2015).
- Sample Availability: DNA samples of the Rubus species germplasm are available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, G.-A.; Song, J.Y.; Choi, H.-R.; Chung, J.-W.; Jeon, Y.-A.; Lee, J.-R.; Ma, K.-H.; Lee, M.-C. Novel Microsatellite Markers Acquired from Rubus coreanus Miq. and Cross-Amplification in Other Rubus Species. Molecules 2015, 20, 6432-6442. https://doi.org/10.3390/molecules20046432
Lee G-A, Song JY, Choi H-R, Chung J-W, Jeon Y-A, Lee J-R, Ma K-H, Lee M-C. Novel Microsatellite Markers Acquired from Rubus coreanus Miq. and Cross-Amplification in Other Rubus Species. Molecules. 2015; 20(4):6432-6442. https://doi.org/10.3390/molecules20046432
Chicago/Turabian StyleLee, Gi-An, Jae Young Song, Heh-Ran Choi, Jong-Wook Chung, Young-Ah Jeon, Jung-Ro Lee, Kyung-Ho Ma, and Myung-Chul Lee. 2015. "Novel Microsatellite Markers Acquired from Rubus coreanus Miq. and Cross-Amplification in Other Rubus Species" Molecules 20, no. 4: 6432-6442. https://doi.org/10.3390/molecules20046432
APA StyleLee, G.-A., Song, J. Y., Choi, H.-R., Chung, J.-W., Jeon, Y.-A., Lee, J.-R., Ma, K.-H., & Lee, M.-C. (2015). Novel Microsatellite Markers Acquired from Rubus coreanus Miq. and Cross-Amplification in Other Rubus Species. Molecules, 20(4), 6432-6442. https://doi.org/10.3390/molecules20046432