Photocatalytic Solar Tower Reactor for the Elimination of a Low Concentration of VOCs
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of the Height of the Modular Solar Tower Reactor
2.2. Elimination of Toluene in the Solar Tower Reactor Installed with a TiO2-Coated Ceramic Tube by Solar Irradiation
2.3. Elimination of Toluene in the Solar Tower Reactor Installed with a HQC21-Packed Glass Tube by Solar Irradiation
3. Experimental Section
3.1. Design of the Solar Tower Reactor
3.2. Photocatalysts
3.3. Construction of the Gas Flow System for Evaluating the Performance of the Solar Tower Reactor
3.4. Optimization of the Height of the Solar Tower Reactor
3.5. Evaluation of the Performance of the Solar Tower Reactor
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ministry of the Environment, Government of Japan. Available online: http://www.env.go.jp/air/osen/voc/materials/102.pdf (accessed on 10 June 2014).
- Wakamatsu, S. VOC. NIES Res. Bookl. 2002, 5, pp. 4–13. Available online: http://www.nies.go.jp/kanko/kankyogi/05/5.pdf (accessed on 14 October 2014).
- Bureau of Environment, Tokyo Metropolitan Government. (English version: https://www.kankyo.metro.tokyo.jp/en/attachement/VOC%20Emissions%20Control.pdf). Available online: https://www.kankyo.metro.tokyo.jp/basic/attachement/tokyokankyo2011.pdf (accessed on 10 June 2014).
- Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 2000, 1, 1–21. [Google Scholar] [CrossRef]
- Murata, Y.; Tawara, H.; Obata, H.; Takeuchi, K. Air purifying pavement: Development of photocatalytic concrete blocks. J. Adv. Oxid. Technol. 1999, 4, 227–230. [Google Scholar]
- Negishi, N. Photocatalytic air purification—Roadside NOx removal by photocatalyst. Bull. Ceram. Soc. Jpn. 2004, 39, 504–506. [Google Scholar]
- ISO 22197-2:2011: Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Test Method for Air-Purification Performance of Semiconducting Photocatalytic Materials—Part 2: Removal of Acetaldehyde; International Organization for Standardization: Geneva, Switzerland, 2011.
- ISO 22197-3:2011: Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Test Method for Air-Purification Performance of Semiconducting Photocatalytic Materials—Part 3: Removal of Toluene; International Organization for Standardization: Geneva, Switzerland, 2011.
- Alfano, O.M.; Bahnemann, D.; Cassano, A.E.; Dillert, R.; Goslich, R. Photocatalysis in water environments using artificial and solar light. Catal. Today 2000, 58, 199–230. [Google Scholar] [CrossRef]
- Malato, S.; Blanco, J.; Cáceres, J.; Fernández-Alba, A.R.; Agüera, A.; Rodríguez, A. Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO2 using solar energy. Catal. Today 2002, 76, 209–220. [Google Scholar] [CrossRef]
- Herrmann, J.-M.; Guillard, C.; Disdier, J.; Lehaut, C.; Malato, S.; Blanco, J. New industrial titania photocatalysts for the solar detoxification of water containing various pollutants. Appl. Catal. B 2002, 35, 281–294. [Google Scholar] [CrossRef]
- Malato Rodríguez, S.; Blanco Gálvez, J.; Maldonado Rubio, M.I.; Fernández Ibáñez, P.; Alarcón Padilla, D.; Collares Pereira, M.; Farinha Mendes, J.; Correia de Oliveira, J. Engineering of solar photocatalytic collectors. Sol. Energy 2004, 77, 513–524. [Google Scholar] [CrossRef]
- Braham, R.J.; Harris, A.T. Review of major design and scale-up considerations for solar photocatalytic reactors. Ind. Eng. Chem. Res. 2009, 48, 8890–8905. [Google Scholar] [CrossRef]
- Suárez, S.; Hewer, T.L.R.; Portela, R.; Hernández-Alonso, M.D.; Freire, R.S.; Sánchez, B. Behaviour of TiO2–SiMgOx hybrid composites on the solar photocatalytic degradation of polluted air. Appl. Catal. B 2011, 101, 176–182. [Google Scholar] [CrossRef]
- Sano, T.; Negishi, N.; Takeuchi, K.; Matsuzawa, S. Degradation of toluene and acetaldehyde with Pt-loaded TiO2 catalyst and parabolic trough concentrator. Sol. Energy 2004, 77, 543–552. [Google Scholar] [CrossRef]
- Muñoz-Batista, M.J.; Kubacka, A.; Gómez-Cerezo, M.N.; Tudela, D.; Fernández-García, M. Sunlight-driven toluene photo-elimination using CeO2-TiO2 composite systems: A kinetic study. Appl. Catal. B 2013, 140–141, 626–635. [Google Scholar] [CrossRef]
- Nishikawa, H.; Ihara, T. Active properties of thermally excited titanium dioxide/silica composite material for the decomposition of gaseous toluene. Mater. Chem. Phys. 2011, 125, 319–321. [Google Scholar] [CrossRef]
- Negishi, N.; Matsuzawa, S.; Takeuchi, K.; Pichat, P. Transparent micrometer-thick TiO2 films on SiO2-coated glass prepared by repeated dip-coating/calcination: Characteristics and photocatalytic activities for removing acetaldehyde or toluene in air. Chem. Mater. 2007, 19, 3808–3814. [Google Scholar] [CrossRef]
- Takeuchi, S. Shinto no Hikarishokubai silica gel series. Toso Toryo 2004, 658, 15–19. [Google Scholar]
- Obee, N.T.; Brown, T.R. TiO2 photocatalysis for indoor air applications—Effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene. Environ. Sci. Technol. 1995, 29, 1223–1231. [Google Scholar] [CrossRef]
- Marcí, G.; Addamo, M.; Augugliaro, V.; Coluccia, S.; García-Lopez, E.; Loddo, V.; Martra, G.; Palmisano, L.; Sciavello, M. Photocatalytic oxidation of toluene on irradiated TiO2: Comparison of degradation performance in humidified air, in water and in water containing a zwitterionic surfactant. J. Photochem. Photobiol. A Chem. 2003, 160, 105–114. [Google Scholar] [CrossRef]
- Stavrakakis, C.; Raillard, C.; Hequet, V.; Le Cloirec, P. TiO2-based materials for toluene photocalytic oxidation: Water vapor influence. J. Adv. Oxid. Technol. 2007, 10, 94–100. [Google Scholar]
- Akly, C.; Chadik, P.A.; Mazyck, D.W. Photocatalysis of gas-phase toluene using silica-titania composites: Performance of a novel catalyst immobilization technique suitable for large-scale applications. Appl. Catal. B Environ. 2010, 99, 329–335. [Google Scholar] [CrossRef]
- Japan Meteorological Agency. Available online: http://www.data.jma.go.jp/obd/stats/etrn/index.php (accessed on 10 June 2014).
- Sample Availability: Not available.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negishi, N.; Sano, T. Photocatalytic Solar Tower Reactor for the Elimination of a Low Concentration of VOCs. Molecules 2014, 19, 16624-16639. https://doi.org/10.3390/molecules191016624
Negishi N, Sano T. Photocatalytic Solar Tower Reactor for the Elimination of a Low Concentration of VOCs. Molecules. 2014; 19(10):16624-16639. https://doi.org/10.3390/molecules191016624
Chicago/Turabian StyleNegishi, Nobuaki, and Taizo Sano. 2014. "Photocatalytic Solar Tower Reactor for the Elimination of a Low Concentration of VOCs" Molecules 19, no. 10: 16624-16639. https://doi.org/10.3390/molecules191016624
APA StyleNegishi, N., & Sano, T. (2014). Photocatalytic Solar Tower Reactor for the Elimination of a Low Concentration of VOCs. Molecules, 19(10), 16624-16639. https://doi.org/10.3390/molecules191016624