Antischistosomal Activity of the Terpene Nerolidol
Abstract
:1. Introduction
2. Results and Discussion
2.1. Nerolidol Affected the Viability of Schistosomes
Group | Period of incubation (h) | Separated worms (%) a | Dead worms (%) a | Motor activity reduction (%) a | ||||
---|---|---|---|---|---|---|---|---|
M | F | M | F | M | F | |||
Control b | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0.5% DMSO | 48 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
96 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
120 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
PZQ | 24 | 0 | 100 | 100 | 0 | 0 | 100 | 100 |
3 µM | 48 | 0 | 100 | 100 | 0 | 0 | 100 | 100 |
72 | 0 | 100 | 100 | 0 | 0 | 100 | 100 | |
96 | 0 | 100 | 100 | 0 | 0 | 100 | 100 | |
120 | 0 | 100 | 100 | 0 | 0 | 100 | 100 | |
Nerolidol | 24 | 100 | 100 | 100 | 0 | 0 | 100 | 100 |
250 µM | 48 | 100 | 100 | 100 | 0 | 0 | 100 | 100 |
72 | 100 | 100 | 100 | 0 | 0 | 100 | 100 | |
96 | 100 | 100 | 100 | 0 | 0 | 100 | 100 | |
120 | 100 | 100 | 100 | 0 | 0 | 100 | 100 | |
Nerolidol | 24 | 100 | 100 | 60 | 0 | 0 | 100 | 100 |
125 µM | 48 | 100 | 100 | 100 | 0 | 0 | 100 | 100 |
72 | 100 | 100 | 100 | 0 | 0 | 100 | 100 | |
96 | 100 | 100 | 100 | 0 | 0 | 100 | 100 | |
120 | 100 | 100 | 100 | 0 | 0 | 100 | 100 | |
Nerolidol | 24 | 100 | 20 | 0 | 0 | 60 | 100 | 0 |
62.5 µM | 48 | 100 | 100 | 0 | 0 | 40 | 100 | 60 |
72 | 100 | 100 | 0 | 0 | 0 | 100 | 100 | |
96 | 100 | 100 | 100 | 0 | 0 | 100 | 100 | |
120 | 100 | 100 | 100 | 0 | 0 | 100 | 100 | |
Nerolidol | 24 | 100 | 0 | 0 | 0 | 0 | 0 | 0 |
31.2 µM | 48 | 100 | 0 | 0 | 40 | 0 | 0 | 0 |
72 | 100 | 0 | 0 | 0 | 0 | 100 | 0 | |
96 | 100 | 100 | 0 | 0 | 100 | 100 | 0 | |
120 | 100 | 100 | 0 | 0 | 100 | 100 | 0 | |
Nerolidol | 24 | 100 | 0 | 0 | 0 | 0 | 0 | 0 |
15.6 µM | 48 | 100 | 0 | 0 | 0 | 0 | 0 | 0 |
72 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | |
96 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | |
120 | 100 | 0 | 0 | 0 | 0 | 0 | 0 |
2.2. Nerolidol Caused Tegumental Damage in Schistosomes
3. Experimental
3.1. Drugs
3.2. Parasite
3.3. In Vitro Antischistosomal Assay
3.4. Microscopy Studies
4. Conclusions
Acknowledgments
Author Contributions
Conflictts of Interest
References
- Steinmann, P.; Keiser, J.; Bos, R.; Tanner, M.; Utzinger, J. Schistosomiasis and water resources development: Systematic review, meta-analysis, and estimates of people at risk. Lancet Infect. 2006, 6, 411–425. [Google Scholar] [CrossRef]
- Van der Werf, M.J.; de Vlas, S.J.; Brooker, S.; Looman, C.W.; Nagelkerke, N.J.; Habbema, J.D.; Engels, D. Quantification of clinical morbidity associated with schistosome infection in sub Saharan Africa. Acta Trop. 2003, 86, 125–139. [Google Scholar] [CrossRef]
- Gray, D.J.; McManus, D.P.; Li, Y.; Williams, G.M.; Bergquist, R. Schistosomiasis elimination: Lessons from the past guide the future. Lancet Infect. Dis. 2010, 10, 733–736. [Google Scholar] [CrossRef]
- Gryseels, B.; Polman, K.; Clerinx, J.; Kestens, L. Human schistosomiasis. Lancet 2006, 368, 1106–1118. [Google Scholar] [CrossRef]
- Fallon, P.G.; Doenhoff, M.J. Drug-resistant schistosomiasis: Resistance to praziquantel and oxamniquine induced in Schistosoma mansoni in mice is drug specific. Am. J. Trop Med. Hyg. 1994, 51, 83–88. [Google Scholar]
- Ismail, M.; Metwally, A.; Farghaly, A.; Bruce, J.; Tao, L.F. Characterization of isolates of Schistosoma mansoni from Egyptian villagers that tolerate high doses of praziquantel. Am. J. Trop. Med. Hyg. 1996, 55, 214–218. [Google Scholar]
- Botros, S.; Bennett, J. Praziquantel resistance. Expert Opin. Drug Discov. 2007, 2, 535–540. [Google Scholar]
- Caffrey, C.R. Chemotherapy of schistosomiasis: Present and future. Curr. Opin. Chem. Biol. 2007, 11, 433–439. [Google Scholar] [CrossRef]
- Kayser, O.; Kiderlen, A.F.; Croft, S.L. Natural products as antiparasitic drugs. Parasitol. Res. 2003, 2, 55–62. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 4, 564–582. [Google Scholar]
- Anthony, J.P.; Fyfe, L.; Smith, H. Plant active components - a resource for antiparasitic agents? Trends Parasitol. 2005, 10, 462–468. [Google Scholar] [CrossRef]
- Lapczynski, A.; Bhatia, S.P.; Letizia, C.S.; Api, A.M. Fragrance material review on nerolidol (isomer unspecified). Food Chem. Toxicol. 2008, 46, S247–S250. [Google Scholar] [CrossRef]
- McGinty, D.; Letizia, C.S.; Api, A.M. Addendum to Fragrance material review on Nerolidol (isomer unspecified). Food Chem. Toxicol. 2010, 48, S43–S45. [Google Scholar] [CrossRef]
- Nogueira Neto, J.D.; de Almeida, A.A.; da Silva Oliveira, J.; Dos Santos, P.S.; de Sousa, D.P.; de Freitas, R.M. Antioxidant effects of nerolidol in mice hippocampus after open field test. Neurochem. Res. 2013, 38, 1861–1870. [Google Scholar] [CrossRef]
- Koudou, J.; Abena, A.A.; Ngaissona, P.; Bessière, J.M. Chemical composition and pharmacological activity of essential oil of Canarium schweinfurthii. Fitoterapia 2005, 76, 700–703. [Google Scholar] [CrossRef]
- Klopell, F.C.; Lemos, M.; Sousa, J.P.; Comunello, E.; Maistro, E.L.; Bastos, J.K.; de Andrade, S.F. Nerolidol, an antiulcer constituent from the essential oil of Baccharis dracunculifolia DC (Asteraceae). Z Naturforsch. C 2007, 62, 537–542. [Google Scholar]
- Brehm-Stecher, B.F.; Johnson, E.A. Sensitization of Staphylococcus aureus and Escherichia coli to antibiotics by the sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone. Antimicrob Agents Chemother. 2003, 10, 3357–3360. [Google Scholar] [CrossRef]
- Park, M.J.; Gwak, K.S.; Yang, I.; Kim, K.W.; Jeung, E.B.; Chang, J.W.; Choi, I.G. Effect of citral, eugenol, nerolidol and alpha-terpineol on the ultrastructural changes of Trichophyton mentagrophytes. Fitoterapia 2009, 80, 290–296. [Google Scholar] [CrossRef]
- Johann, S.; Oliveira, F.B.; Siqueira, E.P.; Cisalpino, P.S.; Rosa, C.A.; Alves, T.M.; Zani, C.L.; Cota, B.B. Activity of compounds isolated from Baccharis dracunculifolia D.C. (Asteraceae) against Paracoccidioide brasiliensis. Med. Mycol. 2012, 8, 843–851. [Google Scholar]
- Arruda, D.C.; D’Alexandri, F.L.; Katzin, A.M.; Uliana, S.R. Antileishmanial activity of the terpene nerolidol. Antimicrob Agents Chemother. 2005, 5, 1679–1687. [Google Scholar]
- Hoet, S.; Stévigny, C.; Hérent, M.F.; Quetin-Leclercq, J. Antitrypanosomal compounds from the leaf essential oil of Strychnos spinosa. Planta Med. 2006, 5, 480–482. [Google Scholar]
- Lopes, N.P.; Kato, M.J.; Andrade, E.H.; Maia, J.G.; Yoshida, M.; Planchart, A.R.; Katzin, A.M. Antimalarial use of volatile oil from leaves of Virola surinamensis (Rol.) Warb. by Waiãpi Amazon Indians. J. Ethnopharmacol. 1999, 67, 313–319. [Google Scholar] [CrossRef]
- AbouLaila, M.; Sivakumar, T.; Yokoyama, N.; Igarashi, I. Inhibitory effect of terpene nerolidol on the growth of Babesia parasites. Parasitol. Int. 2010, 59, 278–282. [Google Scholar] [CrossRef]
- Allegretti, S.M.; Oliveira, C.N.F.; Oliveira, R.N.; Frezza, T.F.; Rehder, V.L.G. The Use of Brazilian Medicinal Plants to Combat Schistosoma mansoni. In Schistosomiasis; Rokni, M.B., Ed.; InTech: Rijeka, Croatia, 2012; pp. 27–70. [Google Scholar]
- Moraes, J. Antischistosomal Natural Compounds: Present Challenges for New Drug Screens. In Current Topics in Tropical Medicine; Rodriguez-Morales, A.J., Ed.; InTech: Rijeka, Croatia, 2012; pp. 333–358. [Google Scholar]
- De Moraes, J.; Carvalho, A.A.; Nakano, E.; de Almeida, A.A.; Marques, T.H. Anthelmintic activity of carvacryl acetate against Schistosoma mansoni. Parasitol. Res. 2013, 112, 603–610. [Google Scholar] [CrossRef]
- Magalhães, L.G.; Kapadia, G.J.; da Silva Tonuci, L.R.; Caixeta, S.C.; Parreira, N.A.; Rodrigues, V.; da Silva Filho, A.A. In vitro schistosomicidal effects of some phloroglucinol derivatives from Dryopteris species against Schistosoma mansoni adult worms. Parasitol. Res. 2010, 106, 395–401. [Google Scholar] [CrossRef]
- De Souza, F.F.; Júnior, C.O.R.; Fernandes, T.S.; da Silveira, L.S.; Rezende, C.A.M.; de Almeida, M.V.; de Paula, R.G.; Rodrigues, V.; da Silva Filho, A.A.; Couri, M.R.C. Anthelmintic effects of alkylated diamines and amino alcohols against Schistosoma mansoni. Biomed. Res. Int. 2013, 2013, 783490. [Google Scholar]
- Pica-Mattoccia, L.; Cioli, D. Sex- and stage-related sensitivity of Schistosoma mansoni to in vivo and in vitro praziquantel treatment. Int. J. Parasitol. 2004, 34, 527–533. [Google Scholar]
- De Melo, N.I.; Magalhaes, L.G.; de Carvalho, C.E.; Wakabayashi, K.A.; de P. Aguiar, G.; Ramos, R.C.; Mantovani, A.L.; Turatti, I.C.; Rodrigues, V.; Groppo, M.; et al. Schistosomicidal activity of the essential oil of Ageratum conyzoides L. (Asteraceae) against adult Schistosoma mansoni worms. Molecules 2011, 16, 762–273. [Google Scholar] [CrossRef]
- Sanderson, L.; Bartlett, A.; Whitfield, P.J. In vitro and in vivo studies on the bioactivity of a ginger (Zingiber offlcinale) extract towards adult schistosomes and their egg production. J. Helminthol. 2002, 76, 241–247. [Google Scholar] [CrossRef]
- Skelly, P.J.; Alan Wilson, R. Making sense of the schistosome surface. Adv. Parasitol. 2006, 63, 185–284. [Google Scholar] [CrossRef]
- Moraes, J.; Nascimento, C.; Lopes, P.O.; Nakano, E.; Yamaguchi, L.F. Schistosoma mansoni: In vitro schistosomicidal activity of piplartine. Exp. Parasitol. 2011, 127, 357–364. [Google Scholar] [CrossRef]
- De Moraes, J.; Keiser, J.; Ingram, K.; Nascimento, C.; Yamaguchi, L.F. In vitro synergistic interaction between amide piplartine and antimicrobial peptide dermaseptin against Schistosoma mansoni schistosomula and adult worms. Curr. Med. Chem. 2013, 20, 301–309. [Google Scholar] [CrossRef]
- Parreira, N.A.; Magalhães, L.G.; Morais, D.R.; Caixeta, S.C.; de Sousa, J.P.; Bastos, J.K.; Cunha, W.R.; Silva, M.L.; Nanayakkara, N.P.; Rodrigues, V.; et al. Antiprotozoal, schistosomicidal, and antimicrobial activities of the essential oil from the leaves of Baccharis dracunculifolia. Chem. Biodivers. 2010, 7, 993–1001. [Google Scholar] [CrossRef]
- Frezza, T.F.; de Oliveira, C.N.F.; Banin, T.M.; Rehder, V.L.G.; Boaventura, S., Jr.; Allegretti, S.M. Tegumentary changes in two different strains of Schistosoma mansoni treated with artemisinin and artesunic acid. Rev. Patol. Trop. 2013, 42, 309–321. [Google Scholar]
- Veras, L.M.; Guimarães, M.A.; Campelo, Y.D.; Vieira, M.M.; Nascimento, C. Activity of epiisopiloturine against Schistosoma mansoni. Curr. Med. Chem. 2012, 19, 2051–2058. [Google Scholar] [CrossRef]
- Moraes, Jd.; Almeida, A.A.; Brito, M.R.; Marques, T.H.; Lima, T.C. Anthelmintic activity of the natural compound (+)-limonene epoxide against Schistosoma mansoni. Planta Med. 2013, 79, 253–258. [Google Scholar] [CrossRef]
- De Moraes, J.; Nascimento, C.; Miura, L.M.; Leite, J.R.; Nakano, E. Evaluation of the in vitro activity of dermaseptin 01, a cationic antimicrobial peptide, against Schistosoma mansoni. Chem. Biodivers. 2011, 8, 548–558. [Google Scholar] [CrossRef]
- De Moraes, J.; de Oliveira, R.N.; Costa, J.P.; Junior, A.L.G.; de Sousa, D.P.; Freitas, R.M.; Allegretti, S.M.; Pinto, P.L.S. Phytol, a diterpene alcohol from chlorophyll, as a drug against neglected tropical disease schistosomiasis mansoni. PLoS Negl. Trop. Dis. 2014, 8, e2617. [Google Scholar] [CrossRef]
- Manneck, T.; Haggenmüller, Y.; Keiser, J. Morphological effects and tegumental alterations induced by mefloquine on schistosomula and adult flukes of Schistosoma mansoni. Parasitology 2010, 137, 85–98. [Google Scholar] [CrossRef]
- Moraes, J.; Silva, M.P.; Ohlweiler, F.P.; Kawano, T. Schistosoma mansoni and other larval trematodes in Biomphalaria tenagophila (Planorbidae) from Guarulhos, São Paulo State, Brazil. Rev. Inst. Med. Trop. São Paulo 2009, 51, 77–82. [Google Scholar]
- Sample Availability: Samples of the compounds are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Silva, M.P.N.; Oliveira, G.L.S.; De Carvalho, R.B.F.; De Sousa, D.P.; Freitas, R.M.; Pinto, P.L.S.; Moraes, J.D. Antischistosomal Activity of the Terpene Nerolidol. Molecules 2014, 19, 3793-3803. https://doi.org/10.3390/molecules19033793
Silva MPN, Oliveira GLS, De Carvalho RBF, De Sousa DP, Freitas RM, Pinto PLS, Moraes JD. Antischistosomal Activity of the Terpene Nerolidol. Molecules. 2014; 19(3):3793-3803. https://doi.org/10.3390/molecules19033793
Chicago/Turabian StyleSilva, Marcos P.N., George L.S. Oliveira, Rusbene B.F. De Carvalho, Damião P. De Sousa, Rivelilson M. Freitas, Pedro L.S. Pinto, and Josué De Moraes. 2014. "Antischistosomal Activity of the Terpene Nerolidol" Molecules 19, no. 3: 3793-3803. https://doi.org/10.3390/molecules19033793
APA StyleSilva, M. P. N., Oliveira, G. L. S., De Carvalho, R. B. F., De Sousa, D. P., Freitas, R. M., Pinto, P. L. S., & Moraes, J. D. (2014). Antischistosomal Activity of the Terpene Nerolidol. Molecules, 19(3), 3793-3803. https://doi.org/10.3390/molecules19033793