Effect of Two Anti-Fungal Treatments (Metrafenone and Boscalid Plus Kresoxim-methyl) Applied to Vines on the Color and Phenol Profile of Different Red Wines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Influence of New Generation Fungicides Residues on the Color
2.2. Influence of New Generation Fungicides Residues on the Phenolic Profile of Wines
2.2.1. Anthocyanins
Wines | T-Control | T-Metrafenone | T-Boscalid-Kresoxim-methyl | G-Control | G-Metrafenone | G-Boscalid-Kresoxim-methyl | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Anthocyanins by UV/Vis | ||||||||||||
Monomeric (%) | 34.68 ± 0.949 | 38.91 ± 1.753 37.37 ± 1.594 23.71 ± 0.159 3.880 ± 0.014 | 28.83 * ± 1.689 53.66 * ± 0.740 17.51 * ± 0.949 4.100 * ± 0.057 | 29.58 ± 1.244 43.05 ± 1.054 27.37 ± 0.190 5.180 ± 0.028 | 38.20 * ± 2.645 39.48 ± 1.983 22.33 * ± 0.662 4.345 * ± 0.021 | 34.36 * ± 1.060 46.37 ± 0.994 19.27 * ± 0.066 4.270 * ± ≤0.001 | ||||||
Copigmented (%) | 41.87 ± 0.678 | |||||||||||
Polymeric (%) | 23.46 ± 0.271 | |||||||||||
TOTAL Anthocyanins (absorbance units) | 3.905 ± 0.021 | |||||||||||
Monomeric anthocyanins by HPLC | ||||||||||||
Malvidin derivatives | ||||||||||||
malvidin-3-O-glucoside | 161.59 ± 4.204 13.25 ± 0.886 5.79 ± 0.592 0.85 ± 0.021 0.54 ± 0.032 0.25 ± 0.005 | 152.12 ± 2.326 11.26 ± 0.018 5.05 ± 0.088 0.91 ± 0.039 0.56 ± ≤0.001 0.37 * ± 0.020 | 158.57 ± 4.068 13.46 ± 0.445 6.62 ± 0.058 1.55 * ± 0.023 0.47 ± 0.055 0.06 * ± 0.006 | 163.75 ± 1.684 8.87 ± 0.723 11.44 ± 0.382 1.40 ± 0.131 1.37 ± 0.049 0.46 ± 0.043 | 128.79 * ± 3.121 9.63 ± 0.783 10.93 ±1.116 1.62 ± 0.168 2.10 * ± 0.204 0.36 ± 0.004 | 121.94 * ± 4.149 7.82 ± 0.202 10.30 * ± 0.300 1.85 * ± 0.100 1.93 * ± 0.100 0.47± 0.040 | ||||||
malvidin-3-O-(6-O-p-coumaroyl)glucoside | ||||||||||||
malvidin-3-O-(6-O-acetyl)glucoside | ||||||||||||
malvidin-3-O-(6-O-caffeoyl)glucoside | ||||||||||||
vitisin A | ||||||||||||
vitisin B | ||||||||||||
subTOTAL (mg∙L−1) (%) | 182.12 (78.5) | 170.27 (79.9) | 180.73 (79.6) | 187.29 (80.8) | 153.44 * (86.7) | 144.31 * (85.6) | ||||||
Petunidin derivatives | ||||||||||||
petunidin-3-O-glucoside | 25.38 ± 1.947 3.00 ± 0.125 1.20 ± 0.117 | 22.82 ± 0.834 2.34 * ± 0.144 1.12 ± 0.059 | 25.32 ± 0.395 2.80 ± 0.059 1.00 ± 0.054 | 10.59 ± 0.095 0.39 ± 0.005 0.60 ± 0.045 | 6.35 * ± 0.074 0.03 * ± ≤0.001 0.60 ± 0.047 | 4.70 * ± 0.176 0.41 ± 0.020 0.27 * ± 0.016 | ||||||
petunidin-3-O-(6-O-p-coumaroyl)glucoside | ||||||||||||
petunidin-3-O-(6-O-acetyl)glucoside | ||||||||||||
subTOTAL (mg∙L−1) (%) | 29.58 (12.7) | 26.28 (12.3) | 29.12 (12.7) | 11.58 (5.0) | 6.98 * (3.9) | 5.38 * (5.2) | ||||||
Delphinidin derivatives | ||||||||||||
delphinidin-3-O-glucoside | 10.06 ± 0.735 2.99 ± 0.111 0.66 ± 0.041 | 8.24 * ± 0.284 0.95 * ± 0.001 0.68 ± 0.017 | 11.06 ± 0.070 1.20 * ± 0.007 0.70 ± 0.015 | 5.08 ± 0.071 n.d. 0.37 ± 0.009 | 1.99 * ± 0.219 n.d. 0.32 ± 0.035 | 1.36 * ± 0.064 n.d. 1.36 * ± 0.156 | ||||||
delphinidin-3-O-(6-O-p-coumaroyl)glucoside | ||||||||||||
delphinidin-3-O-(6-O-acetyl)glucoside | ||||||||||||
subTOTAL (mg∙L−1) (%) | 13.71 (5.9) | 9.87 * (4.6) | 12.96 (5.6) | 5.45 (2.4) | 2.31 * (1.3) | 2.72 * (1.6) | ||||||
Peonidin derivatives | ||||||||||||
peonidin-3-O-glucoside | 4.53 ± 0.123 0.82 ± 0.023 0.06 ± 0.004n.d. | 3.98 * ± 0.186 1.00 ± 0.010 0.37 * ± 0.004n.d. | 4.69 ± 0.027 0.84 ± 0.082 0.10 * ± 0.009n.d. | 18.76 ±0.385 4.39 ± 0.173 2.95 ± 0.053 0.16 ± 0.012 | 8.04 * ± 0.749 2.90 * ± 0.259 2.17 * ± 0.232 0.17 ± 0.008 | 10.39 * ± 0.290 2.49 * ± 0.060 2.30 * ± 0.222 0.25 * ± ≤0.001 | ||||||
peonidin-3-O-(6-O-p-coumaroyl)glucoside | ||||||||||||
peonidin-3-O-(6-O-acetyl)glucoside | ||||||||||||
peonidin-3-O-(6-O-caffeoyl)glucoside | ||||||||||||
subTOTAL (mg∙L−1) (%) | 5.41 (2.3) | 5.37 (2.5) | 5.63 * (2.4) | 26.25 (11.3) | 13.28 * (7.5) | 15.43 * (9.1) | ||||||
Cyanidin derivatives | ||||||||||||
cyanidin-3-O-glucoside | 0.44 ± 0.003 0.56 ± 0.033 0.34 ± 0.017 | 0.48 ± 0.024 0.51 ± 0.002 0.41 * ± 0.011 | 0.46 ± 0.028 0.61 ± 0.031 0.38 * ± 0.004 | 0.43 ± 0.024 0.43 ± 0.006 0.22 ± 0.012 | 0.25 * ± 0.032 0.41 ± 0.021 0.34 * ± 0.001 | 0.25 * ± 0.017 0.10 * ± 0.009 0.49 * ± 0.007 | ||||||
cyanidin-3-O-(6-O-p-coumaroyl)glucoside | ||||||||||||
cyanidin-3-O-(6-O-acetyl)glucoside | ||||||||||||
subTOTAL (mg∙L−1) (%) | 1.34 (0.6) | 1.40 (0.7) | 1.45 (0.6) | 1.09 (0.5) | 1.00 (0.6) | 0.84 * (0.5) | ||||||
TOTAL monomeric anthocyanins (mg∙L−1) | 232.16 | 213.17 | 229.89 | 231.65 | 177.01 * | 168.68 * |
2.2.2. Flavan-3-ol Monomers and Proanthocyanidins
Wines | T-Control | T-Metrafenone | T-Boscalid-Kresoxim-methyl | G-Control | G-Metrafenone | G-Boscalid-Kresoxim-methyl | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Flavan-3-ol monomers | ||||||||||||
catechin (C) | 19.49 ± 0.013 7.93 ± 0.035 1.14 ± 0.023 | 19.26 ± 0.036 7.43 ± 0.239 n.d. | 18.32 * ± 0.054 6.27 * ± 0.003 n.d. | 24.39 ± 0.419 23.77 ± 0.270 1.48 ± 0.004 | 23.39 ± 0.276 21.70 ± 0.721 1.42 * ± 0.004 | 20.94 * ± 0.232 20.98 * ± 0.167 1.44 * ± 0.001 | ||||||
epicatechin (EC) | ||||||||||||
galocatechin (GC) | ||||||||||||
subTOTAL (mg∙L−1) | 28.56 | 26.69 | 24.59 * | 49.64 | 46.29 | 43.36 * | ||||||
Proanthocyanidins | ||||||||||||
aDP (%) | 2.6 765.4 59 40 0.5 | 2.7 811.5 60 40 0.5 | 2.6 778.1 68 3 10.6 | 1.8 526.4 79 20 1.3 | 1.8 516.9 81 18 1.2 | 1.8 521.9 81 18 0.8 | ||||||
aMW (%) | ||||||||||||
procyanidins (%PC) | ||||||||||||
prodelphinidins (% PD) | ||||||||||||
galloylated (% G) | ||||||||||||
subTOTAL (mg∙L−1) | 241.94 ± 0.11 | 228.05 ± 1.83 | 200.80 * ± 1.11 | 219.18 ± 1.46 | 207.51 ± 0.35 | 191.40 * ± 2.23 |
2.2.3. Flavonols
Wines | T-Control | T-Metrafenone | T-Boscalid-Kresoxim-methyl | G-Control | G-Metrafenone | G-Boscalid-Kresoxim-methyl | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
3-O-glucoside derivatives | ||||||||||||
myricetin-3-O-glucoside | 3.46 ± 0.279 0.32 ± 0.021 1.01 ± 0.030 0.12 ± 0.001 0.15 ± 0.005 0.95 ± 0.025 | 2.48 * ± 0.072 0.36 * ± 0.021 0.78 * ± 0.035 0.09 * ± 0.002 0.13 * ± 0.004 0.90 ±0.078 | 2.50 * ± 0.215 0.26 * ± 0.012 0.86 * ± 0.028 0.14 * ± 0.009 0.14 ± 0.006 0.86 ± 0.057 | 0.61 ± 0.001 0.13 ± 0.002 0.74 ± 0.035 n.d. 0.25 ± 0.016 2.55 ± 0.161 | 0.37 * ± ≤0.001 n.d. 0.61 * ± 0.002 n.d. 0.24 ± 0.005 2.39 ± 0.072 | 0.37 * ± 0.001 0.13 ± 0.002 0.60 * ± 0.048 n.d. 0.44 * ± 0.022 2.36 ± 0.171 | ||||||
quercetin-3-O-glucoside | ||||||||||||
laricitrin-3-O-glucoside | ||||||||||||
kaempherol-3-O-glucoside | ||||||||||||
isohamnetin-3-O-glucoside | ||||||||||||
syringetin-3-O-glucoside | ||||||||||||
subTOTAL (mg∙L−1) (%) | 6.01 (73.3) | 4.74 * (75.7) | 4.76 * (71.9) | 4.28 (66.2) | 3.62 * (65.8) | 3.90 (71.3) | ||||||
3-O-glucuronide derivatives | ||||||||||||
myricetin-3-O-glucuronide | 0.55 ± 0.006 0.63 ± 0.037 0.19 ± 0.017 | 0.43 * ± 0.040 0.50 * ± 0.029 0.14 * ± 0.001 | 0.41 * ± 0.024 0.63 ± 0.048 0.17 ± 0.001 | 0.23 ± 0.017 0.93 ± 0.038 0.23 ± ≤0.001 | 0.21 ± 0.007 0.95 ± 0.011 0.28 * ± 0.004 | 0.15 * ± 0.003 0.72 * ± 0.022 0.25 ± 0.001 | ||||||
quercetin-3-O-glucuronide | ||||||||||||
kaempherol-3-O-glucuronide | ||||||||||||
subTOTAL (mg∙L−1) (%) | 1.37 (16.7) | 1.07 * (17.1) | 1.21 (18.3) | 1.39 (21.5) | 1.43 (26.0) | 1.12 * (20.5) | ||||||
3-O-galactoside derivatives | ||||||||||||
quercetin-3-O-galactoside | 0.14 ± 0.001 0.07 ± 0.001 | 0.10 * ± 0.001 n.d. | 0.14 ± 0.003 0.08 ± 0.001 | 0.07 ± 0.002 n.d. | n.d. n.d. | 0.06 * ± ≤0.001 n.d. | ||||||
kaempherol-3-O-galactoside | ||||||||||||
subTOTAL (mg∙L−1) (%) | 0.21 (2.6) | 0.10 * (1.6) | 0.22 (3.3) | 0.07 (1.1) | 0.06 * (1.1) | |||||||
Aglycons | ||||||||||||
myricetin | 0.27 ± 0.025 0.21 ± 0.011 0.06 ± ≤0.001 0.07 ± ≤0.001 | 0.15 * ± 0.005 0.14 * ± ≤0.001 n.d. 0.06 * ± 0.002 | 0.23 ± 0.006 0.14 * ± 0.004 n.d. 0.06 * ±≤0.001 | 0.24 ± 0.019 0.37 ± 0.028 0.05 ± ≤0.001 0.06 ± 0.001 | 0.18 * ± ≤0.001 0.27 * ± ≤0.001 n.d. n.d. | 0.11 * ± ≤0.001 0.17 * ± ≤0.001 0.05 ± ≤0.001 0.05 * ± ≤0.001 | ||||||
quercetin | ||||||||||||
kaempherol | ||||||||||||
laricitrin | ||||||||||||
subTOTAL (mg∙L−1) (%) | 0.60 (7.3) | 0.35 * (5.6) | 0.43 * (6.5) | 0.72 (11.1) | 0.45 * (8.2) | 0.39 * (7.2) | ||||||
TOTAL flavonols (mg∙L−1) | 8.20 | 6.26 * | 6.62 * | 6.46 | 5.50 * | 5.47 * |
Wines | T-Control | T-Metrafenone | T-Boscalid-Kresoxim-methyl | G-Control | G-Metrafenone | G-Boscalid-Kresoxim-methyl | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hydroxybenzoic acids | |||||||||||||
gallic acid | 17.00 ± 0.788 6.01 ± 0.252 2.54 ± 0.098 | 17.25 ± 0.160 4.93 * ± 0.226 2.45 ± 0.124 | 13.88 * ± 0.754 5.69 ± 0.189 2.17 * ± 0.151 | 10.55 ± 0.046 3.42 ± 0.070 1.72 ± 0.106 | 5.41 * ± 0.110 2.42 * ± 0.120 1.58 ± 0.008 | 7.29 * ± 0.152 2.21 * ± 0.048 1.97 ± 0.003 | |||||||
3,5-dihydroxibenzoic acid | |||||||||||||
protocatechuic acid | |||||||||||||
Hydroxybenzoic acids | |||||||||||||
vanillic acid | 2.58 ± 0.005 4.07 ± 0.007 | 3.19 ± 0.002 3.42 * ± 0.231 | 2.21 * ± 0.047 3.86 ± 0.297 | 6.25 ± 0.348 3.52 ± 0.355 | 6.23 ± 0.200 4.26 ± 0.134 | 5.93 ± 0.588 4.52 ± 0.393 | |||||||
syringic acid | |||||||||||||
subTOTAL (mg∙L−1) (%) | 32.20 (51.4) | 31.24 (51.2) | 27.82 * (50.2) | 25.46 (65.2) | 19.90 * (60.1) | 21.91 * (67.9) | |||||||
Hydroxycinnamic acids and their derivatives | |||||||||||||
caftaric acid | 16.44 ± 1.022 0.46 ± 0.012 2.36 ± 0.141 10.08 ± 0.824 1.10 ± 0.112 | 16.48 ± 0.948 0.50 ± ≤0.001 2.14 ± 0.080 9.69 ± 0.631 0.98 ± 0.060 | 14.74 ± 0.478 0.32 * ± 0.001 2.13 ± 0.132 9.40 ± 0.645 0.98 ± 0.044 | 7.31 ± 0.130 0.12 ± 0.007 1.08 ± 0.003 3.17 ± 0.017 1.58 ± 0.127 | 7.37 ± 0.340 0.07 * ± 0.001 0.94 * ± 0.009 3.30 ± 0.192 1.20 * ± 0.017 | 5.77 * ± 0.487 0.01 * ± ≤0.001 0.78 * ± 0.034 2.37 * ± 0.228 1.30 * ± 0.073 | |||||||
caffeic acid | |||||||||||||
c-coutaric acid | |||||||||||||
t-coutaric acid | |||||||||||||
p-coumaric acid | |||||||||||||
subTOTAL (mg∙L−1) (%) | 30.43 (48.6) | 29.78 (48.8) | 27.57 (49.8) | 13.27 (34.0) | 12.88 (38.9) | 10.23 * (31.7) | |||||||
Stylbene | |||||||||||||
resveratrol | n.d. | n.d. | n.d. | 0.30 ± 0.002 | 0.32 ± 0.011 | 0.10 * ± 0.002 | |||||||
TOTAL phenolic acids (mg∙L−1) | 62.63 | 61.02 | 55.39 * | 39.03 | 33.10 * | 32.24 * |
2.2.4. Acids
3. Experimental
3.1. Fungicide Experiments
3.2. Winemaking Process and Wine Samples
3.3. Analytical Standards, Reagents and Materials
3.4. Characterization of the Color Fraction and Phenolic Content
- -
- Aacet: 20 μL of 10% (v/v) acetaldehyde was added to 2 mL of prepared wine and the sample was allowed to sit for 45 min at room temperature before measuring A520 nm;
- -
- A20: to another 100 µL of prepared wine, 1,900 µL hydroalcoholic solution was added and absorbance A520 nm was also measured;
- -
- ASO2: 160 μL of 5% (w/v) SO2 was added to 2 mL of prepared wine and absorbance A520 nm was measured.
- copigmented anthocyanins = Aacet − A20
- monomeric anthocyanins = A20 − ASO2
- polymeric anthocyanins = ASO2
- total anthocyanins = Aacet
- % copigmented = [(Aacet − A20)/Aacet] × 100
- % monomeric = [(A20 − ASO2)/Aacet] × 100
- % polymeric = [ASO2/Aacet] × 100
3.5. Determination of Phenolic Compounds
3.5.1. Extraction Procedures
3.5.2. HPLC/DAD–ESI/MS Analysis
3.6. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Russell, P.E. Fungicide resistance: Occurrence and management. J. Agric. Sci. 1995, 124, 317–323. [Google Scholar] [CrossRef]
- Cabras, P.; Angioni, A.; Garau, V.L.; Pirisi, F.P.; Farris, G.A.; Madau, G.; Emonti, G. Pesticides in fermentative processes of wine. J. Agric. Food Chem. 1999, 47, 3854–3857. [Google Scholar] [CrossRef]
- González-Rodríguez, R.M.; Cancho-Grande, B.; Simal-Gándara, J. Efficacy of new commercial formulations to control downy mildew and dissipation of their active fungicides in wine after good agricultural practices. J. Sci. Food Agric. 2009, 89, 2625–2635. [Google Scholar] [CrossRef]
- Barba, A.; Oliva, J.; Payá, P. Influence of fungicide residues in wine quality. In Fungicides; Carisse, O., Ed.; InTech Europe: Rijeka, Croatia, 2010; pp. 421–440. [Google Scholar]
- Oliva, J.; Navarro, S.; Barba, A.; Navarro, G.; Salinas, M.R. Effect of pesticide residues on the aromatic composition of red wines. J. Agric. Food Chem. 1999, 47, 2830–2836. [Google Scholar]
- García, M.A. Influencia de los Residuos de Fungicidas en la Cinética Fermentativa y Calidad de Vinos Blancos de la D.O. Jumilla. Ph.D. Thesis, Universidad de Murcia, Facultad de Química, Jumilla, Murcia, Spain, 2002. [Google Scholar]
- Noguerol-Pato, R.; González-Rodríguez, R.M.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Influence of tebuconazole residues on the aroma composition of Mencía red wines. Food Chem. 2011, 124, 1525–1532. [Google Scholar] [CrossRef]
- Oliva, J.; Barba, A.; San Nicolás, F.T.; Payá, P. Efectos de residuos de fungicidas en la composición fenólica de vinos tintos (var. Monastrell). Tecnología Del Vino 2005, 23, 37–40. [Google Scholar]
- García-Marino, M.; Escudero-Gilete, M.L.; Heredia, F.J.; Escribano-Bailón, M.T.; Rivas-Gonzalo, J.C. Color-copigmentation study by tristimulus colorimetry (CIELAB) in red wines obtained from Tempranillo and Graciano varieties. Food Res. Int. 2013, 51, 123–131. [Google Scholar] [CrossRef]
- García-Marino, M.; Hernández-Hierro, J.M.; Santos-Buelga, C.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Multivariate analysis of the polyphenol composition of Tempranillo and Graciano red wines. Talanta 2011, 85, 2060–2066. [Google Scholar] [CrossRef]
- Boulton, R.B. A method for the assessment of copigmentation in red wines. In Proceedings of the Forty-seventh Annual Meeting of the American Society for Enology and Viticulture; Reno, NV, USA: 26–28 June 1996.
- Hermosín-Gutiérrez, I. Copigmentación y piranoantocianos: el papel de los flavonoles y los ácidos hidroxicinámicos en el color del vino tinto. ACE Revista de Enología. 2007, 81. Available online: http://www.acenologia.com/ciencia81_2.htm (accessed on 4 June 2014).
- Mateus, N.; de Freitas, V. Evolution and stability of anthocyanin-derived pigments during port wine aging. J. Agric. Food Chem. 2001, 49, 5217–5222. [Google Scholar] [CrossRef]
- Tsanova-Savova, S.; Dimov, S.; Ribarova, F. Anthocyanins and color variables of Bulgarian aged red wines. J. Food Comp. Anal. 2002, 15, 647–654. [Google Scholar] [CrossRef]
- Alcalde-Eon, C.; Escribano-Bailon, M.T.; Santos-Buelga, C.; Rivas-Gonzalo, J.C. Identification of dimeric anthocyanins and new oligomeric pigments in red wine by means of HPLC-DAD-ESI/MS. J. Mass Spectrom. 2007, 42, 735–748. [Google Scholar] [CrossRef]
- Monagas, M.; Núñez, V.; Bartolomé, B.; Laureano, O.; Ricardo da Silva, J.M. Monomeric, oligomeric and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L. cv. Graciano, Tempranillo and Cabernet Sauvignon. J. Agric. Food Chem. 2003, 51, 6475–6481. [Google Scholar] [CrossRef]
- González-Manzano, S.; Dueñas, M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T.; Santos-Buelga, C. Studies on the copigmentation between anthocyanins and flavan-3-ols and their influence in the colour expression of red wine. Food Chem. 2009, 114, 649–656. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, R.; Dubourdieu, D.; Donèche, B.; Lonvaud, A. The chemistry of wine Stabilization and treatments. In Handbook of Enology; John Wiley & Sons Ltd.: Chichester, UK, 2006; Volume 2, pp. 141–203. [Google Scholar]
- Cheynier, V.; Sarni-Manchado, P. Wine taste and mouthfeel. In Managing Wine Quality, Viticulture and Wine Quality; Reynolds, A.G., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2010; Volume 1, pp. 29–58. [Google Scholar]
- Quijada-Morín, N.; Regueiro, J.; Simal-Gándara, J.; Tomás, E.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Relationship between the sensory-determined astringency and the flavanolic composition of red wines. J. Agric. Food Chem. 2012, 60, 12355–12361. [Google Scholar] [CrossRef]
- González-Manzano, S.; Santos-Buelga, C.; Pérez-Alonso, J.J.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Characterization of the mean degree of polymerization of proanthocyanidins in red wines using liquid chromatography–mass spectrometry (LC-MS). J. Agric. Food Chem. 2006, 54, 4326–4332. [Google Scholar] [CrossRef]
- Glories, Y. La couleur des vins rouges. 1-ère partie. Les equilibres des anthocyanes et des tanins. Connaissance de la Vigne et du Vin 1984, 18, 195–217. [Google Scholar]
- OIV. Compendium of International Methods of Wine and Must Analysis; International Organisation of Vine and Wine: Paris, France, 2000. [Google Scholar]
- Kennedy, J.A.; Jones, G.P. Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess phloroglucinol. J. Agric. Food Chem. 2001, 49, 1740–1746. [Google Scholar] [CrossRef]
- Alcalde-Eon, C.; Escribano-Bailón, M.T.; Santos-Buelga, C.; Rivas-Gonzalo, J.C. Separation of pyranoanthocyanins from red wine by column chromatography. Anal. Chim. Acta 2004, 513, 305–318. [Google Scholar] [CrossRef]
- Figueiredo-González, M.; Martínez-Carballo, E.; Cancho-Grande, B.; Santiago-Blanco, J.L.; Martínez-Rodríguez, M.C.; Simal-Gándara, J. Pattern recognition of three Vitis vinifera L. red grapes varieties based on anthocyanin and flavonol fingerprints, with correlations between their biosynthesis pathways. Food Chem. 2012, 130, 9–19. [Google Scholar] [CrossRef]
- Sample Availability: Not available.
© 2014 by the authors. licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Briz-Cid, N.; Figueiredo-González, M.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gándara, J. Effect of Two Anti-Fungal Treatments (Metrafenone and Boscalid Plus Kresoxim-methyl) Applied to Vines on the Color and Phenol Profile of Different Red Wines. Molecules 2014, 19, 8093-8111. https://doi.org/10.3390/molecules19068093
Briz-Cid N, Figueiredo-González M, Rial-Otero R, Cancho-Grande B, Simal-Gándara J. Effect of Two Anti-Fungal Treatments (Metrafenone and Boscalid Plus Kresoxim-methyl) Applied to Vines on the Color and Phenol Profile of Different Red Wines. Molecules. 2014; 19(6):8093-8111. https://doi.org/10.3390/molecules19068093
Chicago/Turabian StyleBriz-Cid, Noelia, María Figueiredo-González, Raquel Rial-Otero, Beatriz Cancho-Grande, and Jesús Simal-Gándara. 2014. "Effect of Two Anti-Fungal Treatments (Metrafenone and Boscalid Plus Kresoxim-methyl) Applied to Vines on the Color and Phenol Profile of Different Red Wines" Molecules 19, no. 6: 8093-8111. https://doi.org/10.3390/molecules19068093
APA StyleBriz-Cid, N., Figueiredo-González, M., Rial-Otero, R., Cancho-Grande, B., & Simal-Gándara, J. (2014). Effect of Two Anti-Fungal Treatments (Metrafenone and Boscalid Plus Kresoxim-methyl) Applied to Vines on the Color and Phenol Profile of Different Red Wines. Molecules, 19(6), 8093-8111. https://doi.org/10.3390/molecules19068093