Chemical Composition and Antioxidant Activity of Tánara Ótó (Dracocephalum palmatum Stephan), a Medicinal Plant Used by the North-Yakutian Nomads
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of D. palmatum Herb
2.2. HPLC-UV Analysis of the Main Phenolic Compounds in D. palmatum
Compound | Average amount ± SD | |||
---|---|---|---|---|
Herb | Flowers | Leaves | Stems | |
3-O-Caffeoylquinic acid | 0.052 ± 0.001 a | tr. | tr. | 0.063 ± 0.001 a |
Caffeic acid | 0.157 ± 0.002 b | tr. | n.d. | 0.512 ± 0.005 e |
Cichoric acid | 0.237 ± 0.003 c | n.d. | tr. | 0.289 ± 0.003 cd |
Rosmarinic acid | 1.614 ± 0.022 i | 0.311 ± 0.003 cd | 0.681 ± 0.004 f | 2.791 ± 0.021 j |
Salvianolic acid B | 1.456 ± 0.018 hi | 0.431 ± 0.004 e | 1.662 ± 0.018 i | 0.327 ± 0.003 d |
Apigenin | 0.315 ± 0.004 cd | 0.845 ± 0.010 g | 0.370 ± 0.003 d | 0.497 ± 0.006 e |
Cosmosiin | 5.683 ± 0.085 k | 1.410 ± 0.014 hi | 7.874 ± 0.094 l | 1.640 ± 0.018 i |
Isorhoifolin | 0.240 ± 0.003 c | 0.295 ± 0.003 c | 0.145 ± 0.002 b | 1.377 ± 0.016 h |
Luteolin | 1.484 ± 0.018 hi | 1.998 ± 0.026 i | 0.252 ± 0.003 c | 1.246 ± 0.014 h |
Cynaroside | 12.075 ± 0.156 m | 5.062 ± 0.065 k | 25.172 ± 0.276 n | 6.727 ± 0.074 k |
Luteolin-7-O-glucuronide | 0.298 ± 0.004 c | 0.212 ± 0.002 c | tr. | 0.580 ± 0.006 e |
Luteolin-4'-O-glucoside | 0.254 ± 0.003 c | tr. | tr. | 0.376 ± 0.001 d |
Scolymoside | 0.495 ± 0.007 e | 0.445 ± 0.005 e | 1.240 ± 0.011 h | 4.188 ± 0.046 k |
Naringenin-7-O-glucoside | 0.143 ± 0.003 b | 0.163 ± 0.002 b | 0.272 ± 0.002 c | 0.251 ± 0.003 c |
Eriodictyol-7-O-glucoside | tr. | 0.079 ± 0.001 a | 0.157 ± 0.002 b | 0.095 ± 0.001 a |
Total identified compounds | 24.503 | 11.251 | 37.825 | 20.959 |
Phenylpropanoids | 3.516 | 0.742 | 2.343 | 3.982 |
Flavonoids, including | 20.987 | 10.509 | 35.482 | 16.977 |
flavanones | 0.143 | 0.242 | 0.429 | 0.346 |
flavones | 20.844 | 10.267 | 35.053 | 16.631 |
apigenin derivatives | 6.238 | 2.550 | 8.389 | 3.514 |
luteolin derivatives | 14.606 | 7.717 | 26.664 | 13.117 |
alycones | 1.799 | 2.843 | 0.622 | 1.743 |
monoglycosides | 19.420 | 6.926 | 33.475 | 9.669 |
biosides | 0.735 | 0.740 | 1.385 | 5.565 |
Compound | Average amount ± SD | |||
---|---|---|---|---|
Herb | Flowers | Leaves | Stems | |
3-O-Caffeoylquinic acid | 0.043 ± 0.001 a | tr. | tr. | tr. |
Caffeic acid | 0.246 ± 0.003 c | tr. | tr. | 0.755 ± 0.009 f |
Cichoric acid | 0.122 ± 0.001 b | tr. | 0.356 ± 0.003 d | 0.203 ± 0.002 c |
Rosmarinic acid | 0.943 ± 0.012 g | 0.139 ± 0.001 b | 0.264 ± 0.003 c | 1.943 ± 0.021 h |
Salvianolic acid B | 0.651 ± 0.008 ef | tr. | 1.307 ± 0.010 gh | 0.171 ± 0.002 bc |
Apigenin | 0.157 ± 0.002 b | 0.182 ± 0.002 bc | tr. | 0.312 ± 0.003 d |
Cosmosiin | 3.253 ± 0.046 i | 0.197 ± 0.002 bc | 6.073 ± 0.067 j | 1.002 ± 0.012 g |
Isorhoifolin | 0.273 ± 0.004 c | tr. | 0.101 ± 0.001 b | 0.340 ± 0.004 d |
Luteolin | 0.298 ± 0.004 c | 0.512 ± 0.004 e | 0.396 ± 0.003 d | 0.203 ± 0.002 c |
Cynaroside | 8.263 ± 0.132 k | 0.545 ± 0.007 e | 15.682 ± 0.173 l | 2.972 ± 0.032 hi |
Luteolin-7-O-glucuronide | 0.412 ± 0.005 de | tr. | 0.605 ± 0.007 ef | 0.143 ± 0.001 b |
Luteolin-4′-O-glucoside | 0.337 ± 0.004 d | tr. | 0.568 ± 0.006 e | 0.123 ± 0.001 b |
Scolymoside | 2.462 ± 0.032 h | 0.083 ± 0.001 ab | 0.749 ± 0.009 f | 5.266 ± 0.058 j |
Naringenin-7-O-glucoside | 0.111 ± 0.002 b | 0.114 ± 0.001 b | 1.204 ± 0.014 gh | 0.083 ± 0.001 ab |
Eriodictyol-7-O-glucoside | tr. | tr. | tr. | 0.212 ± 0.002 c |
Total identified compounds | 17.571 | 1.772 | 27.305 | 13.728 |
Phenylpropanoids | 2.005 | 0.139 | 1.927 | 3.072 |
Flavonoids, including | 15.566 | 1.633 | 25.378 | 10.656 |
flavanones | 0.111 | 0.114 | 1.204 | 0.295 |
flavones | 15.455 | 1.519 | 24.174 | 10.361 |
apigenin derivatives | 3.683 | 0.379 | 6.174 | 1.654 |
luteolin derivatives | 11.772 | 1.114 | 18.000 | 8.707 |
alycones | 0.455 | 0.694 | 0.396 | 0.515 |
monoglycosides | 13.158 | 0.856 | 24.132 | 4.535 |
biosides | 2.735 | 0.083 | 0.850 | 5.606 |
2.3. Antioxidant Activity of D. palmatum
Method b | WSE | CSE | Cynaroside |
---|---|---|---|
TAC, mg caffeic acid g−1 | 312.44 ± 6.87 i | 284.63 ± 5.69 i | 623.16 ± 13.08 ii |
DPPH• SA, IC50, μg/mL | 12.73 ± 0.31 iii | 18.62 ± 0.45 iii | 17.63 ± 0.38 iii |
ABTS•+ SA, IC50, μg/mL | 6.35 ± 0.16 iv | 10.78 ± 0.28 iv | 9.38 ± 0.23 iv |
Br• SA, mg cynaroside g−1 | 389.74 ± 8.18 v | 247.86 ± 4.95 v | 1000 |
O2•−-SA, IC50, μg/mL | 19.37 ± 0.50 vi | 28.63 ± 0.77 vi | 14.84 ± 0.41 vi |
CBA, IC50, μg/mL | 1.64 ± 0.05 vii | 3.38 ± 0.11 vii | 10.28 ± 0.35 viii |
NO-IA, IC50, μg/mL | 29.33 ± 1.20 ix | 41.77 ± 1.67 ix | >100 |
H2O2-IA, mM g−1 | 2.03 ± 0.09 x | 1.18 ± 0.05 x | 0.52 ± 0.03 x |
Fe-CA, IC50, μg/mL | 30.91 ± 1.08 xi | 48.11 ± 1.62 xi | >100 |
FRAP, mM Fe2+ g−1 | 22.25 ± 0.85 xii | 12.22 ± 0.48 xiii | 9.53 ± 0.47 xiii |
EM-SA, IC50, μg/mL | 14.07 ± 0.70 xiv | 51.60 ± 2.68 xv | 25.67 ± 1.23 xiv |
3. Experimental
3.1. General
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Microcolumn HPLC-UV
3.5. Preparation of the Extracts WSE and CSE
3.6. Antioxidant Activity Assays
3.7. DPPH-HPLC-UV (ABTS-HPLC-UV) Procedure
3.8. Statistical Analysis
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Doron’kin, V.M.; Kovtonyuk, N.K.; Zuev, V.V. Flora of Siberia, 11; Nauka: Novosibirsk, Russia, 1997; pp. 170–185. [Google Scholar]
- Yurinskii, T. Materials to the Flora of the Verkhoyansk Region of Yakutian Region. In The News of Yakutian Department of the Imperial Russian Geographic Association; Oblastnaya Tipographia: Yakutsk, Russia, 1915; Volume 1, pp. 26–58. [Google Scholar]
- Dastmalchi, K.; Dorman, H.J.D.; Kosar, M.; Hiltunen, R. Chemical composition and in vitro antioxidant evaluation of a water soluble Moldavian balm (Dracocephalum moldavica L.) extract. Food Sci. Technol. 2007, 40, 239–248. [Google Scholar]
- Singh, K.N. Traditional knowledge on ethnobotanical uses of plant biodiversity: A detailed study from the Indian western Himalaya. Biodivers. Res. Conserv. 2012, 28, 63–77. [Google Scholar]
- Bdud Rtsi. A Canon of a Tibetan Medicine; Vostochnaya Literatura: Moscow, Russia, 2001; pp. 296–300.
- Aseeva, T.A.; Dashiev, D.B.; Dashiev, A.D.; Nikolaev, S.M.; Surkova, N.A.; Chekhirova, G.V.; Yurina, T.A. Tibetan Medicine of Buryats; Publishing House of Russian Academy of Science: Novosibirsk, Russia, 2008; pp. 217–263. [Google Scholar]
- Zeng, Q.; Jin, H.Z.; Qin, J.J.; Fu, J.J.; Hu, X.J.; Lin, J.H.; Yan, L.; Chen, M.; Zhang, W.D. Chemical constituents of plants from the genus Dracocephalum. Chem. Biodivers. 2010, 7, 1911–1929. [Google Scholar] [CrossRef]
- Dai, L.; Zhao, C.; Jin, H.; Tang, J.; Shen, Y.; Li, H.; Peng, C.Y.; Zhang, W. A new ferulic acid ester and other constituents from Dracocephalum peregrinum. Arch. Pharm. Res. 2008, 31, 1325–1329. [Google Scholar] [CrossRef]
- Guo, S.; Liu, Y. Studies on the flavonoids of Dracocephalum integrifolium Bge. Acta Bot. Sin. 1980, 22, 266–268. [Google Scholar]
- Brown, J.E.; Rice-Evans, C.A. Luteolin-rich artichoke extract protects low density lipoprotein from oxidation in vitro. Free Rad. Res. 1998, 29, 247–255. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine; Oxford University Press Inc.: New York, NY, USA, 2007; p. 851. [Google Scholar]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Tang, D.; Li, H.-J.; Chen, J.; Guo, C.-W.; Li, P. Rapid and simple method for screening of natural antioxidants from Chinese herb Flos Lonicerae Japonicae by DPPH-HPLC-DAD-TOF/MS. J. Sep. Sci. 2008, 31, 3519–3526. [Google Scholar] [CrossRef]
- Zhanga, Y.; Shia, S.; Wanga, Y.; Huang, K. Target-guided isolation and purification of antioxidants from Selaginella sinensis by offline coupling of DPPH-HPLC and HSCCC experiments. J. Chromatogr. B 2011, 879, 191–196. [Google Scholar] [CrossRef]
- Könczöl, Á.; Béni, Z.; Sipos, M.M.; Rill, A.; Háda, V.; Hohmann, J.; Máthé, I.; Balogh, G.T. Antioxidant activity-guided phytochemical investigation of Artemisia gmelinii Webb. ex Stechm.: Isolation and spectroscopic challenges of 3,5-O-dicaffeoyl(epi)quinic acid and its ethyl ester. J. Pharm. Biomed. Anal. 2012, 59, 83–89. [Google Scholar] [CrossRef]
- Zhang, Y.-P.; Shi, S.-Y.; Xiong, X.; Chen, X.-Q.; Peng, M.-J. Comparative evaluation of three methods based on high-performance liquid chromatography analysis combined with a 2,2'-diphenyl-1-picrylhydrazyl assay for the rapid screening of antioxidants from Pueraria lobata flowers. Anal. Bioanal. Chem. 2012, 402, 2965–2976. [Google Scholar] [CrossRef]
- Qiu, J.; Chen, L.; Zhu, Q.; Wang, D.; Wang, W.; Sun, X.; Liu, X.; Du, F. Screening natural antioxidants in peanut shell using DPPH-HPLC-DAD-TOF/MS methods. Food Chem. 2012, 135, 2366–2371. [Google Scholar] [CrossRef]
- Dai, X.; Huang, Q.; Zhou, B.; Gong, Z.; Liu, Z.; Shi, S. Preparative isolation and purification of seven main antioxidants from Eucommia ulmoides Oliv. (Du-zhong) leaves using HSCCC guided by DPPH-HPLC experiment. Food Chem. 2013, 139, 563–570. [Google Scholar] [CrossRef]
- Fuchs, J.; Milbradt, R. Skin anti-inflammatory activity of apigenin-7-glucoside in rats. Drug Res. 1993, 43, 370–372. [Google Scholar]
- Zheng, Q.S.; Sun, X.L.; Xu, B.; Li, G.; Song, M. Mechanisms of apigenin-7-glucoside as a hepatoprotective agent. Biomed. Environ. Sci. 2005, 18, 65–70. [Google Scholar]
- Rao, Y.K.; Lee, M.J.; Chen, K.; Lee, Y.C.; Wu, W.S.; Tzeng, Y.M. Insulin-mimetic action of rhoifolin and cosmosiin isolated from Citrus grandis (L.) Osbeck leaves: Enhanced adiponectin secretion and insulin receptor phosphorylation in 3T3-L1 cells. Evid. Based Complement. Altern. Med. 2011. [Google Scholar] [CrossRef]
- Nakazaki, E.; Tsolmon, S.; Han, J.; Isoda, H. Proteomic study of granulocytic differentiation induced by apigenin 7-glucoside in human promyelocytic leukemia HL-60 cells. Eur. J. Nutr. 2013, 52, 25–35. [Google Scholar] [CrossRef]
- Park, J.C.; Park, J.G.; Kim, H.J.; Hur, J.M.; Lee, J.H.; Sung, N.J.; Chung, S.K.; Choi, J.W. Effects of extract from Angelica keiskei and its component, cynaroside, on the hepatic bromobenzene-metabolizing enzyme system in rats. Phytother. Res. 2002, 16, S24–S27. [Google Scholar] [CrossRef]
- Kim, T.-J.; Kim, J.-H.; Jin, Y.-R.; Yun, Y.-P. The inhibitory effect and mechanism of luteolin 7-glucoside on rat aortic vascular smooth muscle cell proliferation. Arch. Pharm. Res. 2006, 29, 67–72. [Google Scholar] [CrossRef]
- Hua, J.M.; Hwang, N.K.; Hong, T.G.; Kim, Y.K.; Chung, H.K.; Yang, J.H.; Quan, Z.; Chang, H.W. Inhibitory activity of ethanol extracts of Ailanthus altissima and luteolin-7-glucoside on phospholipase A2 activity. Korean J. Pharmacogn. 2007, 38, 277–280. [Google Scholar]
- Azevedo, M.F.; Camsari, Ç.; Sá, C.M.; Lima, C.F.; Fernandes-Ferreira, M.; Pereira-Wilson, C. Ursolic acid and luteolin-7-glucoside improve lipid profiles and increase liver glycogen content through glycogen synthase kinase-3. Phytother. Res. 2010, 24, S220–S224. [Google Scholar] [CrossRef]
- Perez Gutierrez, R.M.; Anaya Sosa, I.; Hoyo Vadillo, C.; Victoria, T.C. Effect of flavonoids from Prosthechea michuacana on carbon tetrachloride induced acute hepatotoxicity in mice. Pharm. Biol. 2011, 49, 1121–1127. [Google Scholar] [CrossRef]
- Sun, X.; Sun, G.-B.; Wang, M.; Xiao, J.; Sun, X.-B. Protective effects of cynaroside against H2O2-induced apoptosis in H9c2 cardiomyoblasts. J. Cell. Biochem. 2011, 112, 2019–2029. [Google Scholar] [CrossRef]
- Kurihara, T.; Kikuchi, M.; Suzuki, S.; Toyoda, E. Studies on the constituents of leaves of Rhododendron degronianum Carr. Yakugaku Zasshi 1976, 96, 1407–1411. [Google Scholar]
- Olennikov, D.N.; Tankhaeva, L.M. Biologically active substances from Cacalia hastata L. 5. Triperpenes and coumarines. Chem. Nat. Comp. 2005, 41, 600–601. [Google Scholar] [CrossRef]
- Malikov, V.M.; Yuldashev, M.P. Phenolic compounds of plants of the Scutellaria L. genus. Distribution, structure, and properties. Chem. Nat. Comp. 2002, 38, 358–406. [Google Scholar] [CrossRef]
- Lu, Y.; Foo, L. The polyphenol constituents of grape pomace. Food Chem. 1999, 65, 1–8. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Stolbikova, A.V.; Tankhaeva, L.M.; Petrov, E.V. Phenylpropanoids and polysaccharides of Plantago depressa and P. media. Chem. Nat. Comp. 2001, 47, 165–169. [Google Scholar]
- Olennikov, D.N.; Chirikova, N.K.; Tankhaeva, L.M. Chemical investigation of Lophanthus chinensis. Chem. Nat. Comp. 2010, 46, 301–302. [Google Scholar] [CrossRef]
- Kurkin, V.A. Phenylpropanoids from medicinal plants: Distribution, classification, structural analysis, and biological activity. Chem. Nat. Comp. 2003, 39, 123–153. [Google Scholar] [CrossRef]
- Preito, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Asker, M.M.S.; Shawky, B.T. Structural characterization and antioxidant activity of an extracellular polysaccharide isolated from Brevibacterium otitidis BTS 44. Food Chem. 2010, 123, 315–320. [Google Scholar] [CrossRef]
- Ding, H.; Chou, T.; Liang, C. Antioxidant and antimelanogenic properties of rosmarinic acid methyl ester from Origanum vulgare. Food Chem. 2010, 123, 254–262. [Google Scholar]
- Abdullin, I.F.; Turova, E.N.; Budnikov, G.K. Coulometric determination of the antioxidant capacity of tea extracts using electrogenerated bromine. J. Anal. Chem. 2001, 56, 557–559. [Google Scholar] [CrossRef]
- Ozen, T.; Demirtas, I.; Aksit, H. Determination of antioxidant activities of various extracts and essential oil compositions of Thymus praecox subsp. skorpilii var. skorpilii. Food Chem. 2011, 124, 58–64. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Tankhaeva, L.M.; Agafonova, S.V. Antioxidant components of Laetiporus sulphureus (Bull.: Fr.) Murr. fruit bodies. Appl. Biochem. Microbiol. 2011, 47, 419–425. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, D.; Jusha, M.; Saroha, K.; Singif, N.; Vashishta, B. Antioxidant and free radical scavenging potential of Citrullus colocynthis (L.) Schrad. methanolic fruit extract. Acta Pharm. 2008, 58, 215–220. [Google Scholar]
- Badami, S.; Channabasavaraj, K.P. In vitro antioxidant activity of thirteen medicinal plants of India’s Western Ghats. Pharm. Biol. 2007, 45, 392–396. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Agafonova, S.V.; Stolbikova, A.V.; Rokhin, A.V. Melanin of Laetiporus sulphureus (Bull.: Fr.) Murr sterile form. Appl. Biochem. Microbiol. 2011, 47, 298–303. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Tankhaeva, L.M. Lamiaceae carbohydrates. I. Pectinic substances and hemicelluloses from Mentha piperita. Chem. Nat. Comp. 2007, 43, 501–507. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds 1–24 and D. palmatum extracts are available from the authors.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Olennikov, D.N.; Chirikova, N.K.; Okhlopkova, Z.M.; Zulfugarov, I.S. Chemical Composition and Antioxidant Activity of Tánara Ótó (Dracocephalum palmatum Stephan), a Medicinal Plant Used by the North-Yakutian Nomads. Molecules 2013, 18, 14105-14121. https://doi.org/10.3390/molecules181114105
Olennikov DN, Chirikova NK, Okhlopkova ZM, Zulfugarov IS. Chemical Composition and Antioxidant Activity of Tánara Ótó (Dracocephalum palmatum Stephan), a Medicinal Plant Used by the North-Yakutian Nomads. Molecules. 2013; 18(11):14105-14121. https://doi.org/10.3390/molecules181114105
Chicago/Turabian StyleOlennikov, Daniil N., Nadezhda K. Chirikova, Zhanna M. Okhlopkova, and Ismayl S. Zulfugarov. 2013. "Chemical Composition and Antioxidant Activity of Tánara Ótó (Dracocephalum palmatum Stephan), a Medicinal Plant Used by the North-Yakutian Nomads" Molecules 18, no. 11: 14105-14121. https://doi.org/10.3390/molecules181114105
APA StyleOlennikov, D. N., Chirikova, N. K., Okhlopkova, Z. M., & Zulfugarov, I. S. (2013). Chemical Composition and Antioxidant Activity of Tánara Ótó (Dracocephalum palmatum Stephan), a Medicinal Plant Used by the North-Yakutian Nomads. Molecules, 18(11), 14105-14121. https://doi.org/10.3390/molecules181114105