Evaluation of in Vivo Antioxidant and Immunity Enhancing Activities of Sodium Aescinate Injection Liquid
Abstract
:1. Introduction
2. Results and Discussion
Group | Tumour weight (g) | Inhibition rate (%) |
---|---|---|
I | - | - |
II | 1.47 ± 0.13 | - |
III | 1.18 ± 0.12 d | 20.07 |
IV | 1.01 ± 0.09 d | 31.83 |
Group | IL-1β (pg/mL) | IL-6 (pg/mL) | TNF-α (pg/mL) | IFN-γ (pg/mL) |
---|---|---|---|---|
I | 115.28 ± 9.49 | 209.43 ± 19.57 | 3.76 ± 0.33 | 32.38 ± 2.48 |
II | 154.03 ± 13.18 b | 286.27 ± 24.08 b | 7.03 ± 0.49 b | 41.27 ± 3.88 b |
III | 133.51 ± 10.39 d | 241.96 ± 22.15 d | 5.29 ± 0.41 d | 38.46 ± 3.45 c |
IV | 118.19 ± 9.99 d | 215.27 ± 17.83 d | 4.17 ± 0.32 d | 34.93 ± 2.67 d |
Group | γ-GT (U/100 mL) | ALT (U/L) | AST (U/L) | ALP (U/L) |
---|---|---|---|---|
I | 2.74 ± 0.18 | 60.32 ± 5.39 | 94.81 ± 7.82 | 80.35 ± 5.38 |
II | 10.75 ± 1.22 c | 102.69 ± 8.49 b | 140.27 ± 10.58 b | 139.28 ± 11.29 b |
III | 7.23 ± 0.57 d | 83.19 ± 6.02 d | 129.71 ± 11.03 c | 115.03 ± 10.01 c |
IV | 5.38 ± 0.42 d | 72.17 ± 6.11 d | 114.38 ± 9.37 d | 97.36 ± 6.82 d |
Group | MDA | GSH | SOD | CAT | GSH-Px | |
---|---|---|---|---|---|---|
I | serum | 4.28 ± 0.27 | 173.14 ± 12.84 | 261.33 ± 18.04 | 48.03 ± 2.81 | 55.28 ± 4.44 |
liver | 3.37 ± 0.27 | 152.85 ± 13.65 | 216.42 ± 18.48 | 49.02 ± 3.01 | 41.39 ± 3.33 | |
II | serum | 8.57 ± 0.71 b | 90.21 ± 7.03 b | 150.28 ± 12.25 b | 22.16 ± 1.94 b | 33.21 ± 2.73 b |
liver | 8.02 ± 0.71 b | 98.27 ± 8.02 b | 163.15 ± 13.29 b | 21.47 ± 1.69 b | 23.07 ± 2.01 b | |
III | serum | 6.44 ± 0.54 d | 136.21 ± 10.37 d | 197.24 ± 14.81 d | 35.19 ± 2.69 d | 42.09 ± 2.88 d |
liver | 6.81 ± 0.53 d | 130.22 ± 11.26 d | 188.22 ± 14.06 d | 31.77 ± 1.52 d | 30.82 ± 2.31 d | |
IV | serum | 5.25 ± 0.43 d | 155.73 ± 13.22 d | 257.13 ± 22.04 d | 42.83 ± 3.01 d | 51.37 ± 3.53 d |
liver | 4.62 ± 0.35 d | 148.91 ± 12.53 d | 204.15 ± 17.39 d | 43.05 ± 3.57 d | 38.04 ± 2.86 d |
3. Experimental
3.1. Chemicals
3.2. Cell Culture
3.3. Transplantation of H22 Cells as Solid Tumors in Nude Mice and Treatment of Animals
3.4. Biochemical Assay
3.5. Histopathological Examination
3.6. Statistical Analysis
4. Conclusions
Acknowledgements
References
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 3rd ed; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Kehrer, J.P. Free radicals as mediators of tissue injury and disease, Crit. Rev. Toxicol. 1993, 23, 21–48. [Google Scholar] [CrossRef]
- Cadenas, E.; Davies, K.J.A. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 2000, 29, 222–230. [Google Scholar] [CrossRef]
- Kühn, H.; Borchert, A. Regulation of enzymatic lipid peroxidation: The interplay of peroxidizing and peroxide reducing enzymes. Free Radic. Biol. Med. 2002, 33, 154–172. [Google Scholar] [CrossRef]
- Sehirli, O.; Tozan, A.; Omurtag, G.Z.; Cetinel, S.; Contuk, G.; Gedik, N.; Sener, G. Protective effect of resveratrol against naphthalene-induced oxidative stress in mice. Ecotoxicol. Environ. Saf. 2008, 71, 301–308. [Google Scholar]
- Yousef, M.I.; Saad, A.A.; El-Shennawy, L.K. Protective effect of grape seed proanthocyanidin extract against oxidative stress induced by cisplatin in rats. Food Chem. Toxicol. 2009, 46, 1176–1183. [Google Scholar]
- Sell, S.; Leffert, H.L. Liver cancer stem cells. J. Clin. Oncol. 2008, 26, 2800–2805. [Google Scholar] [CrossRef]
- Leach, M.J.; Pincombe, J.; Foster, G. Using horse chestnut seed extract in the treatment of venous leg ulcers: A cost-benefit analysis. Ostomy Wound Manage. 2006, 52, 68–78. [Google Scholar]
- Rathbun, S.W.; Kirkpatrick, A.C. Treatment of chronic venous insufficiency. Curr. Treat. Options Cardiovasc. Med. 2007, 9, 115–126. [Google Scholar] [CrossRef]
- Sirtori, C.R. Aescin: Pharmacology, pharmacokinetics and therapeutic profile. Pharmacol. Res. 2001, 44, 183–192. [Google Scholar] [CrossRef]
- Netea, M.G.; van der Meer, J.W.; van Deuren, M.; Kullberg, B.J. Proinflammatory cytokines and sepsis syndrome: Not enough, or too much of a good thing? Trends Immunol. 2003, 24, 254–258. [Google Scholar]
- Werneck, M.; Lugo-Villarino, G.; Hwang, E.; Cantor, H.; Glimcher, L. T-bet plays a key role in NK-mediated control of melanoma metastatic disease. J. Immunol. 2008, 180, 8004–8010. [Google Scholar]
- Ostensen, M.; Thiele, D.; Lipsky, P. Tumor necrosis factor-alpha enhances cytolytic activity of human natural killer cells. J. Immunol. 1987, 138, 4185–4191. [Google Scholar]
- Sabel, M.; Arora, A.; Su, G.; Mathiowitz, E.; Reineke, J.; Chang, A. Synergistic effect of intratumoral IL-12 and TNF-[alpha] microspheres: Systemic anti-tumor immunity is mediated by both CD8+ CTL and NK cells. Surgery 2007, 142, 749–760. [Google Scholar]
- Sherlock, S.; Dooley, J. Diseases of the Liver and Biliary System, 9th ed; Blackwell Scientific Publications: Oxford, London, UK, 1993; pp. 17–32. [Google Scholar]
- Free Radicals in Biology and Medicine; Halliwell, B.; Gutteridge, J.M.C. (Eds.) Oxford University Press: Oxford, London, UK, 1999.
- Faber, E. Ethionine Carcinogenesis. Adv. Cancer Res. 1963, 7, 383–474. [Google Scholar] [CrossRef]
- Huang, Y.L.; Sheu, J.Y.; Lin, T.H. Association between oxidative stress and changes of trace elements in patient with breast cancer. Clin. Biochem. 1999, 32, 131–136. [Google Scholar]
- Sabitha, K.E.; Shyamaladevi, C.S. Oxidant and antioxidant activity changes in patients with oral cancer and treated with radiotherapy. Oral Oncol. 1998, 35, 273–277. [Google Scholar]
- Szatrowski, T.P.; Nathan, C.F. Production of large amount of H2O2 by human tumor cells. Cancer Res. 1991, 51, 794–798. [Google Scholar]
- Ismail, A.M.; Mostafa, A.M.; Abd El-Rahman, G.B. Microscopic studies of the effects of some food additives on the kidney of albino rat. Egypt J. Hospit. Med. 2003, 12, 12–27. [Google Scholar]
- Scott, M.D.; Lubin, B.H.; Zuo, L.; Kuypers, F.A. Erythrocyte defense against hydrogen peroxide: Preeminent importance of Catalase. J. Lab. Clin. Med. 1991, 118, 7–16. [Google Scholar]
- Dündarz, M.R.; Türkbay, T.; Akay, C.; Sarici, S.U.; Aydin, A.; Denli, M.; Gökçay, E. Antioxidant enzymes and lipid peroxidation in adolescents with inhalant abuse. Turk. J. Pediatr. 2003, 45, 43–45. [Google Scholar]
- El-Beshbishy, H. Lipoic acid attenuates DNA fragmentation, oxidative stress and liver injury induced by tamoxifen in rats. Asian J. Trad. Med. 2007, 2, 175–188. [Google Scholar]
- Sivaramakrishnan, V.; Shilpa, P.N.; Praveen Kumar, V.R.; Devaraj, S. Attenuation of nnitrosodiethylamine-induced hepatocellular carcinogenesis by a novel flavonol-Morin. Chem. Biol. Interact. 2008, 171, 79–88. [Google Scholar] [CrossRef]
- Albukhari, A.; Gashlan, H.; El-Beshbishy, H.; Nagy, A.; Abdel-Naim, A. Caffeic acid phenethyl ester protects against tamoxifen-induced hepatotoxicity in rats. Food Chem. Toxicol. 2009, 47, 1689–1695. [Google Scholar] [CrossRef]
- Masella, R.; DiBenedetto, R.; Vari, R.; Filesi, C.; Giovannini, C. Novel mechanisms of natural antioxidant compounds in biological systems: Involvement of glutathione-related enzymes. J. Nutr. Biochem. 2005, 16, 577–586. [Google Scholar] [CrossRef]
- Li, P.Q.; Luo, C.; Sun, W.B.; Lu, S.Q.; Mou, Y.; Peng, Y.L.; Zhou, L.G. In vitro antioxidant activities of polysaccharides from endophytic fungus Fusarium oxysporum Dzf17. Afr. J. Microbiol. Res. 2011, 5, 5994–5997. [Google Scholar]
- Zhou, Y.F.; Zhang, Y.; Li, J.R.; Meng, X.J.; Zhao, J.L.; He, W.; Zhou, L.G. Antibacterial and antioxidant activities of the endophytic fungi from medicinal herb Trillium tschonoskii. Afr. J. Microbiol. Res. 2011, 5, 4917–4921. [Google Scholar]
- Draper, H.H.; Hadley, M. Malondialdehyde determination as index of lipid peroxidation. Meth. Enzymol. 1990, 86, 421–431. [Google Scholar] [CrossRef]
- Fukuzawa, K.; Tokumura, A. Glutathione peroxidase activity in tissues of vitamin E-deficient mice. J. Nutr. Sci. Vitaminol. 1976, 22, 405–407. [Google Scholar] [CrossRef]
- Winterbourn, C.; Hawkins, R.; Brian, M.; Carrell, R. The estimation of red cell superoxide dismutase activity. J. Lab. Clin. Med. 1975, 85, 337. [Google Scholar]
- Aebi, H. Catalase in vitro. Meth. Enzymol. 1984, 105, 121–126. [Google Scholar]
- Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169. [Google Scholar]
- Sample Availability: Not available.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wang, Y.-K.; Han, J.; Xiong, W.-J.; Yuan, Q.-Y.; Gu, Y.-P.; Li, J.; Zhu, Z.; Zhang, H.; Wang, C.-J. Evaluation of in Vivo Antioxidant and Immunity Enhancing Activities of Sodium Aescinate Injection Liquid. Molecules 2012, 17, 10267-10275. https://doi.org/10.3390/molecules170910267
Wang Y-K, Han J, Xiong W-J, Yuan Q-Y, Gu Y-P, Li J, Zhu Z, Zhang H, Wang C-J. Evaluation of in Vivo Antioxidant and Immunity Enhancing Activities of Sodium Aescinate Injection Liquid. Molecules. 2012; 17(9):10267-10275. https://doi.org/10.3390/molecules170910267
Chicago/Turabian StyleWang, Yong-Kun, Jiang Han, Wu-Jun Xiong, Qiong-Ying Yuan, Yan-Ping Gu, Jun Li, Zhe Zhu, Hui Zhang, and Cong-Jun Wang. 2012. "Evaluation of in Vivo Antioxidant and Immunity Enhancing Activities of Sodium Aescinate Injection Liquid" Molecules 17, no. 9: 10267-10275. https://doi.org/10.3390/molecules170910267
APA StyleWang, Y.-K., Han, J., Xiong, W.-J., Yuan, Q.-Y., Gu, Y.-P., Li, J., Zhu, Z., Zhang, H., & Wang, C.-J. (2012). Evaluation of in Vivo Antioxidant and Immunity Enhancing Activities of Sodium Aescinate Injection Liquid. Molecules, 17(9), 10267-10275. https://doi.org/10.3390/molecules170910267